
Received 20 April 2024, accepted 24 June 2024, date of publication 28 June 2024, date of current version 8 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3420693

Artificial Neural Networks for Photovoltaic Power
Forecasting: A Review of Five Promising Models
RAFIQ ASGHAR 1, FRANCESCO RIGANTI FULGINEI1, MICHELE QUERCIO 1,
AND ASSIA MAHROUCH 2
1Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, 00146 Rome, Italy
2Engineering for Smart and Sustainable Systems Research Center, Mohammed V University in Rabat, Rabat 10090, Morocco

Corresponding author: Rafiq Asghar (rafiq.asghar@uniroma3.it)

ABSTRACT Solar energy is largely dependent on weather conditions, resulting in unpredictable, fluctuating,
and unstable photovoltaic (PV) power outputs. Thus, accurate PV power forecasts are increasingly crucial
for managing and controlling integrated energy systems. Over the years, advanced artificial neural network
(ANN) models have been proposed to increase the accuracy of PV power forecasts for various geographical
regions. Hence, this paper provides a state-of-the-art review of the five most popular and advanced ANN
models for PV power forecasting. These include multilayer perceptron (MLP), recurrent neural network
(RNN), long short-term memory (LSTM), gated recurrent unit (GRU), and convolutional neural network
(CNN). First, the internal structure and operation of these models are studied. It is then followed by a
brief discussion of the main factors affecting their forecasting accuracy, including forecasting horizons,
meteorological conditions, and evaluation metrics. Next, an in-depth and separate analysis of standalone and
hybridmodels is provided. It has been determined that bidirectional GRU and LSTMoffer greater forecasting
accuracy, whether used as a standalonemodel or in a hybrid configuration. Furthermore, hybrid and upgraded
metaheuristic algorithms have demonstrated exceptional performance when applied to standalone and hybrid
ANN models. Finally, this study discusses various limitations and shortcomings that may influence the
practical implementation of PV power forecasting.

INDEX TERMS Artificial neural network, solar energy, PV power, forecasting horizons, performance
analysis, limitations.

I. INTRODUCTION
A. BACKGROUND
Modern economies depend on reliable energy sources to sup-
ply electricity for every facet of human life, from agribusiness
and healthcare to industry and education to environmental
preservation [1], [2]. Fossil fuels remain a dominant energy
source globally, accounting for 83.1% of global energy pro-
duction in 2020 [3]. However, using fossil fuels for energy
has several negative impacts on humans and the environ-
ment. They emit significant amounts of greenhouse gases
into the atmosphere, leading to air and water pollution.
In addition, their resources are dwindling at an alarming
pace [4]. In recent decades, solar energy has emerged as a
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popular option for energy shortages and a viable alternative
to fossil fuels. This energy source, which is both renewable
and environmentally friendly, provides an inexhaustible and
sustainable source of electricity. In 2022, PV power output
reached approximately 1,062 GW, as shown in Fig. 1 [5],
and for the first time, it surpassed wind power production [5],
[6]. The international energy agency (IEA) projects that solar
energy will surpass natural gas and coal by 2026 and 2027,
assuming yearly capacity additions continue to rise at the
same pace over the following five years. By 2030, the annual
increase in PV power capacity will reach 630 GW, four times
higher than the record levels attained in 2020 [7]. In 2050,
there will be 14,000 GW of accumulated PV capacity, and
solar energy will provide approximately half of the world’s
energy demand [8]. Thus, solar energy has the potential to
meet the world’s energy needs. However, it primarily depends
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on weather conditions, and any fluctuations in weather condi-
tionsmay significantly impact its output power [9], [10], [11].
Variations in PV power output can cause system instability,
mainly when PV power accounts for a significant portion
of the energy supply. Accurate forecasting is critical for
effectively integrating PV power into electrical grids and
mitigating the negative impacts of variable PV power output
on the system. Thus, various research has been published
during the last decade, proposing innovative and promising

models for PV power forecasting across different geo-
graphical regions and periods. These models include phys-
ical, statistical, artificial intelligence (AI), and hybrid mod-
els [10], [13]. Physical models use numerical weather fore-
casts and satellite observations to predict solar radiation [14].
Given the availability of appropriate input data, these models
can provide accurate predictions. However, they may give
unsatisfactory results when attempting to include complex
dynamics and variations in the data. Statistical models use
historical data to identify patterns and correlations between
input variables, such as meteorological conditions and PV
power output [15]. Although these models may be helpful
in specific situations, they have several limitations, including
their simplicity, sensitivity to outliers, and dependence on
historical data. Thus, novel modelling tools, such as AI and
hybrid models, are necessary to assess the nonlinear interac-
tions between input factors and PVpower forecasting. Studies
have shown that AI models outperform conventional physical
and statistical models when forecasting PV power [16]. These
models may learn from past data and form strong associations
between important features. Nevertheless, conventional AI
models like support vector machines (SVM), random forests
(RF), and decision trees (DT) possess a shallow framework
and limited learning capacity. In addition, these models have
limited generalization capacity. ANN is a robust and intelli-
gent AI tool for modelling, forecasting, and optimizing the
performance of diverse engineering systems. This approach
has successfully addressed complex nonlinear engineering
problems () [17], [18], [19]. These features become critical
when dealing with the dynamic nature of environmental con-
ditions. Hence, ANNs have become increasingly prominent
in the solar energy sector, particularly for fault detection,
predictive maintenance, radiation forecasting, and power pre-
diction applications.

B. LITERATURE REVIEW
Various ANN-based models have been developed in the lit-
erature, including RNN, CNN, radial basis function neural
network (RBFNN), and hybrid models with different char-
acteristics and benefits. These models are evaluated and
validated using various metrics, including mean absolute
error (MAE), root mean square error (RMSE), mean absolute
percentage error (MAPE), relative root mean square error
(RRMSE), correlation coefficient (R), and normalized mean
bias error (NMBE). Over the last few decades, researchers
have focused on improving neural network topologies,

optimizing training procedures, and enhancing the accessibil-
ity of high-quality data. Thus, modern ANNs are particularly
adept at identifying complex geographical and temporal
patterns within solar irradiance data, ultimately improving
predictions’ accuracy. A study found that when predicting
solar radiation, an RNN model performed better than a
conventional ANN model in terms of NMBE (47%) and
RMSE (26%) [20]. The RNN model is capable of captur-
ing the temporal variations in PV output, resulting in more
accurate forecasting errors compared to traditional methods
like multiple linear regression (MLR) and bagged regression
trees (BRT) [21], [22]. CNN, another type of ANN, has
recently received much attention due to its remarkable perfor-
mance in image classification, speech recognition, and object
detection [23]. For PV power forecasting, CNN can provide
accurate prediction results that are more stable over a range
of sequence lengths than conventional ANN [24]. In compar-
ison to MLR and ANN, which achieve MAPEs of 16.187%
and 15.991%, respectively, a multi-channel CNN achieves
a MAPE of 8.639% for predicting monthly PV power [25].
To further enhance CNN’s performance, a hybrid GA/PSO
technique is implemented to optimize the relevant hyperpa-
rameter [26]. The proposed approach reduces the MAE by
an average of 0.1463 MJ.m−2 compared to a single CNN
architecture. Aside from various ANNmodels, some research
developed integrated or hybrid models to improve forecasting
accuracy. A hybrid model integrating CNN and LSTM is
proposed for predicting PV power production, and the results
are compared to those of CNN and LSTM models [27].
In terms of accuracy, the hybrid model outperforms the sin-
gle model by 54.92%, 49.10%, and 31.37%, respectively,
when compared to the LSTMmodel and 4.70%, 14.29%, and
14.63% when compared to the CNN model. Similarly, the
CNN-LSTM hybrid model is optimized using a sine-cosine
algorithm (SCA), which the authors claim performs better
than the CNN-LSTM hybrid model without the SCA [28].

C. MOTIVATION AND CONTRIBUTIONS
With the growing integration of PV power, forecasting has
become more critical. More advanced modelling approaches
have been applied in recent years, resulting in better forecast-
ing accuracy. Some studies have presented in-depth analyses
of these approaches to identify potential gaps for future
research [10], [29], [30], [31], [32], [33], [34]. These pub-
lications used conventional ANN models for the analysis
or included modelling approaches that would be useful up
to 2020. In addition, these studies did not provide a com-
prehensive overview of recent advances in ANN models
such as LSTM, GRU, CNN, BiLSTM, and BiGRU. These
studies also lack the separate analysis and comparison of
the standalone and hybrid models necessary to provide the
reader with a clear picture. Hence, a comprehensive assess-
ment of PV power forecasting using advanced ANN models
is required. This research systematically reviews the most
recent developments in PV power forecasting, focusing on
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FIGURE 1. PV power generation for the recent decade, from 2013 to 2022 [12].

five widely used ANN models. Multiple parameters have
been adopted to evaluate the performance of these models.
The important contributions of this study are outlined below:

- An in-depth overview of the different types of ANNs,
such as MLP, RNN, LSTM, GRU, and CNN, is pre-
sented.

- Both standalone and hybrid models for PV power fore-
casting are briefly studied and compared.

- Multiple factors, including forecasting horizons, mete-
orological conditions, evaluation metrics, and others
that impact forecasting accuracy, are also thoroughly
explained.

- Various limitations and shortcomings related to apply-
ing ANN models for PV power forecasting are also
explored.

- Finally, findings and recommendations for further study
are provided.

The rest of the paper is arranged as follows. Section II
presents a detailed history of ANN and examines the design
and operation of five ANN models. Section III explores
multiple factors, including forecasting horizons, meteorolog-
ical conditions, and evaluation measures affecting PV power
forecasts. Section IV reviews the application of standalone
and hybrid models for PV power forecasting. Section V sum-
marizes the findings of both standalone and hybrid models,
while Section VI presents the potential limits of ANNmodels
for PV power forecasting. SectionVII concludes thework and
offers future research directions.

II. ARTIFICIAL NEURAL NETWORKS
A. HISTORY OF NEURAL NETWORKS
The concept of ANNs has been shaped by the contributions
of numerous scholars throughout its history. In 1943, War-
ren McCulloch and Walter Pitts developed a mathematical
model of an artificial neuron [35], which is considered one
of the earliest steps in the development of neural networks.
In the 1950s, Rosenblatt introduced the perceptron, an ANN

consisting of a single layer of interconnected neurons that can
learn binary categorization tasks [36]. However, perceptrons
require real-time computations, which digital computers
could not perform efficiently in the 1950s. In 1960, Hoff and
Widrow developed the adaptive linear neuron (ADALINE)
model [37]. It was a single-layer neural network trained using
the delta rule to reduce the MSE between observed and
target values. Like a perceptron, this model was developed
for binary classification; thus, its capacity to model com-
plex relationships was limited. Minsky and Papert considered
extending single-layer perceptrons to multiple layers, feed-
ing each layer into the next layer [38]. However, concerns
were raised about the feasibility of training these advanced
multilayer perceptrons. Thus, many participants considered
this confusion decisive, leading to abandoning the field.
In 1982, Hopfield introduced a discrete neural network that
advanced the field of neural networks significantly. For the
first time, this seminal work introduced the concept of the
Lyapunov function in neural network research [39]. In 1984,
Hinton and Sejnowski introduced the Boltzmann machine
[40], [41], a system of interconnected units that resemble neu-
rons and canmake probabilistic decisions regarding their acti-
vation state. Boltzmann machines possess a simple learning
algorithm to identify intriguing features that capture complex
patterns within the training data. In 1986, Rumelhart and Hin-
ton revived the backpropagation (BP) algorithm, which has
been experimentally shown to be capable of learning complex
tasks on multilayer networks [42], [43]. It was a significant
development that stimulated renewed interest in neural net-
works. In 1997, Hochreiter and Schmidhuber developed the
LSTM, which was designed to overcome the vanishing gradi-
ent problem encountered by RNNs [44]. LeNet, the first CNN
architecture, was designed by LeCun et al. for handwritten
digit recognition issues in 1998. LeNet struggled to train
because of the vanishing gradients problem, but max-pooling
across convolutional layers is used to reduce image size,
thereby preventing overfitting and enhancing CNN training
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FIGURE 2. Number of articles on ANN relating to PV power forecasting.

[45]. In 2005, Graves et al. presented bidirectional-LSTM
(BiLSTM), an algorithm that is ideally adapted for time series
problems and can be applied to both forward and backward
information [46]. In 2014, Cho et al. proposed the gated
recurrent unit (GRU), a type of RNN model with a simpler
design that addresses the same problems as LSTM [47].
In 2015, Kaiming et al. introduced the residual neural network
(ResNet), which employs residual connections to address the
vanishing gradient problem, a common issue in training deep
neural networks [48].

B. TYPES OF NEURAL NETWORKS
Over time, different types of ANNs have been designed to
address specific problems, applications, and data sets. These
include MLP, RNN, CNN, and hybrid neural networks. Fur-
thermore, two types of RNNs, LSTM and GRU, are also
widely researched due to their exceptional performance when
applied to time series data. Fig.2 shows the five most com-
monly used models for PV power forecasting based on data
from the Scopus database from 2017 to 2023. Hence, this
section will study these five ANN models’ internal structure,
design, and operation.

1) MULTILAYER PERCEPTRON
MLP is the most fundamental and effective data-driven mod-
elling tool in ANNs [49]. AnMLP having one input layer, two
hidden layers, and one output layer can be depicted in Fig.3
[50]. The input layer is the initial step of data input in the
MLP. This layer collects the input variables from the outside
environment, such as solar radiation, ambient temperature,
wind speed, humidity, clearness, dust, and cloud cover from
the outer environment [51]. These variables allow the MLP
to comprehend and learn the complex relationships between
environmental parameters and PV power generation. Hence,
it is essential to preprocess and organize these input variables
before feeding them to the MLP. The input variables are then
passed to the hidden layer, located between the input and out-
put layers. The hidden layers are essential for optimal MLP
performance, mainly when accuracy and time complexity
are the primary concerns [52]. Neurons in the hidden layers
receive the input value from the input layer and calculate the
weighted sum of that value. Then, each neuron applies an

FIGURE 3. Multilayer perceptron architecture.

activation function such as the sigmoid, softmax, rectified
linear unit (ReLU), parametric ReLU, swish, or gaussian
error linear unit (GELU) to the weighted sum. An activation
function determines whether a neuron should be activated
based on its input’s significance. Moreover, the activation
function incorporates nonlinearity into the model, allowing
the MLP to recognize and learn complex data patterns. All
neurons’ activation outputs are combined to produce an out-
put, which is transmitted to the model’s output layer; this
output represents the MLP’s prediction for PV power output.
Consider a four-layer MLP model (one input, two hidden,
and one output) as depicted in Fig. 3. There are m input
variables in the input node (xi, i = 1, 2, 3, . . . ,m) and p
output variables in the output node (yl, l = 1, 2, 3, . . . , p).
The network consists of two hidden layers with n number
of nodes in layer 1 and o number of nodes in layer 2 (such
that hj, j = 1, 2, 3, . . . , n and hk , k = 1, 2, 3, . . . , o). Equa-
tions (1), (2), and (3) provide a mathematical description of
the MLP model:

hm = fh
(∑m

i=1
xiwji + ai

)
(1)

ho = fh
(∑o

j=1
hjwkj + bj

)
(2)

yp = fy
(∑p

k=1
hkwlk + ck

)
(3)

wji, wji, and wji represent the weight parameters, ai, bj, and
ck represent the bias, and fh and fy represent the activation
functions.

2) CONVOLUTIONAL NEURAL NETWORK
ACNN is a feedforward deep neural network first inspired by
Hubel andWiesel [53]. CNNs are designed to replicate living
beings’ visual perceptionmechanisms and can perform super-
vised and unsupervised learning. CNNs’ greatest strength is
its ability to reduce the number of parameters, encourag-
ing researchers to handle more complex models previously
unsolvable for traditional ANNs [54]. Consequently, CNN
has produced ground-breaking results in various domains,
includingmedical imaging, computer vision, art creation, nat-
ural language processing, voice recognition, defect detection,
pattern recognition, forecasting, and environmental moni-
toring. As depicted in Fig. 4, CNN consists of multiple
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FIGURE 4. Typical CNN architecture.

layers: convolution, pooling, fully connected, and output.
Convolutional layers are vital in designing CNNs since
they facilitate extracting localized features from the input
data [55]. These layers apply convolution to the preceding
layer’s feature maps, followed by a non-linear activation
function such as ReLU. This non-linear activation introduces
non-linearity into the networkmore accurately to reflect com-
plex non-linear relationships in the data. The operation of the
convolutional layer can be illustrated as follows [56].

xns = f
(∑

r∈Ms
xn−1
r ∗ knrs + bns

)
(4)

where xns denotes the sth output feature map, f the activation
function, n the number of layers, k the convolution kernel,
and b the bias. After the convolutional layer, the pooling
layer executes a down-sampling process that helps reduce the
feature maps’ dimensions [57]. Its key goals are (1) reduc-
ing the number of parameters and, thus, the computing cost
and (2) avoiding overfitting. Implementing the pooling layer
is expected to compute a feature map’s average or maximum
pooling value [55], [58].

xnr = f
(
Bnr ∗ dow

(
xn−1
r

)
+ bnr

)
(5)

where dow represents the pooling function, xn−1
r represents

the feature map of the n − 1th layer, and Bnr represents the
bias. After a series of convolution and pooling layers, all
inputs are sent to a fully connected layer, determining the final
output [59].

yn = f
(
wn ∗ yn−1

+ bn
)

(6)

where yn represents the final output vector, wn represents the
weight, and bn represents the bias.

3) RECURRENT NEURAL NETWORK
RNNs are a subtype of ANN explicitly designed to model
sequential or time-series data for the recognition and predic-
tion of sequences [55]. Time-series data incorporates inherent
temporal information that a conventional neural network can-
not capture. RNNs are designed with a form of memory
that enables them to maintain a hidden state capable of
storing data from previous time steps in a sequence. A high-
dimensional hidden state and nonlinear development give
the RNN’s hidden state tremendous expressive capability,

FIGURE 5. A folded architecture of RNN.

allowing it to integrate information over multiple timesteps
and provide precise predictions [60]. However, traditional
RNNs have a limited memory capacity, which limits their
ability to simulate long-range structures. Due to their inability
to form stable memories, their capacity to generate sequences
is unstable [61]. In such cases, it is common for predictions
to deviate from the manifold on which the training data is
located.

Consider a conventional RNN as depicted in Fig. 5 that
receives an input vector sequence (x1, . . . , xn). The RNN
calculates the hidden states (hn) and outputs (yn) by iteration
of the corresponding equations [62].

hn = fh
(
xnwhx + hn−1whh + bh

)
(7)

yn = fy
(
hnwyh + by

)
(8)

where fh and fy represent activation functions, bh and by
represent bases, and w represents the weight matrix between
the corresponding layers.

4) LONG SHORT-TERM MEMORY NEURAL NETWORK
LSTM networks are a refinement and expansion of RNNs
that have shown great success in time series prediction
problems [55], [63]. Due to gradient vanishing and gradi-
ent explosion problems, RNNs are ineffective when dealing
with long-term data dependencies. Hochreiter et al. proposed
the LSTM model to address these limitations, which can
learn long-term dependencies in data [44], [55]. Thanks to
their memory cells, these models can analyze and identify
temporal patterns in data sequences. Due to the presence of
memory cells, these models can generate accurate forecasts,
and they have recently gained widespread use in predicting
stock prices, weather, and energy consumption. However,
compared to a standard RNN, LSTMs have around four times
as many parameters, resulting in excessive complexity in
the hidden layer [64]. Fig. 6 depicts the basic structure of
an LSTM and the data transfer within an LSTM network.
A standard LSTMunit is made up ofmany essential elements,
including memory cells, an input gate (it ), an output gate
(ot ), and a forget gate (ft ). The cell can retain values for
an arbitrary period, and its three gates control the influx
and outflow of data. The cell state serves as a memory unit
and is transmitted linearly through the LSTM chain, with
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minimum linear interactions [65], [66]. As depicted in the
figure, the forget gate receives the output of the previous
LSTM unit (ht−1) and the current input (xt ). The sigmoid
function (σ ) determines which information is selected and
which is disregarded. It examines the values of (ht−1) and
(xt ) and generates a 0 to 1 output for each cell state (Ct−1)
element.

ft = σf
(
wf . [ht−1, xt ] + b

)
(9)

where wf and b are the weight matrix and bias of the forget
gate. In the subsequent stage, the input gate employs a sig-
moid function (σ ) to determine the values to be written and a
hyperbolic tangent function (tanh) to create a new cell value
(Nt ) as seen in the following equation [65].

it = σi (wi. [ht−1, xt ] + b) (10)

Nt = tanh (wc. [ht−1, xt ] + b) (11)

Then, the previous state (Ct−1) is multiplied by the (ft ) and
added to the product of it and Nt to update the new cell state
(Ct ).

Ct = Ct−1 ∗ ft + Nt ∗ it (12)

Finally, the output gate (Ot ) determined the amount of data
to be transmitted to calculate the output (ht ) at the subsequent
timestamp.

Ot = σ (wo [ht−1,Xt ] + b) (13)

ht = Ot ∗ tanh (Ct) (14)

where wc and wo are the weight matrices and b is the bias

5) GATED RECURRENT UNIT NEURAL NETWORK
A GRU is another type of RNN proposed in 2014 [67]
that performs the same function as an LSTM to overcome
long-term dependency issues. This feature is beneficial for
time-series data as it lowers the computational burden. Like
an LSTM, a GRU comprises gating units that regulate the
flow of information; however, it does not have separate mem-
ory cells [47]. The gate structures of a GRU are simpler than
those of an LSTM, as shown in Fig. 6. The update gate in a
GRU combines the functions of both the forget gate and input
gate in an LSTM. The update gate decides which information
from the previous state should be moved to the current state,
whereas the reset gate decides whether new information will
be added to the prior state. GRUs can maintain long-term
dependencies in sequences, similar to LSTMs [68]. However,
since they have fewer parameters and a faster training rate,
GRUs are computationally more efficient. Another advantage
of GRU is that its simple structure makes it less prone to
overfitting. The reset gate (rt ) and update gate (ut ) of GRUs
are defined by the following equations,

rt = σ (wr · [ht−1, xt ] + b) (15)

ut = σ (wu · [ht−1, xt ] + b) (16)

where wr and wu are the weights of the reset and update
gates, respectively. After the computation of the reset gate,

a candidate hidden state (h́t ) is determined using the (tanh).
The candidate hidden state is formed by integrating the cur-
rent input, the previous hidden state, and the reset gate in the
following manner:

h́t = tanh
(
wh́ · [ht−1, xt ] + b

)
(17)

The final hidden state (ht ) is then determined using linear
interpolation, which incorporates both the past and future
hidden states and is influenced by the update gate in terms
of degree.

ht = (1 − ut) ∗ ht−1 + ut ∗ h́t (18)

where wh́ is the weight of the candidate’s hidden state.

III. PHOTOVOLTAIC POWER FORECASTING
The erratic nature of PV power can significantly impact
the power grids’ operation. PV power can fluctuate from
maximum to minimum in seconds, impacting the operation
of other interconnected systems. This impact becomes more
significant when a considerable amount of PV power is
integrated into the electrical system [69]. The fluctuation
of PV power in a connected electrical system may lead to
voltage changes, power outages, infrastructure damage, and
even catastrophic failures [70]. Accurate PV power forecasts
would reduce these challenges and provide more reliable and
economical methods for meeting the minimum generation
and scaling requirements. Accurate forecasting can motivate
plant managers to generate more accurate bids and sched-
ule maintenance downtime more efficiently [31]. Multiple
factors, including the forecasting timeframe, meteorological
conditions, evaluation metrics, and others, contribute to the
inaccuracy of PV power forecasting. In some power mar-
kets, inaccuracies may result in penalties if the difference
between the forecast and actual power production exceeds a
specific tolerance range. For instance, the authors estimated
the cost of forecasting errors for a solar thermal power plant
in Spain [71]. Forecasting error is divided into groups ranging
from 10% to 100%. According to the findings, penalties per
MWh increase from 10-20% to 60-70% for relative prediction
errors while remaining relatively constant at about 6 =C/MWh
for larger forecast errors. An overestimated PV power would
require a different set of generators to respond than initially
planned [72]. In contrast, underestimating PV power output
can lead to transmission congestion, and curtailment, and
require an adjustment to the scheduled generator configu-
ration. A thorough analysis of various factors affecting PV
power forecasts is presented in this section.

A. FORECASTING HORIZONS
Accurate forecasting has been a major focus in integrat-
ing PV power into the electrical grid. These forecasts often
use ANNs, which access a wide range of data sources to
forecast power variations with a lead time of minutes or
hours. Depending on the forecasting horizon, PV power pre-
dictions range from seconds to years ahead. Generally, the
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FIGURE 6. The architecture and flow of data in LSTM and GRU [68], [73], [74].

forecasting horizon is categorized into three periods: short-
term, medium-term, and long-term. The literature introduces
a fourth category, very short-term forecasting, which the
researcher claims to be effective in facilitating real-time
optimizations [55]. Fig. 7 depicts four forecasting horizons
outlined in the literature and their application to PV power
production [75]. The forecasting horizon is an important
factor that influences the accuracy of PV power prediction.

1) VERY SHORT-TERM FORECASTING
Very short-term forecasting predicts PV power production
a few minutes to one hour in advance [76]. Some studies
have considered this timescale ranging from a few seconds to
30minutes [77], while others have considered 5 to 60minutes
in advance [78], [79]. Grid operators use these forecasts to
plan output power, control load frequency, manage demand
response, and maximize reserve energy sources [80]. These
forecasts can also be used for energy marketing, pricing,
power stability, monitoring real-time power dispatch, and
managing PV storage. Very short-term is important for con-
trolling the unpredictable and rapidly changing behaviour of
PV power production. PV power production can fluctuate
by over 50% in less than one minute [81]. Studies show
that the PV power output can change from maximum to
minimum within one second [82]. Such large fluctuations
can cause significant issues for power systems, including
power mismatch, voltage fluctuations, and frequency insta-
bility [83]. In the past, these forecasts were not given as
much emphasis; however, with the growing significance of
real-time forecasting and increased PV power worldwide, the
significance of very short-term forecasting has also increased.
Since very short-term forecasts need real-time data, they are
more difficult to estimate than other forecasting horizons.

2) SHORT-TERM FORECASTING
Short-term forecasting normally ranges from one hour to one
day in advance. Some researchers describe the short-term
forecasting horizon as spanning a few hours or even seven

days [10]. Short-term forecasting is highly applicable in
power market control. These forecasts assist in optimal
generation scheduling, load dispatch choices, large energy
storage, and balancing supply and demand [55]. These fore-
casts may also ascertain the optimal PV power ramp rate.
Thus, they enhance the power grid’s security and facilitate
the development of an integrated PV energy management
system [84]. Short-term forecasting may help asset owners
and market participants make more informed bids in energy
markets. As a result, using accurate forecasting while putting
bids would reduce the probability of incurring penalties for
imbalances [85]. Over the last three years, there has been
a significant increase in studies on short-term forecasting,
aligning with the worldwide expansion of PV power genera-
tion. Hence, these forecasting techniques for solar PV power
generation are becomingmore critical as their integration into
the power grid expands.

3) MEDIUM-TERM FORECASTING
Medium-term forecasting predicts PV power generation for
one to several days in advance. Some studies have defined
the forecasting horizon as 6 to 24 hours [86], while others
concentrated on a timescale ranging from one week to one
month in advance [10]. These forecasts are important for
determining the maintenance schedule of solar power plants,
which include transformers and other equipment, to minimize
losses. In addition, medium-term forecasting is crucial for
asset optimization, generating unit control, unit scheduling,
power system planning, and risk management [87]. Despite
their relevance in PV power and power system operation,
medium-term forecasting models have received little atten-
tion, and there are few explanations for these forecasts in the
literature.

4) LONG-TERM FORECASTING
Long-term forecasting includes a time horizon of several
weeks to a year ahead [85]. Some researchers describe the
range of forecasting horizons as one to ten years ahead [84].
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FIGURE 7. Classification and applications of forecasting horizons [75].

Long-term forecasts help develop long-term strategic plans
that ensure the optimal operation of solar power systems [55].
System operators use these forecasts to manage better the
grid’s transmission, operating, and distribution capacity.
In addition, these forecasts may help determine the best
location, size, and configuration of PV arrays and energy
storage devices for a solar power plant. Nevertheless, long-
term forecasting is susceptible to a greater level of uncertainty
in comparison to shorter-term forecasts [10]. This is due to
a higher probability of various fluctuations in atmospheric
conditions, which can introduce uncertainty into the systems.
Climate patterns and other environmental elements include
temporal changes that may affect weather systems and limit
the accuracy of long-term forecasts.

B. WEATHER CONDITIONS
The ideal weather conditions for PV power generation are
cold, sunny, and windy [88]. The solar panel harnesses solar
energy, while the surrounding cold air and the cooling effect
of the wind prevent any overheating caused by the device.
However, the erratic and continuously changing weather
conditions provide substantial challenges for accurate PV
power production and forecasting models [89]. One study
estimates that weather-related variables influence over 60%
of PV power forecasts [90]. This significant weighting under-
scores the crucial influence of weather-related factors on the
efficiency of photovoltaic systems. Weather-related variables
influencing forecasting model accuracy include solar irradi-
ance, cloud formation, wind speed, humidity, temperature,
and aerosol concentrations [91]. However, in order of impor-
tance, these variables are solar radiation, sunshine, wind
speed, temperature, cloud cover, and humidity [92]. The cor-
relations between these variables and PV power production
may be found using the Boruta algorithm [93]. Among these
variables, solar irradiance and temperature are positively
correlated, with corresponding Pearson correlation coeffi-
cient (r) of 0.88 and 0.5 [94]. The correlation coefficient of

humidity, cloud cover, and precipitation is negative, as shown
in Fig. 8. Regarding the correlation coefficient of wind speed,
some authors consider it weakly positive. In contrast, others
deem it to be a weekly negative [95]. The blue line shows
the value of r between PV power generation and weather-
related variables. In other words, an incremental rise of one
standard deviation in sunshine led to a proportional surge of
4.7% in PV power production. Cloud cover adversely affects
the output of PV arrays, leading to a decrease of 5.9%, while
precipitation causes a 4.6% decline [96]. A direct correla-
tion exists between the sun’s elevation angle and forecasting
accuracy [97]. This is because sunlight must travel a larger
distance through the Earth’s atmosphere, resulting in higher
atmospheric absorption and dispersion. Consequently, the
available solar energy drops, lowering the accuracy of PV
power forecasts. Another issue is that researchers are train-
ing their forecasting models with weather-forecasted data.
These models may provide unsatisfactory forecasts if they
use uncorrelated weather data or weather variables with con-
siderable errors [95]. The impact of these errors will become
greater as the forecasting lead time is expanded. A case study
examines observed and 6-day forecasted weather data for
important parameters impacting power forecasting for the
same setup of solar panels [95]. The MAPE error for the
observed weather data is 13.47, which increases with each
forecasted day’s data until it reaches a maximum of 17.4 on
day 5. Another study determined that forecasting errors in
radiation, temperature, and wind speed resulted in over-
estimating greenhouse power consumption [98]. However,
radiation forecasting error has the highest influence among
these three weather-related variables, with a mean relative
error (MRE) of 6.1%. In general, weather forecasting errors
are caused by shortcomings in the model itself and imprecise
initial conditions [99]. Weather models are assumed to be
stochastic and vulnerable to modest changes in initial con-
ditions; much emphasis has been placed on the latter as a
barrier to forecasting. Hence, accurate weather forecasting
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is vital owing to the adverse effects of these variables on
PV power forecasts. This is particularly important given the
increased weather fluctuations and rapid proliferation of PV
technology.

C. EVALUATION METRICS
An evaluation metric is an analytical and mathematical
method that determines how closely projected and actual
outputs coincide [100]. Evaluation metric, also known as
performance metric or error metric, is an essential component
for analyzing the performance of forecasting models. These
metrics prove why forecastingmodels are useful and practical
in providing a high level of competence in addressing difficult
and complex issues across multiple domains [101]. They
are also crucial in the model’s optimization and fine-tuning
since they indicate the best values for model hyperparam-
eters and network choices. Various evaluation metrics are
used depending on the specific task and purposes of the
network. Table 1 summarizes different evaluation metrics for
regression and classification models. In the regression model,
evaluation metrics compare the model’s predictions to the
actual values of the data set [102]. The greater the difference
between actual and predicted values, the less accurate the
model is. The difference can be caused by various factors,
including the model’s complexity, data quality and quantity,
and the algorithm’s suitability. In regression models, evalua-
tion metrics are further divided into four distinct categories:
primary, extended, composite, and hybrid [100], [103]. This
categorization helps data scientists and researchers identify
the best metrics for assessing regression models depending
on their goals, data type, and model domain. In the case
of classification models, the primary purpose of evaluation
metrics is to assess themodel’s success in allocating instances
to various groups or categories. These models use evalua-
tion metrics to evaluate the classifier’s performance [104].
Classification metrics are categorized into threshold, proba-
bility, and ranking [104], [105]. In threshold classification,
the main objective is to allocate instances or data points to
one of several specified groups or categories. The probability
classification method classifies instances by their associated
probabilities, whereas the ranking classification method clas-
sifies instances by importance. Classification model metrics
are typically implemented in two phases: training and testing.
During training, these metrics are used to fine-tune the clas-
sification algorithm, whereas during testing, they are used to
evaluate the classifier’s performance with data it has never
seen.

IV. APPLICATION OF ANN FOR PHOTOVOLTAIC POWER
FORECASTING
Accurate PV power forecasting continues to be a consider-
able challenge, owing to various contributing factors [84].
Weather conditions, geographical factors, forecasting hori-
zons, and technical aspects contribute to forecasting com-
plexity. Standard forecasting models often struggle to learn

the complex and non-linear correlations among these factors,
resulting in reduced forecasting accuracy. Addressing these
problems needs a comprehensive strategy, including advances
in modelling approaches, increased data quality, and deep
knowledge of the complex dynamics of PV power forecast-
ing [106]. ANNs may forecast solar power production by
identifying complex patterns from massive datasets and cap-
turing the complex relationships between power output and
influencing factors [84]. Compared to other machine learning
(ML) models, these models may give better accuracy for
PV power prediction. For instance, the authors compared an
ANN model to five different ML models: RF, DT, support
vector regression (SVR), generalized additive model (GAM),
and extreme gradient boosting (XGBOOST) [107]. The pur-
pose of this comparison was to forecast energy output from a
24 kWc solar facility inMorocco. The results indicate that the
ANN model outperformed the other five models, exhibiting
better values for all evaluation measures, as shown in Fig. 9.
For PV power forecasting, four ML models—ANN, SVM,
K-nearest neighbors (KNN), and linear regression (LR)—
are reviewed for a 13 kWp solar power plant in Medellin,
Colombia [108]. The ANN model gives the lowest RMSE
(86.466 W) and MAE (8.409 W) errors, whereas the LR
method and SVM produce the maximum RMSE (94.583 W)
and MAE (9.6209 W), respectively. Similarly, ANN, SVM,
and regression models are considered for day-ahead PV
power forecasting using meteorological parameters [109].
ANN outperforms SVM and regression models and pro-
vides superior results for RMSE (468.2), MAE (186.8),
MAPE (6.538), and R2 (0.838). Several upgraded versions
of ANN have been presented in the literature, displaying
greater accuracy and convergence rate than standard ANN.
Researchers have also employed hybrid strategies, such as
merging predictions from several standalone ANN models
or mixing ANN models with other ML models or statistical
models (autoregressive integratedmoving average (ARIMA),
seasonal-ARIMA). Hybrid models outperform standalone
alternatives in accuracy, resilience, and flexibility. However,
the choice of a model depends upon a multitude of factors,
encompassing computational resources, data requirements,
interpretability, explainability, and transparency.

A. STANDALONE MODELS
ANNs are widely used in PV power forecasting problems due
to their flexible structure [110]. Their data-driven techniques
greatly improve the extraction and analysis of critical infor-
mation from large datasets [111], [112]. Over time, advanced
ANN models are proposed to increase the accuracy of PV
power forecasts for various geographical regions, as shown
in Table 2. MLPs are highly recognized for their ability to
handle large datasets effectively. These models can precisely
approximate any nonlinear function and are often used in
regression problems where the aim is to estimate an output
variable using predictor variables [113], [114]. Several stud-
ies have demonstrated that MLPs can be used to provide
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FIGURE 8. Correlation between PV power generations and weather-related variables [94].

TABLE 1. Summary of various evaluation metrics.

precise forecasts in the field of PV power. For instance,
an MLP model was developed to forecast Nigeria’s solar
power potential, and data from over 195 cities was gathered
over ten years [115]. The findings demonstrate that the corre-
lation between average solar irradiation and ANN predictions
surpassed 90% for the training and testing datasets. This
finding provides compelling evidence that the model can

precisely forecast solar radiation in regions without solar
radiation data. MLPs are resilient to outliers, have shorter
computation times, and lower computational costs than other
models [116]. The average computation times of MLPs range
from 1.21-1.99 seconds compared to 8.73 and 10.02 sec-
onds for LSTM and BiLSTM, respectively. MLPs may
provide better results than some ML models, showing lower
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FIGURE 9. Evaluation metrics-based ranking of six ML models [107].

forecasting errors. In [117], the instantaneous thermal effi-
ciency of a solar still is predicted using an MLP and an MLR
based on various operational and meteorological variables.
Compared to the MLR model, the MLP exhibits superior
performance, as evidenced by its 11.23% higher R2 value
and 2.74% lower RMSE values. Similarly, MLP outper-
forms SVM in predicting solar energy for Oman, with final
MSE values of 0.0058 during training and 0.0105 during
cross-validation, compared to 0.0263 and 0.0356 for SVM,
respectively [118]. Although MLPs are good at capturing
complex relationships, they may struggle with temporal data
sequences, which may be solved by applying advanced mod-
els [21]. In addition, MLPs are unable to address the issue of
unstable photovoltaic power in cloudy conditions [119].
To overcome these issues, RNNs provide a notable

advancement in managing time-series data, which is essential
for forecasting PV power output that is inherently temporal.
When applied to time-series data, RNN outperforms ANN in
terms of forecasting accuracy, with a notable 26% reduction
in RMSE and a significant 47% increase in NMBE [20]. Like-
wise, an analysis of diverse weather conditions, including
sunny, cloudy, and rainy days, [120] reveals that RNN pro-
duces the lowest MAPE values, except for the spring season,
when compared to two variants of ANN. The average fore-
casting error of RNN is 7.6%, compared to 20.2% and 10.3%
for the other two ANN variants. While training an RNN,
significant weather fluctuations may lead to the vanishing or
exploding gradient problem, resulting in suboptimal predic-
tions. Researchers developed more advanced RNN variants,
such as GRUs and LSTM networks, to solve these limita-
tions. Due to their unique hidden layer architecture, LSTM
models can effectively capture short- and long-term temporal
relationships in time-series data. On the other hand, GRU
shows similar characteristics to LSTM but has the benefit
of superior efficiency and less complexity [68]. One study
compares the performance of RNN, LSTM, and GRU for
solar energy prediction using open-source data. The GRU
model has achieved an RMSE value of 289.7 and an MAE

value of 151.7, outperforming the LSTM model with values
of 396.3 and 222.9 and the RNN model of 450.1 and 275.2.
A similar study was conducted in Betul, India, where it
was determined that GRU achieved an MAE of 0.03486 and
an MSE of 0.00614 [121]. The MAE and MSE values for
the LSTM model were slightly higher than those for the
GRU, at 0.03659 and 0.00648, respectively, while the RNN
model yielded 0.0476 and 0.00802. In contrast, some stud-
ies have shown that LSTM has greater accuracy than its
alternative, GRU, although it comes with an increased time
trade-off [122], [123]. A BiLSTM, another RNN model, may
forecast PV power more accurately than LSTM and GRU,
as shown in Table 2. Based on data from a meteorological
station in Amherst, USA, it was determined that the BiLSTM
model predicts solar energy slightly better than the GRU
model [124]. The MSE, MAE, and MAPE values for the
BiLSTM model were 0.0012, 0.0124, and 12.2%, respec-
tively, whereas the GRU model attained values of 0.0012,
0.0138, and 12.5%. Like BiLSTM, a bidirectional GRU has
been proven to be a practical approach for PV power predic-
tion. This approach can provide good forecasting results with
reduced computation costs.

Along with RNN, some researchers use CNNs for time
series prediction due to their global sharing and local con-
nection capabilities, which may drastically decrease model
training parameters and time [125]. In addition, CNNs can
successfully manage noisy time series data by reducing noise
at each successive layer, resulting in a hierarchical struc-
ture of important features and extracting just the relevant
ones [24]. For instance, a temporal-CNN (TCNN) is devel-
oped to analyze time series data and estimate PV power
production [24]. The proposed TCNN’s performance is com-
pared to that of FFNN, RNN, LSTM, and GRU. The TCNN
achieved the lowest MAE values of 70.015 and 0.510 and the
lowest RMSE values of 98.118 and 0.721 for both the Univer-
sity of Queensland and the Sanyo datasets. Another research
used TCNN for sequence modelling tasks and assessed its
performance using several models, including LSTM, SVR,
and ARIMAX [126]. However, in this particular scenario,
LSTMmodels exhibit the highest level of accuracy in terms of
performance, surpassing all other models over the years and
in general. Also, a novel approach called space-time CNN
(STCNN) is introduced, which integrates spatial and tempo-
ral convolutional processes inside a single framework [127].
This approach implicitly captured the presence of clouds and
their movement without relying on a complex framework.
The STCNN achieves the lowest MAPE across all three
locations, with a minimum value of 3.98% in California.
In comparison, LSTM and FNN achieve MAPE values of
4.25% and 5.15%, respectively. Two novel CNNs, ResNet
and DenseNet, are proposed for day-ahead PV power fore-
casting [128]. DenseNet outperforms other models such as
MLP, CNN, and ResNet over a wide range of meteorological
conditions and achieves the highest accuracy on the overall
testing dataset, as shown in Table 2.
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B. HYBRID MODELS
1) HYBRID ANN-METAHEURISTIC MODELS
Hybrid models have gained significant attention due to
their notable efficiency in PV power forecasting [146].
A standalone ANN model combined with a metaheuris-
tic optimization algorithm (MOA) can improve predicting
accuracy and convergence rate [147]. Table 3 presents a
detailed review of ANN models optimized using MOA.
MOAs provide a precise and effective technique for explor-
ing the solution space, allowing the model to locate the
best parameter combinations. Research has shown that suit-
able hyperparameter optimization can enhance the model’s
overall performance by 8% [148]. Fine-tuning the hyperpa-
rameters using advanced optimization approaches improves
MLP’s performance accuracy. Reference [149] proposed
an MLP based on grey wolf optimization (GWO) for
PV power forecasting, and the model’s performance was
validated using data from a five kWp PV system. The
GWO-MLP model demonstrates the lowest NMAE error
of 2.267%, outperforming the particle swarm optimization
(PSO)-based MLP (2.532%), levenberg–marquardt (LM)-
based MLP (19.995%), and adaptive neuro-fuzzy (ANF)-
based MLP (5.112%). As shown in Table 3, the performance
of GWO-MLPs is compared with MLPs based on two
advanced optimization algorithms: ant-lion optimization
(ALO) and whale optimization algorithm (WOA). [150]. The
GWO-MLP model, which used the sigmoid activation func-
tion, produced the most accurate predictions, with aMAPE of
2.598%. Another study proposes a gray-updated deer hunting
optimization algorithm (GU-DHOA) combined with an MLP
to predict solar irradiation [151]. The proposed GU-DHOA-
MLP performs superior to MLP, with a 22.1% improvement
in the RMSE measure. It also outperforms PSO-MLP by
39.7%, WOA-MLP by 12.06%, GWO-MLP by 12.4%, and
DHOA-MLP by 12.09%.

Similar to MLPs, the prediction accuracy of RNN and
other variants, such as GRU and LSTM, can be increased
using a suitable optimization technique. LSTM has superior
capability in addressing the vanishing gradient issue and
demonstrates improved performance when handling large
datasets compared to GRU. Conversely, GRU shares simi-
lar characteristics with LSTM but possesses an advantage
in high efficiency and reduced complexity.(..)()() [68]. For
instance, on the Moroccan city of Fes dataset, RNN, LSTM,
and GRU models are optimized using the genetic algorithm
(GA) [152]. The findings suggest that the GA-LSTM model
outperforms the GA-GRU and GA-RNN models during the
summer season. However, the GA-GRU model demonstrates
superior performance in the spring and fall seasons compared
to the GA-LSTM model. Another research found similar
results when three single ANN models—DNN, LSTM, and
GRU—were optimized using GA to predict a solar farm’s
output four hours in advance [153]. With an RMSE of 7.83%,
GA-GRU outperformed GA-LSTM (7.92%) and GA-DNN
(8.88%). On the other hand, after t+6 time steps, GA-LSTM

performed better and produced the lowest RMSE. Another
research used an attention mechanism to improve the perfor-
mance of GA-optimized LSTM [154]. Nevertheless, GA is
an outdated optimization technique, and more sophisticated
optimization algorithms are employed for LSTM and GRU.
When LSTM is optimized using a salp swarm algorithm
(SSA) [155], the findings indicate that, compared toXGBoost
and LSTM, the MAE decreased by 65.5% and 54.8%, and
the RMSE decreased by 74.3% and 62.5%, respectively.
In [156], eight advanced MOAs are used to optimize the
hyperparameters of LSTMmodels. This optimization process
is performed using four datasets obtained from four turbines
located in France. At station 2, the proposed heap-based
optimizer (HBO) yielded the most optimal outcomes, with
SSA, SCA, GA, DE, GWO, and PSO following in terms
of performance. In another study, the authors used a hybrid
reptile search algorithm (HRSA) to optimize the hyperpa-
rameters of both LSTM and BiLSTM models [157]. The
results were compared to seven other robust MOAs, includ-
ing RSA, SSA, SCA, artificial bee colony (ABC), firefly
algorithm (FA), harris hawks optimization (HHO), and chimp
optimization algorithm (ChOA). The LSTM model, opti-
mized by HRSA, showed good performance, with an R2

value of 0.604139 and normalized MAE, MSE, and RMSE
values of 0.074450, 0.013668, and 0.116910, respectively.
Reference [158] utilizes the same set of seven advanced
algorithms to determine the performance levels of a novel
boosted self-adaptive (BSA-SCA) method for both LSTM
and GRU. The findings indicate that the LSTM approach
is marginally superior to the GRU approach in forecasting
PV power production. The LSTM-BSA-SCA achieves a R2

value of 0.617, MAE of 392.801, and RMSE of 620.407,
while the GRU-BSA-SCA achieves a R2 value of 0.613,
MAE of 407.445, and RMSE of 623.335. A new approach
that integrates ISCA-GRU with partial least-squares analysis
(PLS) and complete ensemble empirical mode decomposition
(CEEMD) is proposed [159]. The CEEMD-PLS-ISCA-GRU
model outperformed eight other comparison models on four
datasets.

Similar to LSTM and GRU, optimizing CNN hyperpa-
rameters can significantly enhance its accuracy compared
to a standard CNN. A CNN and SSA are used to improve
the forecasting accuracy of a 500 kWp solar power facil-
ity in south Taiwan [160]. Initially, CNN classification was
used to categorize past PV power and meteorological data
into five weather types. Then, SSA is applied to fine-tune
the parameters of these classifications. The CNN-SSA
approach demonstrated superior results, with the lowestMRE
and MAPE values across all-weather types, particularly in
cloudy weather; the CNN-SSA attained a MAPE of 12.25%,
surpassing the performance of LSTM-SSA (21.56%) and
SVM-SSA (16.25%). Another study demonstrates that GU-
DHOA-CNN outperforms CNN, PSO-CNN, WOA-CNN,
GWO-CNN, and DHOA-CNN in predicting solar irradi-
ance across multiple performance criteria [151]. Based on
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TABLE 2. Summary of standalone ANNs models for PV power forecasting.
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TABLE 2. (Continued.) Summary of standalone ANNs models for PV power forecasting.

a learning percentage of 85, the proposed GU-DHOA-CNN
outperforms DHOA-CNN by 7.8%, GWO-CNN by 10.2%,
PSO-CNN and WOA-CNN by 8.8%, and CNN by 22.2%.
Also, a hybrid algorithm (GA-PSO) is used to optimize
the CNN’s structure and parameters [161]. This enables the
simultaneous achievement of the optimal network structure
and connection weight. The hybrid GA-PSOmaymitigate the
impact of improper hyperparameters and reducemanualmod-
ification requirements [26]. The proposed method reduces
the MAE by 0.1463 MJm2 compared to a standalone CNN
model. Furthermore, it decreases the annualMAE by 20.34%,
49.47%, and 47.6%, respectively, compared to ANN,
K-means-RBF, and GBRT.

2) HYBRID ANN-ANN MODELS
Several research studies have combined multiple ANN mod-
els to increase pattern recognition capabilities. Table 3
presents a comparison of various hybrid models to standalone
models. In [124], three RNN variants—GRU, LSTM, and
BiLSTM—are used to assess six distinct combinations for
predicting solar energy using data from a meteorological sta-
tion in Amherst, USA. LSTM-BiLSTM outperformed other
combinations in three out of five time steps, with the lowest
MSE, MAE, and RMSE values obtained at timestep 24 of
0.001636, 0.018218, and 0.04045, respectively. Advanced
hybrid models are also introduced to assess the influence of
combining CNNs with three RNN models: LSTM, BiLSTM,
and GRU. For instance, [162] proposed a hybrid approach
that integrates attention mechanisms, CNN, LSTM, and clus-
tering techniques with wireless sensor networks to address
the prevailing challenges associated with the predictions of
PV power production. The proposed approach achieves low
RMSE,MAPE, andMAE values, particularly at a timestep of
7.5 minutes. Another study introduced a hybrid model using
five convolutional layers and three recurrent layers [148].
The data analysis revealed that the 5CNN-3LSTM model
outperformed the 5CNN-3GRU and 5CNN-3BiLSTM mod-
els by 3.2% and 1.3%, respectively, in terms of MSE. The
CNN model had the lowest forecasting performance across a
24-hour prediction horizon, but when merged with BiGRU,
the hybrid model had the highest accurate findings [163].

The MAPE value of the BiGRU-CNN is 3.42%, which is
lower than the MAPE values of 5.58% for the CNN and
4.10% for the GRU. Similarly, a hybrid approach is pro-
posed using an improved BiGRU model, CNN layer, and
attention mechanism to improve PV power prediction [164].
The proposed CNN-BiGRU performs better than a single
model and other hybrid models across various weather con-
ditions. The RMSE value for the CNN-BiGRU model is
4.921, which is lower than the RMSE values of 5.302 for
CNN-BiLSTM, 5.277 for CNN-BiRNN, 6.597 for SVM, and
5.722 for TCNN. Some studies have combined the char-
acteristics of three different ANN models into one model,
while others use an MOA to optimize the hybrid ANN-ANN
models, as shown in Table 3. In [165], a combination of
WPD and three single models (CNN, LSTM, and MLP) is
proposed to achieve the hour-ahead forecast of solar irradi-
ation. The experimental findings obtained from the Denver,
Clark, and Folsom datasets demonstrate superior predic-
tive accuracy compared to other models. The RMSE value
obtained is 32.1, the normalized RMSE is 15.4795%, and
the skill score (s) reaches a maximum of 0.4438. Simi-
larly, a DNN-RNN hybrid model is optimized for optimum
performance using the slow rider-based rider optimization
algorithm (S-ROA) [166]. The S-ROA-DRNN outperformed
other learning algorithms such as PSO, WOA, GWO, and
ROA. Reference [111] also proposes a hybrid technique
SSA-RNN-LSTM for one-hour PV power forecast for three
PV systems: polycrystalline, monocrystalline, and thin-film.
SSA-RNN-LSTM performance is then compared against
RNN-LSTM, GA-RNN-LSTM, and PSO-RNN-LSTM. The
proposed approach showed lower testing errors (RMSE
and MAE) than RNN-LSTM for polycrystalline, monocrys-
talline, and thin-film PV systems. Notably, the reductions in
errors were 19.14% and 21.57%, 15.4% and 10.81%, and
22.9% and 25.2% for the corresponding PV systems. Table 3
presents a detailed summary of various hybrid models for
PV power forecasting. First, ANN models are combined
with multiple MOAs, then different combinations of ANN
models are compared, and lastly, hybrid models optimized
with MOAs are compared. The models highlighted are the
top performers among the models.
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TABLE 3. (Continued.) Summary of standalone ANNs models for PV power forecasting.

V. RESULTS AND DISCUSSIONS
PV power forecasting is used to enhance the efficiency of the
power system and streamline power exchange. Various meth-
ods, including physical, statistical, AI, and hybrid techniques,
have been developed to enhance forecasting accuracy. How-
ever, ANNs are notable for their exceptional performance and
efficiency owing to their adaptable nature. These models are
highly accurate, analyzing large amounts of data and identi-
fying complex patterns. In addition, ANNs provide real-time
predictions to adjust to fluctuating weather conditions,
enhancing grid reliability and facilitating more informed
decision-making. Over time, advanced ANN models are pro-
posed to increase the accuracy of PV power forecasts for
various geographical regions.MLP, RNN, LSTM, GRU, and
CNN are widely usedmodels for PV power forecasting due to
their unique internal structures and ability to handle large data
sets.In standalone models, MLPs are widely known for their
ability to handle large datasets and approximate any nonlinear
function accurately. However, these models could encounter
difficulties when dealing with temporal data sequences [21].
In addition, MLPs are unable to address the issue of unsta-
ble photovoltaic power in diverse weather conditions [119].
RNNs have shown promising results in analyzing time-series
data, yet standard RNN models still exhibit various con-
straints. The performance of standard RNN is limited by its
short-term memory. When these models are applied to data
that show significant fluctuations, it can give rise to the van-
ishing or exploding gradient problem, leading to suboptimal
predictions. In recent years, there has been an increasing
interest in using LSTM and GRU models for PV power
prediction. These models have gained popularity due to their
gate structure, which effectively addresses the limitations of
short-term memory. Based on the analysis and the provided
list of tables, the GRU has a slight advantage over the LSTM
because of its simpler structure. Some studies have shown
that LSTM tends to have greater accuracy than its alternative,
GRU, although it does come with a trade-off of increased
time. In [123], the LSTMmodel has a slightly lower error rate
than the GRU model. However, the GRU model requires less
time for training (2.9 hours) and prediction (11.02 seconds)
than the LSTMmodel, which takes 3.27 hours for training and

11.84 seconds for prediction. According to another research
study, GRU is 29.29 percent more efficient than LSTM in
handling the same data [180]. Hence, considering training
time and forecasting accuracy, the GRU model may provide
acceptable outcomes for predicting PV power and irradi-
ance [181]. Nevertheless, the difference between the error
rates of LSTM and GRU is minimal. By optimizing the
parameters correctly, the performance may be enhanced even
more. Although LSTM andGRUmodels have shown promis-
ing results for PV power forecasting, it is important to note
that these models only consider unidirectional data input.
BiLSTM and BiGRU models have recently demonstrated
significant nonlinear fitting capacity and robust mapping pro-
ficiency in forecasting across several domains. BiLSTM and
BiGRU, as opposed to unidirectional LSTM andGRU, simul-
taneously process the sequence in both forward and backward
directions. Thus, these models may outperform their uni-
directional counterparts. The comparison of BiLSTM and
BiGRU with their unidirectional counterparts, LSTM and
GRU, is shown in [142] and [143]. Reference [182] showed
that the RMSEvalues for BiGRU,BiLSTM,GRU, and LSTM
are 46.3937, 46.4137, 47.0531, and 47.1504, respectively.
According to multiple studies, BiGRU models have a mod-
est advantage over BiLSTM models regarding forecasting
accuracy [182], [183]. Traditional CNN has shown promising
results for time series data, but its performance is still lower
than LSTM and GRU, as demonstrated in Table 2. CNNs
are effective at processing spatial data and identifying static
patterns. On the other hand, RNNs, LSTMs, and GRUs are
more suitable for predicting time series that include tem-
poral relationships. However, recent variants of CNN, such
as TCNN, DenseNet, Resnet, and others, exhibit superior
performance compared to RNN, LSTM, and GRU. Fig.10
compares the TCNN, ResNet, and DenseNet with different
machine learning models.

Different combinations are presented in hybrid models;
almost all indicate that hybridmodels outperform singlemod-
els, as shown in Table 3. Some studies used ANN models
with metaheuristic algorithms to improve forecasting accu-
racy. For instance, ANN is optimized using PSO to predict
daily solar radiation for several sites in Saudi Arabia [184].
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FIGURE 10. Comparison between different variants of CNN and ML models (a) TCNN [24] (b) DenseNet and ResNet [128].

The PSO-ANN performed better than the BP-ANN, with
a mean MAPE of 8.85% compared to 12.61% for the
BP algorithm. GA, another commonly used optimization
algorithm, may outperform PSO when addressing complex
optimization problems [170]. However, GA and PSO are
outdated optimization techniques, and more advanced algo-
rithms are used to optimize ANN models. The shuffled frog
leaping algorithm (SFLA) and gradient descent are used
to optimize ANN hyperparameters. The MAPE value for
Oviedo using the proposed method is 8.8%, lower than the
standard SFLA-ANN (9.57%) and GA-ANN (9.92%) mod-
els. In another research, HBO produced the most optimal
outcomes, with SSA, SCA, GA, DE, GWO, and PSO follow-
ing in terms of performance using four datasets obtained from
four turbines in France [156]. Similarly, a hybrid algorithm
HRSA is used to optimize the hyperparameters of LSTM
and BiLSTM models, and the outcomes are compared with
seven advanced MOAs [157]. The HRSA hybrid showed
the most favourable outcomes, with FA, HHO, RSA, SCA,
ABC, SSA, and ChOA following suit in assessing their
effectiveness for both LSTM and BiLSTM models. Ref-
erence [158] uses the same seven advanced algorithms to
evaluate the performance of the novel BSA-SCA approach

for both LSTM and GRU. The BSA-SCA algorithm out-
performs other algorithms, with RMSE and MAE values of
620.407 and 392.801 for LSTM and 623.335 and 407.445 for
GRU, respectively. However, in this case, in terms of per-
formance, the proposed approach is followed by SCA, while
the FA and RSA show the lowest performance on multiple
metrics.

Various studies have integrated several ANN models to
improve pattern recognition capability. CNN-LSTM is a com-
monly used model in literature for predicting PV power and
irradiance. CNNs excel in analyzing and interpreting spatial
data, but LSTMs are better suited for forecasting time series
that include temporal dependencies. Fig. 11 demonstrates that
CNN-LSTM is superior in performance in three different
weather circumstances since it offers a higher frequency of
performance. However, multiple studies have concluded that
LSTM-CNN outperforms CNN-LSTM regarding forecasting
accuracy [125], [176]. According to one study, BiLSTM-
CNN is a more effective combination of ANN models [176].
The authors found that the BiLSTM-CNN model yields
lower RMSE, MAE, MSE, and R2 values for PV power
forecasting compared to the CNN-LSTM and LSTM-CNN
models. Another study revealed that the GRU-CNN model
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FIGURE 11. Frequency of each model performs best in three weather conditions [186].

FIGURE 12. RMSE values for different prediction horizons [188].

outperforms CNN-LSTM, CNN-GRU, and LSTM-CNN
models on four datasets [185]. The GRU-CNN model
(0.2606), and LSTM-CNN model (0.2239). Keeping up
with the current trend of hybrid models, [163] proposed
a combination of BiGRU and CNN for load forecasting.
The BiGRU-CNN model achieves a low MAPE of 3.42%
and RMSE of 122.22, which is much better than the
GRU-CNN model (MAPE: 14.51%, RMSE: 625.36) and the
CNN-BiGRU model (MAPE: 5.10%, RMSE: 196.09). TCN,
similar to CNN, may be used with unidirectional and bidirec-
tional LSTM and GRU models. Reference [187] presented a
hybridmodel that combines a BiGRU and TCN for day-ahead
forecasting. The study also compares the results with other
models, such as LSTM-TCN, BiLSTM-TCN, GRU-TCN,
and BiGRU-TCN. The findings indicate that BiGRU-TCN
has the lowest error rate among the different combinations
for various datasets.

VI. LIMITATIONS AND SHORTCOMINGS
A precise forecast is essential to achieve higher levels of
PV power integration while ensuring cost-effectiveness and
economic sustainability. Although PV power forecasting
offers many benefits, using ANN models has several limi-
tations. Multiple studies have shown that as the forecasting

horizon or timesteps increase, the accuracy of forecasts
tends to decrease, regardless of whether standalone or hybrid
models are used. In [162], the accuracy of both the stan-
dalone and proposed hybrid CNN-LSTM model decreases
as the number of timesteps increases. The RMSE of the
CNN-LSTM model at a timestep of 7.5 minutes is 1.30.
It then decreases to 1.40 and reaches a higher value of
2.04 at a timestep of 30 minutes. This value exceeds the
values of the standalonemodels for 7.5-minute and 15-minute
timesteps. In another study [188], the accuracy decreases
as the forecasting horizons or prediction windows increase.
Expanding the forecasting horizons from 15 minutes to one
hour leads to a notable rise in the averageMAE error, approx-
imately 3.8 to 4.7 times greater. The error is further increased
when the forecasting horizon is set to 120 minutes, with a
factor of 7.3-10.4. Fig. 12 illustrates how the RMSE value
rises as the prediction windows lengthen during the spring
season. In addition, some research has proposed hybrid mod-
els for more accurate predictions of PV power production.
Nevertheless, hybrid models have shown lower efficiency
or a marginal improvement than standalone models. For
instance, regarding forecasting accuracy, the standalone GRU
model outperforms the hybrid model CuDNNGRU, with an
RMSE of 7.83% compared to 7.87% [153]. Additionally,
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FIGURE 13. Horizontal irradiance fluctuation in South Korea [181].

the complex structure of the hybrid model also presents a
challenge, as any malfunction in one model would greatly
magnify the difference between the anticipated and actual
solar output [146]. Training time is a critical determinant
when evaluating the feasibility of PV power forecasting mod-
els. Hybrid models require 1.5 to 13.5 times more time to
train than single-stage models [125]. The hybrid model has
to capture both temporal and spatial information from the
dataset [181], leading to an increase in training and running
time. These limitations impact the practicality and use of
these systems. Another limitation is that the ANN mod-
elling technique relies primarily on weather data as its input.
Unpredictable weather conditions might lead to less accurate
predictions and unexpected power interruptions. The fore-
casts’ performance may still be inaccurate if any last-minute
adjustments occur. Fig. 13 shows the fluctuations in hor-
izontal irradiance in South Korea, both minute-by-minute
and hourly. The figure indicates significant fluctuations in
irradiance, ranging from over 1000W/m2 to below 400W/m2

within a one-minute time interval. In addition, these models
required a considerable amount of data to provide precise
forecasts and reliable generalization. Sometimes, the given
data contains noise and missing values, increasing the fore-
casting error probability. Hence, obtaining high-quality and
reliable training data may be challenging [189]. Also, large
amounts of high-quality training data enhance the system’s
computational complexity [190].

VII. CONCLUSION AND FUTURE WORKS
ANNmodels can enhance PV power forecasting and improve
grid stability by assessing data quality and model complex-
ity and conducting rigorous validation. Hence, this paper
provides an in-depth review of recent developments in PV
power forecasting, specifically focusing on five popular ANN
models: MLP, RNN, LSTM, GRU, and CNN. In addition,
this study also examines and compares different variants
of these models, including BiRNN, BiLSTM, BiGRU, and
TCNN. Whether used as a standalone model or in a hybrid

configuration, these models offer better forecasting accuracy
and shorter training times. However, multiple factors, such
as the forecasting period, meteorological conditions, and
evaluation metrics, must be considered, which might lead
to inaccuracy. It is also important to consider other factors,
such as the quality and quantity of data, the suitability of the
algorithm, the availability of computational resources, and
the complexity of the model when making forecasts for a
specific region.

Based on a thorough analysis of both standalone and hybrid
models for PV power forecasting, the key findings of this
review can be summarized as follows:
➢ Considering standalone models,

• GRU is more accurate for time series data than
LSTM, RNN, CNN, and MLP due to its intrinsic
memory capacities. Some studies have shown that
LSTM has greater accuracy than its alternative,
GRU, although it comes with an increased time
trade-off.

• BiGRU, BiLSTM, and BiRNN models have been
found to outperform their unidirectional counter-
parts.

• Among bidirectional models, BiGRU has a
slight edge over BiLSTM when considering
both the computational burden and forecasting
accuracy.

• Advanced versions of CNN models, such as TCNN
and DenseNet, have demonstrated superior perfor-
mance to GRU and LSTM models.

➢ Considering hybrid models,
• Hybrid models combining CNN with bidirectional

and unidirectional GRU and LSTM outperformed
other combinations.

• CNN-LSTM is a popular hybrid model, although
studies suggest it is less accurate than LSTM-CNN.

• Forecasting accuracy is slightly higher when CNN
is integrated with BiGRU and GRU than when inte-
grated with BiLSTM and LSTM.
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• Overall, BiGRU, combined with CNN or TCNN,
leads to superior performance compared to BiL-
STM, GRU, and LSTM.

• Similarly, metaheuristic algorithms for hyperpa-
rameter tuning increase the forecasting accuracy of
standalone and hybrid ANN models

• Among MOAs, hybrid or updated metaheuristic
algorithms have produced superior results.

This study presented the results from various studies to sup-
port readers in comprehending, categorizing, and comparing
the five commonly used ANN models, eventually promot-
ing innovation in this sector. Future research might include
reviewing these five ANN models for a specific location to
obtain even better review outcomes. Although most research
papers applied distinct datasets, it is challenging to assess
if a forecasting model may be successful when applied to
different types of data. Hence, analyzing the forecastingmod-
els using diverse datasets from multiple locations is highly
recommended. It is also recommended that important details
for the electrical grid be provided, such as upper and lower
limits of forecasts and the degree of confidence associated
with each statistic.
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