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ABSTRACT Advancements in smartphone sensor technologies have significantly enriched the field of
human activity recognition, facilitating a wide array of applications from health monitoring to personal
navigation. This study utilized such advancements to explore human locomotion and localization recognition
using data from accelerometers, microphones, gyroscopes, magnetometers, and GPS, applying Deep Poly-
nomial Neural Networks (DPNN) and Multilayer Perceptron (MLP) across three datasets: the Continuous
In-The-Wild Smart Watch Activity Dataset, the Huawei Locomotion Dataset, and the Extra Sensory Dataset.
We employ two distinct approaches for activity recognition: Deep Polynomial Neural Networks (DPNN) for
deep learning-based feature extraction and Multilayer Perceptron (MLP) with manual feature extraction
techniques, including Linear Predictive Coding Cepstral Coefficients (LPCC), step length, signal magnitude
area, spectral, and sound features. Through rigorous experimentation, we achieved remarkable accuracy in
recognizing both locomotion and localization activities, with DPNN consistently outperforming MLP in
terms of accuracy. Specifically, for the Continuous In-The-Wild Dataset, DPNN achieved a 93% accuracy
rate for localization activities and 95% for locomotion activities, while MLP recorded 86% and 91% in
the respective categories. Similarly, on the Huawei Locomotion Dataset, DPNN attained 95% accuracy for
localization and 97% for locomotion, with MLP achieving 88% and 91%, respectively. Furthermore, the
application of these models to the Extra Sensory Dataset yielded 92% accuracy for both localization and
locomotion activities with DPNN, and 90% and 89% with MLP. In our study, we observed that in terms of
accuracy, DPNN emerges as the clear winner; however, it is computationally expensive. Conversely, MLP,
while being less accurate, stands out for its computational efficiency. This study not only highlights the
effectiveness of incorporating advanced machine learning techniques in interpreting sensor data but also
emphasizes the trade-offs between computational demands and accuracy in the domain of human activity
recognition. Through our comprehensive analysis, we contribute valuable insights into the potential of
smartphone sensors in enhancing activity recognition systems, paving the way for future innovations in
mobile sensing technology.

INDEX TERMS Human activity recognition, deep polynomial neural network (DPNN), multi-layer
perceptron (MLP), locomotion, localization.
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I. INTRODUCTION
Advancements in smartphone sensor technologies have sig-
nificantly enriched the field of human activity recognition
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(HAR) [1], [3], facilitating a wide array of applications from
health monitoring [4], [5], to personal navigation [6], [9] and
security [10], [11]. The study in [12] created a new way to
recognize what activities a person is doing based on the data
from their smartphone, even if the phone isn’t being carried
on the person. This method, called Context-Aware Human
Activity Recognition (CA-HAR), looks at various kinds of
information the phone’s sensors collect and combines this
with two main techniques: one that uses a set of rules called
ripple-down rules (RDR) and another that involves deep
learning, a type of advanced computer algorithm. To tackle
the problem of accurately recognizing activities when the
phone’s location on the body changes or when it’s not on
the body at all, they made special RDR rules. These rules
not only consider the activity itself but also other related
information that could affect the recognition process. The
paper highlights several key strengths of its approach to
recognizing human activities using smartphone sensors, con-
sidering the context in which these activities occur. First,
it brings together data from various sensors found in a smart-
phone, like the accelerometer and GPS, to get a fuller picture
of the user’s actions. This aggregation means the system
isn’t relying on just one type of data but combines many
to improve accuracy. Secondly, the paper uses a technique
called ripple-down rules (RDR). This method helps the sys-
tem better categorize activities by applying a set of rules that
can adapt based on the context, ensuring that activities are
identified more accurately. By incorporating context, such as
whether the user is indoors or outdoors, the system can make
more informed guesses about what the user is doing. This
approach aims to enhance the system’s ability to correctly
recognize activities by considering the situation or environ-
ment in which they occur. The paper points out a significant
limitation in its approach to recognizing human activities
through smartphones, which revolves around real-time per-
formance. Essentially, while the system aims to accurately
identify activities by considering various contexts and using
complex rules (RDR rules), this sophistication comes at a
cost. Specifically, the computational effort required to build
and keep up-to-date the model that combines context with
activity recognition can slow down the system. This means
that when trying to recognize activities as they happen, the
system might lag or be less responsive due to the heavy
processing needed to analyze the data and apply the rules.
This delay or reduction in speed could affect the system’s
efficiency in real-time situations, making it a critical area for
further improvement.

Another study by Gao et al. [13], introduces a system that
can simultaneously identify where a smartphone is located
(like in a pocket or hand) and what activity the person is
doing (like walking or running) by analyzing movement data
from the phone’s sensors. They use a special approach called
multi-task learning (MTL), which allows the system to learn
about different things at the same time, making it more
efficient. To deal with the issue of the phone being held in

different ways, which can mess up the data, they preprocess
the data using a method that adjusts the coordinates based on
something called quaternions. This technique ensures that the
system can understand the data correctly no matter how the
phone is oriented.

The benefits of their approach include the use of the
multi-task learning technique, which makes it possible to
learn about the phone’s location and the user’s activity
together, improving the overall performance. Also, by pre-
processing data with quaternions, they make sure the system
can accurately interpret the sensor data, even if the phone’s
position changes. However, the system has its drawbacks.
It relies solely on the phone’s motion sensors. This limitation
could be problematic, especially when trying to pinpoint the
exact location of the smartphone. Other types of sensors or
data might be needed to improve location classification and
make the system more versatile and accurate in different
scenarios.

The system developed in [14], uses two wearable sensors,
one on the wrist and the other on the ankle, to measure
how fast and in what direction parts of the human body are
moving. These measurements are then sent without wires to a
computer. The computer processes this data through a couple
of advanced mathematical techniques to figure out what kind
of activity the person is doing, like running or jumping. The
good points of this system include the use of just two sensors,
which makes it less intrusive or cumbersome for the person
wearing them. Plus, the fact that data is sent wirelessly to a
computer means there’s no need for cumbersome wires that
could restrict movement. However, there are some downsides.
Using only two sensors might not be enough to catch all the
different ways the body can move or all the positions it can
be in, which means some activities might not be recognized
accurately. Additionally, relying on a wireless connection to
send data to the computer could lead to problems. If the
connection is weak, interrupted, or non-existent, the system
won’t work as it should, potentially missing out on important
data or failing to monitor activities correctly.

The system designed in [15], recognizes everyday activi-
ties, like eating or driving, using a special kind of artificial
intelligence called a long short-term memory (LSTM) net-
work. The system gathers data from sensors that people wear
on their wrists, ankles, and waist. It then uses a deep learning
model, which is a way for computers to learn from However,
the paper points out a couple of limitations. First, they only
used a small amount of data, which means their system might
not work as well in real life where there are many different
activities. Second, their method of learning how important
each sensor’s data should be doesn’t change over time. So,
if the way activities are performed changes, the system might
not be able to recognize them as well.

Another study [16], introduces a system called Marfusion,
which combines a type of AI known as a convolutional neu-
ral network (CNN) with an attention mechanism to analyze
human movement. This system takes data from different
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kinds of sensors to get a complete picture of what the person
is doing. For each sensor, it uses a CNN to pull out important
features or patterns in the data. Then, it uses a special method
called scaled self-attention to decide how important each
sensor’s data is. This means the system can focus more on
the sensors that are giving the most useful information at
any given time. After figuring out which features are most
important, the system smartly combines them and then uses
several layers of processing - including batch normalization,
dropout, ReLU, and softmax - to classify the data into dif-
ferent activities. It guesses what activity is being performed
based on the patterns it has learned from the sensor data.
The system worked pretty well in tests, but it was only tried
out with a limited range of movements. This means while
it can accurately recognize some activities, it might not be
ready for use in real-world situations where people do a wide
variety of things. The researchers suggest that the system
needs to be tested with more types of movement before it can
be relied on in everyday settings.Another study [17] intro-
duces a physique-based sensor-human activity recognition
(S-HAR) architecture aimed at improving the performance
of deep learning (DL) models in recognizing human activi-
ties. Traditional DL approaches often struggle with this task
because they do not consider the physical characteristics
of individuals, which can vary widely. To address this, the
researchers designed an architecture that incorporates physi-
cal attributes into the DL process. They tested their system
using the HARSense dataset, a publicly available collec-
tion of raw sensor data from smartphones. They trained and
evaluated five different DL networks with this dataset. The
results showed a significant improvement in accuracy and
F1 scores when the models included physical characteristics.
The limitations include, the need for additional physical data
might limit the system’s applicability in situations where such
data isn’t available. The added complexity of the system
could increase computational demands, potentially hindering
its use in real-time applications. This study [18] introduces a
framework for position-independent human activity recogni-
tion (HAR) using deep learning on sensor data fromwearable
devices. The innovative Att-ResBiGRU model, evaluated on
the Opportunity, PAMAP2, and REALWORLD16 datasets,
combines convolutional layers for spatial feature extrac-
tion, a ResBiGRU block for temporal feature capture, and
an attention mechanism to improve recognition accuracy.
Despite its superior performance, the model has some lim-
itations: it requires up to 4MB of memory, making it
unsuitable for low-power devices; sensor drift over time
can affect accuracy; continuous data collection can deplete
battery life; and transmitting raw sensor data raises privacy
concerns.

The research has been divided into the following sections:
Section II discusses the problem statement and contribution
and then material and methods, including noise removal,
signal windowing and segmentation, feature extraction for
machine learning and deep learning, and feature fusion
are presented in Section III. Section IV discusses the

experimental results. Section V presents the limitations and
plans to resolve these issues. Finally, the research study is
concluded.

II. PROBLEM STATEMENT AND CONTRIBUTION
The ubiquity of smartphones, equipped with an array of
sensors such as accelerometers, microphones, gyroscopes,
and GPS has opened new avenues for continuous, in-the-
wild monitoring and analysis of human behaviors and their
environments. Recognizing human locomotion and local-
ization with high accuracy and efficiency is pivotal in
developing applications that can provide personalized health
advice, enhance personal safety, and improve the quality
of life. This study takes advantage of such advancements
to explore human locomotion and localization recognition
using data from accelerometers, microphones, gyroscopes,
magnetometers, and GPS.We apply Deep Polynomial Neural
Networks (DPNN) and Multilayer Perceptron (MLP) across
three distinct datasets: the Continuous In-The-Wild Smart
Watch Activity Dataset, the Huawei Locomotion Dataset,
and the Extra Sensory Dataset. Our approach employs two
distinct methodologies for activity recognition: DPNN for
deep learning-based feature extraction and MLP with man-
ual feature extraction techniques, including Linear Predictive
Coding Cepstral Coefficients (LPCC), step length, signal
magnitude area, spectral, and sound features. Despite the pro-
liferation of research in HAR, challenges persist in achieving
high accuracy and computational efficiency simultaneously.
Our work contributes to this evolving field by rigorously
comparing the performance of DPNN and MLP models
in recognizing both locomotion and localization activities.
Through our experimentation, we demonstrate that DPNN
consistently outperforms MLP in terms of accuracy across
all datasets. However, we also highlight the computational
efficiency of MLP, presenting a trade-off between accuracy
and computational demand. The significance of our study lies
in its comprehensive analysis and comparison of twomachine
learning approaches applied to a diverse set of real-world
data, offering insights into the potential of smartphone sen-
sors in enhancing HAR systems. By exploring the strengths
and limitations of DPNN andMLP in the context of HAR, this
study contributes valuable perspectives to the ongoing dis-
course on optimizing machine learning techniques for mobile
sensing applications, paving the way for future innovations in
the field.

III. PROPOSED SYSTEM
In our system, we crafted a robust system aimed at accurately
identifying both human movements and location-specific
activities. The initial step in our process involved refining
the raw sensor data, for which we employed a Butterworth
low-pass filter [19]. This technique effectively minimized
noise, ensuring that the subsequent analysis was based on
clean, reliable data. To tackle the challenge of processing
extensive sequences of continuous signal data, we adopted
the Windowing technique for efficient segmentation, setting
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FIGURE 1. Architecture of the proposed system.

the stage for deeper analysis. Our system’s architecture is
distinctively divided into two principal layers: one focusing
on machine learning and the other on deep learning. Within
the machine learning layer, we engaged in the extraction
of handpicked features, which are necessary for the recog-
nition of distinct human activity patterns. Conversely, the
deep learning layer was taskedwith processing the segmented
data through a Deep Polynomial Neural Network (DPNN).
This choice was driven by the DPNN’s capacity to adeptly
handle the complex and nonlinear dynamics characteristic
of human activity data. Following the preparatory stages,
we then turn into the classification stage, employing both
a Multilayer Perceptron (MLP) for the machine learning
component and the DPNN for deep learning analysis. It was
observed that the DPNN markedly exceeded the MLP in
accuracy, showcasing its enhanced ability to accurately rec-
ognize complex activity patterns. However, a comparative
analysis of the two methodologies in terms of accuracy
unveiled that the DPNN, despite its superior performance,
is significantly more demanding in computational resources.
This insight into the trade-offs between accuracy and compu-
tational expenditure underscores the importance of balancing
these factors in the pursuit of developing an advanced and
efficient system for the recognition of human activities. The
system architecture is presented in Fig. 1.

A. NOISE REDUCTION
1) BUTTER-WORTH LOW-PASS FILTER
In our study, we aimed to clear the sensor data of any
noise that could interfere with our analysis. To achieve this,
we decided to use a Butterworth low-pass filter [20]. This
type of filter is well-regarded for its capability to smoothly
remove high-frequency noise from the data while preserving
the important trends and patterns that wewant to analyze. The

FIGURE 2. Accelerometer noisy vs filtered signal.

Butterworth filter is particularly useful because it provides a
clear signal without the sharp cut-off that some other types of
filters can cause. This means that the data we’re left with after
filtering retains its natural shape, making it easier to work
with and interpret.

Mathematically, the Butterworth low-pass filter is designed
to have a frequency response that is as flat as possible in
the passband. It avoids ripples both in the passband and the
stopband. The filter’s transfer function, which tells us how
it modifies the signal at different frequencies, has a specific
form that depends on the order of the filter that is, how many
times it applies a simple filtering process.

For a given order n, the transfer function X (s) of the
Butterworth low-pass filter is defined as:

X (s) =
1

1 +

(
s
wd

)2n (1)

where s is the complex frequency variable. wd is the cut-
off frequency, beyond which we want attenuate the signal.

94340 VOLUME 12, 2024



D. Khan et al.: Advanced IoT-Based Human Activity Recognition and Localization Using DPNN

The higher the order n of the filter, the sharper the tran-
sition between the passband and the stopband. However,
higher-order filters can be more complex to implement and
may introduce delays in signal processing. In our implemen-
tation, we choose 2nd order that provided a good balance
between effectively removing noise and maintaining the
integrity of the underlying signal.

We then applied this filter to our sensor data, smoothing
out the high-frequency fluctuations and preparing the data for
the next stages of our analysis. Fig. 2 shows the original vs
filtered signal.

B. DATA WINDOWING AND SEGMENTATION
After cleaning our sensor data with the Butterworth filter,
the next step was to break down the continuous stream of
data into manageable chunks. To do this, we used a technique
called windowing [21], [23]. This method involves dividing
the continuous data stream into fixed-size segments or ‘win-
dows,’ each containing a specific number of data samples.
We decided on windows that span 3 seconds each. Within
each of these 3-second intervals, we collected 250 data sam-
ples from our sensors. This choice was a strategic balance,
ensuring that each window was large enough to capture rel-
evant activity patterns, but not so large as to mix different
activities. Mathematically, the process of windowing can be
represented as follows:

Let x(t) be our continuous signal. We define w(t) as our
window function, which is non-zero onlywithin thewindow’s
limits and zero otherwise. For a window size of 3 seconds, our
window function can be represented as:{

1 for 0 ≤ t < 3 seconds
0 otherwise

(2)

Our segmented data xw (t) is then the product of our
continuous signal and our window function:

xw (t) = x (t) · w(t) (3)

For each window, we take the segment of x(t) from t = n ×

3 seconds to t = (n+ 1)× 3 seconds, where n is the window
number starting from 0. Visually the figure for segmentation
can be seen in Fig. 3.

C. FEATURE EXTRACTION FOR MACHINE LEARNING
The first layer dives into machine learning, where we engage
in the art of feature extraction [24], [27]. This initial stage is
crucial as it sets the groundwork for the algorithms to rec-
ognize patterns effectively. We carefully select features that
encapsulate the essence of the sensor data, including features
like SignalMagnitude Area (SMA), Linear Predictive Coding
(LPC), characteristics derived from sound, Spectral Entropy,
and the count of steps taken.

1) SIGNAL MAGNITUDE AREA
Signal Magnitude Area (SMA) [28], [29] is a way to sum
up the activity captured by sensors, kind of like creating a

FIGURE 3. Accelerometer sensor windowed data.

summary of a story. It’s particularly handy when you have
a bunch of numbers coming in from sensors on different
axes – like up-down, left-right, and forward-backward move-
ments – and you want to get a single number that tells you,
in general, how much movement is going on. Researchers
often use SMA in fields like sports science or physical ther-
apy. Imagine you have athletes wearing sensors, and we want
to know how intense their workout was, or you’re helping
someone recover from an injury, and we need to track how
much they’re moving. SMA can give us this information in a
clear, simple number.

To calculate SMA, we take the sum of the absolute values
of the sensor readings across all three axes for a specific time
frame, and then we average it. So, if our sensors give us
readings every second for each of the three axes (x, y, and
z), here’s how we did it mathematically:

First, for each second, we find the absolute values of the
x, y, and z readings because we’re interested in the amount
of movement, not the direction. Then, we add these absolute
values together. This gives us the total movement for each
second. So, the formula for one-second looks like this:

SMA1sec =
|x| + |y| + |z|

3
(4)

But we don’t just want one second; we want to know the
average over, say, a minute. So, we add up these one-second
totals for each second in the minute and then divide them by
the number of seconds in a minute (which is 60).

The formula for a minute:

SMA1min =

∑60
i=1 SMA1seci

60
(5)

In this way, SMA takes all that messy, complex data and turns
it into something we can easily understand and use. In. Fig. 4
The SMA is presented graphically.

2) SPECTRAL ENTROPY
Spectral Entropy [30] is a fascinating concept that tells us
about the orderliness or complexity of a signal. We can think
of it as a way to measure how predictable or chaotic a piece
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FIGURE 4. SMA calculated for accelerometer.

of music is; a pure tone is very predictable, so it has low
Spectral Entropy [31], while a cacophony of random sounds
is very unpredictable, giving it high Spectral Entropy [32].
It’s used in various fields, like neuroscience to understand
brain activity, in engineering for signal processing, and even
in finance to analyze the volatility of stock markets. It’s about
getting a grip on how much order or disorder is present
in a system. To calculate Spectral Entropy, we first get the
power spectrum of the signal, which shows how the power
of the signal is distributed across different frequencies. Then,
we normalize the power spectrum so that it sums up to one—
this makes it a probability distribution. The Spectral Entropy
is then calculated using the Shannon entropy formula, which,
in simplified terms, is the sum of the probability of each
frequency multiplied by the logarithm of that probability,
summed across all frequencies.

The basic equation for Shannon entropy:

K =

∑
j
X

(
fj
)
logX

(
fj
)

(6)

where X
(
fj
)
is the normalized power of the ith frequency

component of the signal.
In the context of the below graph, this equation has been

applied to the signal data from each environment, with the
resulting entropy values plotted to show the overall distri-
bution of complexity in the sound environment for each
location. From the graph below, ‘Home’ activity tends to have
a lower Spectral Entropy, suggesting a more uniform or less
complex set of sounds, perhaps due to a more controlled envi-
ronment. ‘Outdoor’ activity has higher entropy, indicating a
lot of varied sounds and a higher level of unpredictability or
complexity in the soundscape.

3) SOUND LEVEL EXTRACTION (DB)
We take a close look at the levels of noise in different envi-
ronments by measuring the ambient sound levels [33]. This
feature is represented as the ‘Decibel Level’. The decibel
(dB) is the unit [34] we use for measuring sound intensity.
It tells us how powerful a sound is compared to a reference
level. On our graph, we plotted the decibel levels for different
places: outdoors, indoors, and at home. We can see that

FIGURE 5. Spectral Entropy is calculated for different activities.

outdoor sounds tend to be louder, which makes sense given
the traffic, people, and all the activity that happens there. For
each location, we also calculated the average sound level,
which is what we see as the ‘mean’ lines on the graph. These
averages help us get a baseline of typical noise levels for each
setting. By looking at the peaks and valleys of the lines for
each location, we get an idea of the sound variations over
time.

Mathematically, we can express the average decibel level
over several samples (n) as:

Average dB level =
1
n

∑n

j=1
dBj (7)

where dBj is the sound level in decibels for the ith sample.
This sound level feature is very beneficial in our machine
learning layer because it can help differentiate activities based
on their noise profiles. For instance, the constant hum of
machinery could signify industrial work, whereas intermit-
tent, softer sounds might suggest an office setting. Fig. 6
presents the dB level for different localization activities.

FIGURE 6. Sound Decibel level (dB) calculated for different activities.

4) CROSS-CORRELATION COEFFICIENT
To calculate the cross-correlation feature [35], [37], we select
segments of data that represent steps or strides for walking
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activity. We then mathematically compare two segments of
the signal at different times to calculate the cross-correlation
coefficient. This is done by shifting one segment (or signal)
along the time axis and calculating the product of the two
signals at each shift (lag). The formula used is:

Wij (τ ) =

∑
t
i (t) · j (t + τ) (8)

Here i (t) and y (t) are two signals, and τ is the lag.
The graph (Figure 7) shows this relationship visually.

The x-axis, labeled ‘Lag,’ represents the amount of shift
when comparing two signals. The y-axis shows the cross-
correlation coefficient [38], a number between −1 and 1 that
tells us how closely the two signals match. A coefficient of
1 means they’re perfectly in sync, 0 means no correlation,
and −1 means they’re inversely related. In the context of
walking, a high correlation at certain lags indicates a con-
sistent stride pattern, while a lower correlation may point to
irregularities or asymmetry in gait. The peaks and troughs in
the graph represent points of high and low similarity between
the movement recorded at different points in time. This
feature is particularly useful in applications like sports ana-
lytics, rehabilitation, and health monitoring [39], [40], where
understanding the consistency and symmetry of movements
is essential. In Fig. 7 the graph is shown.

FIGURE 7. Cross-correlation Coefficient calculated for walking activities.

D. FEATURE FUSION USING LDA (LINEAR DISCRIMINANT
ANALYSIS)
Incorporating Linear Discriminant Analysis (LDA) [41],
[42], [43], [44], [45] into our multisensory data for feature
fusion involves a series of steps, beginning with the standard-
ization of diverse sensor data streams. This ensures that each
sensor’s data is given equal weight in the analysis. We label
this data by the corresponding activities it represents. The
mathematical core of LDA [46], [47], [48], [49], [50] is to
maximize the ratio of the between-class scatter to the within-
class scatter, thereby achieving maximum class separability.

Mathematically, this involves calculating two keymatrices:

Xy =

∑c

i=1
Xi (9)

Algorithm 1 LDA
Input: Multidimensional labeled data from various sensors,
and the number of dimensions for the output.
Preprocessing: Normalize the sensor data and label them
according to the corresponding activities.
Compute:

• Mean vectors for each class.
• The within-class and between-class scatter matrices.

Solve:
Calculate the eigenvectors and eigenvalues of X−1

w XB
Select:
Choose the top eigenvectors based on the largest eigenvalues
to form a transformation matrix.
Transform:
Apply the transformation matrix to the data to obtain
lower-dimensional features that are most discriminative.
Output:
The lower-dimensional data ready for the classification.

where Xi is the scatter matrix for each class i:

Xi =

∑
x∈Di

(x − mi) (x − mi)T (10)

In this equation, x represents the data samples for class i, Di
represents the set of all samples for class i,Di and is the mean
vector of the samples for class i.
The between-class scatter matrix can be calculated as:

XB =

∑c

i=1
Ni(mi − m) (mi − m)T (11)

wherem is the overall mean of the data,mi is the mean vector
of class i, and Ni is the number of samples for class i.
Finally, to find a suitable linear combination of features

that separates the classes, we solve the eigenvalue problem:

X−1
w XB −→

υ
= λ −→

υ
(12)

where −→
υ

are the eigenvectors and λ are the eigenvalues.
The eigenvectors corresponding to the largest eigenvalues
will form the new axes for the reduced-dimensional space.
Algorithm. 1 shows the working of LDA.

By projecting our high-dimensional sensor data onto these
new axes, we obtain a lower-dimensional feature space
that emphasizes the differences between activities, which
is important for effective classification. The LDA graph is
shown in Fig. 8.

E. FEATURE EXTRACTION USING DEEP LEARNING
Deep Polynomial Neural Networks (DPNNs) [51], [52], [53],
[54] are an advanced form of neural networks that have
gained attention in the field of deep learning for their abil-
ity to model complex, high-order interactions between input
features. Unlike traditional neural networks that learn linear
combinations of inputs, DPNNs utilize polynomial functions
to uncover the multifaceted relationships inherent in the data.
This makes them particularly well-suited for tasks where the
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FIGURE 8. LDA was calculated for different locomotion activities.

input features interact in non-linear and complex ways, which
is often the case in sensor-based human activity recognition.
Applications of DPNNs span a variety of domains, from
financial forecasting where non-linear patterns are common,
to bioinformatics for modeling complex biological processes.
In our study, we utilize a DPNN to process data from
accelerometers, gyroscopes, magnetometers, microphones,
and GPS units, acknowledging the rich and diverse nature
of the sensor data. The network architecture is carefully
crafted to handle the multi-class classification task across
three distinct datasets (Huawei, Extrasensory, and CIWSA),
each encompassing a variety of locomotion and localization
activities.

1) THE ARCHITECTURE OF PROPOSED DPNN
a: INPUT LAYER
The first input layer is dedicated to interfacing with our
multi-modal sensor data. Each sensor’s output is normalized
to ensure that the magnitude of the readings does not bias the
network, making sure that all inputs contribute equally to the
feature extraction process.

b: POLYNOMIAL EXPANSION LAYER
Next Polynomial expansion layer forms the core of our
DPNN. Each layer performs a polynomial expansion of the
inputs it receives, which involves creating new features by
calculating non-linear combinations of the input features.
For instance, if f1 and f2 are two features, a second-order
polynomial layer would generate features such as f 21 , f

2
2 , and

f1 · f2, among others.

c: INTERMEDIATE PROCESSING LAYERS
In the intermediate processing layer we insert normalization
and dropout layers to manage the complexity of the features
generated by the polynomial expansions. These layers help to
mitigate overfitting and improve the generalization of the net-
work by selectively ‘forgetting’ certain neuron connections
during training.

d: ACTIVATION FUNCTIONS
Despite DPNNs often forgoing the need for traditional acti-
vation functions due to their inherent non-linear nature,

we incorporate activation functions such as Rectified Linear
Units (ReLU) to introduce additional non-linearity and help
the network’s learning process. This is expressed as:

f (x) = max (0, x) for each input x (13)

e: FUSION AND CONTEXTUAL LAYERS
To integrate the features extracted from different sensors and
datasets, we use fusion layers that combine these features
while taking into account the context provided by the data,
such as the specific type of activity and its location.

f: OUTPUT AND CLASSIFICATION LAYERS
The final stages of our DPNN consist of fully connected
layers followed by softmax classification layers. The softmax
function is applied to the final polynomial features to obtain
the probability distribution over the classes, with the formula
given by:

P (xi) =
ezi∑
j e
zj (14)

Here zi is the output of the last fully connected layer for
class i.

g: TRAINING AND OPTIMIZATION
We trained the model using a variant of the stochastic gra-
dient descent algorithm, specifically designed to handle the
high-order polynomial parameters. We define a loss func-
tion appropriate for multi-class classification, typically the
categorical cross-entropy loss, which is computed as:

Z = −

∑
k
tk log (P (yk)) (15)

where tk is the true label in a one-hot encoded form.
In Table. 2 the hyperparameters are given while training the
DPNN.

TABLE 1. Hyperparameters involved in training the DPNN.

IV. PERFORMANCE EVALUATION
The performance evaluation of our system is a critical stage
that ensures the robustness and accuracy of our human activ-
ity recognition model. We have conducted comprehensive
testing using three benchmark datasets, each uniquely chal-
lenging and rich in sensory information. These datasets are
Huawei Locomotion, ExtraSensory, and Continuous Activity
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in the Wild. Each offers a diverse array of user activi-
ties, sensor modalities, and contextual information, providing
a thorough testing ground for our system’s capabilities.
To ensure that our findings are reflective of a typical modern
computational environment, the evaluation was carried out on
a system equipped with 16 GB of RAM, a 3.1 GHz processor,
512 GB SSD, and running Mac OS. This setup provides a
balance between computational power and efficiency, rele-
vant to both academic research environments and industry
applications.

FIGURE 9. Overview of proposed deep polynomial neural network
(DPNN).

A. DATASET DESCRIPTION
1) THE HUAWEI LOCOMOTION DATASET
The Huawei dataset [55] captures day-to-day life activity
across various settings in the UK, spanning an extensive
period of nearly seven months in 2017. It was carefully
recorded by three individuals as they carried out their daily
activities, which included a range of motions from complete
stillness to vigorous running, from cycling to navigating the
city by car or public transport. To gather a comprehensive set
of data, each participant was equippedwith four HuaweiMate
9 smartphones placed in different locations on their person:
one in hand, another positioned at the torso area, a third-
placed in the hip pocket, and the fourth in a backpack or a
handbag. This strategic placement across the body allowed
for a unique opportunity to investigate how the location of
a sensor can influence the accuracy of tracking a person’s
activity. In addition to the movement data, the dataset was
enriched with contextual annotations. It documented whether
the participants were indoors or outdoors and described the
specific activity they were engaged in at any given moment.
This additional layer of information provides a multifaceted
view of each participant’s movements, offering valuable
context for researchers to recognize activity and contextual
analysis.

2) THE EXTRASENSORY DATASET
The ExtraSensory dataset [56] is an extensive collection of
sensor data recorded from a group of 60 individuals. Each
person was assigned a unique identifier, and their activi-
ties were captured in intervals, typically lasting around one
minute. This data wasn’t just sourced from a single type

of device; instead, it was gathered from the participants’
smartphones and smartwatches, offering a rich blend of
information. Beyond the raw sensor data, which includes
everything from accelerometers to location services, the par-
ticipants themselves provided contextual details, presenting
a clearer picture of their activities during data capture. The
contributors to this dataset were from a vibrant campus
community, with a balanced mix of iPhone and Android
users, and a diverse gender distribution. It’s worth noting
that while the dataset is comprehensive, it’s not without
gaps some sensors weren’t always available due to the
device’s limitations or user preferences, like turning off loca-
tion services or when audio wasn’t captured during phone
calls.

3) THE CONTINUOUS IN-THE-WILD SMARTWATCH ACTIVITY
DATASET
The Continuous In-the-Wild Smartwatch Activity (CIWSA)
dataset [57], consists of real-world sensor and location
data collected from 49 individuals. The uniqueness of
this dataset lies in its continuous and naturalistic cap-
ture of daily activities through an Apple Watch. Unlike
controlled studies, this data reflects real life, with partic-
ipants going about their days, offering a transparent lens
into human behavior and routines. The data collection was
thorough, with a high-frequency capture rate, and supple-
mented with GPS location data. Additionally, participants
provided valuable feedback by answering prompts about
their current activity, enriching the dataset with self-reported
information.

B. EXPERIMENT 1: CONFUSION MATRIX FOR
LOCOMOTION (MULTI-LAYER PERCEPTRON MACHINE
LEARNING)
In Experiment 1, we evaluate the performance of aMultilayer
Perceptron (MLP) machine learning model in classifying
locomotion activities. Each confusion matrix in Fig. 10 cor-
responds to one of the datasets used in our study: the CIWSA
Locomotion, ExtraSensory Locomotion, and Huawei Loco-
motion datasets. These matrices display the model’s predic-
tions across the x-axis and the true labels down the y-axis. The
diagonal entries of the matrix represent correct predictions,
where the predicted activity matches the true activity. Values
off the diagonal indicate misclassifications. For a confusion
matrix A where each element Ai,j, represents the number of
instances known to be in group i but predicted to be in group j,
the accuracy of the model for each activity can be calculated
as:

Accuracy for activityi =
Ai,i∑
j Aj,i

(16)

For instance, activities like ‘walking’ and ‘running’ might
be easier to distinguish due to their distinct motion patterns,
while ‘standing’ and ‘sitting’ could be more easily confused
due to their similarity in terms of movement or lack thereof.
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FIGURE 10. Confusion matrices for MLP locomotion (a) CIWSA
(b) Extrasensory (c) Huawei dataset.

C. EXPERIMENT 2: CONFUSION MATRIX FOR
LOCALIZATION (MULTI-LAYER PERCEPTRON MACHINE
LEARNING)
In Experiment 2, we focus on evaluating the efficacy of a
Multilayer Perceptron (MLP) machine learning model in the
domain of localization - determining a user’s location based
on sensor data. The evaluation employs confusion matrices,

which are pivotal in understanding how well the model
distinguishes between different locations, such as indoors,
outdoors, in a car, or various urban environments.

For instance, distinguishing between being ‘in a car’ and
‘outdoors’ may present a challenge if the environmental
sensor signatures are similar. However, a high accuracy in
differentiating ‘indoors’ from ‘at the beach’ indicates the
model’s strength in recognizing distinct environmental char-
acteristics. The confusion matrices for localization activities
are shown in Fig. 11.

D. EXPERIMENT 3: CONFUSION MATRIX FOR
LOCOMOTION (DEEP POLYNOMIAL NEURAL NETWORK)
In Experiment 3, we start by assessing the performance of
the Deep Polynomial Neural Network (DPNN) for the classi-
fication of various locomotion activities. Utilizing confusion
matrices, we were able to visually dissect the accuracy of
the DPNN in recognizing distinct motions such as sitting,
standing, walking, lying down, and running. In. Fig. 12 the
confusion matrices for locomotion activities can be seen.

E. EXPERIMENT 4: CONFUSION MATRIX FOR
LOCALIZATION (DEEP POLYNOMIAL NEURAL NETWORK)
In Experiment 4, we turn our attention to evaluating the Deep
Polynomial Neural Network (DPNN) in the context of local-
ization tasks. This involves interpreting confusion matrices
generated from the DPNN’s predictions to assess its capabil-
ity to accurately identify a user’s location. By analyzing these
matrices for each dataset, we gain insights into how well the
DPNN distinguishes between different environments such as
being indoors, outdoors, in a car, or transit. In Fig. 13 the
confusion matrices for localization are presented.

F. EXPERIMENT 5: COMPARISONS IN TERMS OF
ACCURACY
1) CIWSA LOCOMOTION AND LOCALIZATION
In Fig. 14, we observe the DPNNs outperforming MLPs,
suggesting that the complex interactions within the ciwsa
data are better captured by the polynomial architectures of
DPNNs.

2) EXTRASENSORY LOCOMOTION AND LOCALIZATION
The performance is competitive, but again DPNNs showcase
a slight edge over MLPs. This could be attributed to the rich-
ness and diversity of sensor data in the ExtraSensory dataset,
which may benefit from the higher-order feature interactions
modeled by DPNNs.

3) HUAWEI LOCOMOTION AND LOCALIZATION
The trend continues with DPNNs maintaining higher accu-
racy. The complex patterns within the Huawei dataset,
possibly due to varying sensor positions and the context
data, seem to be more effectively decoded by the DPNN
model. The comparisons between both models can easily be
interpreted in Fig. 14.
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FIGURE 11. Confusion matrices for MLP localization (a) CIWSA
(b) Extrasensory (c) Huawei dataset.

G. EXPERIMENT 6: CROSS-VALIDATION
In our evaluation, we’ve implemented 5-fold cross-validation
to rigorously test the robustness of our machine learning

FIGURE 12. Confusion matrices for DPNN locomotion (a) CIWSA
(b) Extrasensory (c) Huawei dataset.

models, bothMultilayer Perceptron (MLP) and Deep Polyno-
mial Neural Network (DPNN), across the different datasets.
Cross-validation is a technique used to assess how the results
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FIGURE 13. Confusion matrices for DPNN localization (a) CIWSA
(b) Extrasensory (c) Huawei dataset.

of a statistical analysis will generalize to an independent
dataset. It’s particularly useful in scenarios where the goal
is to predict the outcome of a new data point not present in
the analysis. In k-fold cross-validation, the original sample is
randomly partitioned into kequal-sized subsamples. Of the k
subsamples, a single subsample is retained as the validation

FIGURE 14. Comparisons between MLP and DPNN in terms of accuracy.

FIGURE 15. Cross-validation (a) MLP (b) DPNN model.

data for testing the model, and the remaining k-1 subsam-
ples are used as training data. This process is repeated k
times (the folds), with each of the k subsamples used exactly
once as the validation data. By setting k to 5, we ensure
that each fold serves as the validation set once while also
being part of the training set four times. The results from the
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FIGURE 16. Computational requirements for DPNN model.

folds can then be averaged to produce a single estimation.
The advantage of this method is that all observations are
used for both training and validation, and each observation
is used for validation exactly once. The two charts repre-
sent the accuracy percentages across all five folds for each
dataset and model combination. The variation in the accu-
racy across different folds indicates the model’s sensitivity to
the specific subset of the data it’s trained on. By analyzing
the spread of these results, we can infer the consistency
of the model’s performance. A model that performs consis-
tently well across all folds is typically considered robust and
well-generalized.

H. EXPERIMENT 7: COMPUTATIONAL COMPARISONS
1) TIME AND MEMORY CALCULATION FOR DPNN
We conducted a detailed comparison of the computa-
tional requirements for training Deep Polynomial Neural
Network (DPNN) models across various datasets and cor-
responding activities. For the CIWSA dataset, the train-
ing time for locomotion activities consumed approximately
5400 seconds, with a memory usage of 7168 MB, whereas
localization activities necessitated slightly more time at
6820 seconds and marginally increased memory consump-
tion at 8396.8 MB. Moving to the ExtraSensory dataset,
we notice an uptick in resource demands; locomotion activi-
ties required 7412 seconds of training time and 8427.52 MB

FIGURE 17. Computational requirements for MLP model.

of memory, with localization activities reaching 8320 sec-
onds and 9564.16 MB respectively. The Huawei dataset
exhibited contrasting characteristics, with locomotion activi-
ties completing in a brisk 3290 seconds, utilizing 4608MB of
memory, though localization activities showed a significant
increase in both time andmemory usage, taking 7890 seconds
and consuming 8314.88 MB. In Fig. 16 the comparisons can
be seen very clearly.

2) TIME AND MEMORY CALCULATION FOR MLP
Upon examining the Multilayer Perceptron (MLP) model,
we observe a reduction in both training time and memory
usage across the CIWSA, ExtraSensory, and Huawei datasets
when compared to the Deep Polynomial Neural Network
(DPNN) model. This is consistent with expectations, as MLP
architectures are generally less complex than DPNNs. For
the CIWSA dataset, the estimated training time for loco-
motion activities with MLP is approximately 3,240 seconds
(54 minutes), and for localization activities, it’s around 3,420
seconds (57minutes). This suggests a more streamlined train-
ing process, which can be particularly advantageous when
working with constrained computational resources or under
time-sensitive conditions. In terms of memory usage, the
MLP model is estimated to utilize around 4,224 MB for
locomotion and 4,320 MB for localization activities within
the CIWSA dataset. This reduced memory footprint can lead
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TABLE 2. Comparison of recognition accuracy for the proposed system
with other state-of-the-art systems over the continuous in-the-wild
smartwatch activity, extrasensory, and huawei locomotion dataset.

to more cost-effective scaling, especially when deploying
models in cloud environments or on devices with limited
memory capacity. For the ExtraSensory dataset, the MLP’s
training time for locomotion activities is estimated at 6,247
seconds (approximately 104 minutes), while for localization
activities, it’s around 5,472 seconds (approximately 91 min-
utes). Memory usage estimates are 4,938 MB and 5,604 MB,
respectively. The Huawei dataset shows the MLP’s training
time for locomotion at 2,574 seconds (about 43 minutes)
and for localization at 4,734 seconds (about 79 minutes),
with memory usage at 1,920 MB and 4,872 MB, respec-
tively. In Fig. 17 the interpretation of the graph can be
seen.

I. COMPARISONS WITH STATE-OF-THE-ART
The authors in [58], tackle the challenge of recogniz-
ing behavioral context using sensor data collected in the
wild, which often includes unbalanced and incomplete data.
They propose a multiple-layer perceptron (MLP) model
that simultaneously predicts multiple context labels from
multi-modal sensors. The MLP handles unbalanced data
with instance-weighting and remains robust to missing sen-
sors through sensor dropout. Evaluated on the ExtraSensory
Dataset, the MLP outperforms previous models by sharing
hidden representations among all labels, enhancing recog-
nition accuracy even with fewer parameters. In [60], the
authors introduce HAR-GCCN, a deep graph convolutional
neural network (CNN) model designed to leverage correla-
tions between chronologically adjacent sensor measurements
to predict activity labels. The model uses a training strat-
egy that enforces the prediction of missing activity labels
by utilizing known ones. HAR-GCCN demonstrates supe-
rior performance compared to baseline methods, achieving
an improvement in classification accuracy by approximately
25% to 68% across different datasets. The paper in [61]
presents amethod for early detection of transportationmodes,
balancing accuracy and timeliness using partially observed
sensory time series data. The authors develop a hybrid deep
learning classifier that combines convolutional neural net-
works, recurrent neural networks, and deep neural networks.
A decision policy on top of the classifier predicts transporta-
tion modes efficiently. The proposed model, evaluated on

two public datasets, shows good performance in accuracy.
The article in [62] presents a hierarchical search algorithm
that quickly and accurately identifies transitions in activity
recognition models. It works with various window lengths
and uses a new 2D signal input structure for 2D CNNs to cap-
ture inter-axes correlations better. The method improves the
F1-score by 28% over fixed-size windowing and is 20 times
faster than a basic search. The system in [64] uses a deep
neural decision forest classifier for human activity recogni-
tion and localization. It starts by denoising the input signal
with a Butterworth filter and segments it using a Hamming
window. Features are extracted through activity recognition
and localization, followed by recursive feature elimination
and data augmentation using a genetic algorithm. Tested on
the ExtraSensory and Sussex-Huawei Locomotion datasets,
the system achieves good accuracy.

V. CONCLUSION
In this study, we have presented a comprehensive system
designed to recognize human locomotion and location-
based activities, utilizing data from multiple sensors. Our
system fuses machine learning techniques, specifically Mul-
tilayer Perceptron (MLP), with advanced Deep Polynomial
Neural Network (DPNN) methodologies to achieve high
accuracy in activity recognition. Through rigorous compu-
tational analysis, we’ve demonstrated that while the MLP
model excels in environments with limited computational
resources, offering a quicker training process and reduced
memory usage, the DPNNmodel surpasses in accuracy, mak-
ing it suitable for complex pattern recognition tasks. The
practical application of our system spans a wide range of
fields, from healthcare, where it could be used for patient
monitoring, to smart homes, enhancing the interactivity
and responsiveness of home automation systems. Moreover,
the system’s adaptability makes it excellent for integra-
tion into wearable devices, providing real-time analytics for
fitness tracking and potentially augmenting virtual reality
experiences.

However, our system is not without limitations. The
DPNN model, while accurate, requires significant compu-
tational resources, which may not be readily available in
all settings. This limitation becomes particularly pronounced
in real-time applications where rapid data processing is
crucial. Moreover, the models’ performance is heavily depen-
dent on the quality and diversity of the training data,
which could present challenges in scenarios where data
collection is constrained by privacy concerns or technical
limitations.
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