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ABSTRACT The importance of intelligent parking lots has increased with the smarter power grids and
the addition of vehicle technology to the grid on electric cars. Intelligent parking lots have many features
requiring an innovative and optimal energy management program to benefit from. Therefore, providing
a comprehensive and optimal model for energy management of electric car parking lots in intelligent
networks is one of the basic needs of the owners and operation of electric car parking lots. According to
this issue, this paper presents a comprehensive model for more optimal use of bright parking lots. In this
model, to participate more optimally in the next-day market, an artificial neural network is first trained to
predict the overall demand for parking charges and the number of cars in the parking lot every hour of
the next day. In continuation of the problem of parking participation planning in the day-ahead market, the
real-time market and the intelligent charging/discharging of cars have been formulated simultaneously. The
proposed model provides the possibility of predicting parking lot charging demand using a neural network,
participation in the day-ahead market and balance market, and the possibility of using the ability to discharge
electric cars for the parking lot operator. This model is formulated as a mixed correct linear programming to
maximize the profit of the parking garages. In the proposed method, the algorithm performs fast calculations,
and this method also has the ability to be implemented practically. The simulation results demonstrate that
the suggested approach could boost intelligent parking’s profit significantly.

INDEX TERMS Smart parking, artificial network, load response program, economic management.

I. INTRODUCTION
In the coming years, with the increase in the number of
electric cars, the number of parking lots will also increase.
In such a situation, parking lots must consider electric car
owners’ benefits in their plans. Providing profit to the owners
of electric cars will encourage them to use the desired parking
lot again. Therefore, in continuation of this work and to make
the proposed model more comprehensive, the problem can be
modelled and solved by combining the profit of parking and
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electric car owners. This work can eventually lead to more
use of intelligent parking lots and ultimately increase their
profits [1], [2], [3], [4].

Integrating electric vehicles in distribution networks can
increase peak load, energy losses, and voltage drop. The
adverse effects that electric cars create in distribution net-
works depend on the charging they use. Uncontrolled charg-
ing of electric vehicles causes an increase in the peak load
of the network and a severe voltage drop. However, if the
charging of electric cars is controlled, since the load of
electric cars is distributed at different hours of the day, the
occurrence of a severe peak load in the network is avoided.
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FIGURE 1. Internal structure of the all-electric car.

Therefore, the unplanned presence of electric vehicles in
distribution networks and the absence of a correct demand
management program can disrupt the operation of distri-
bution networks [5], [6], [7]. Figure 1 shows the internal
structure of the all-electric car.

One of the most essential features of electric cars is their
flexibility in connecting to power grids. With the develop-
ment of electric cars, a new type of electric load is added to
the power grid, on the other hand, electric car batteries act
as energy storage sources. In this way, when the grid load is
low, and the energy price is low, they receive electrical energy
from the grid and sell it to the energy grid during peak load.
During low load hours of the network, when the production
rate of power plant units is lower than their nominal capacity,
the efficiency of the units decreases, and also, the continu-
ous stop and start of production units and changes in their
production rate cause wear and tear and reduce the life of
the equipment. Therefore, using electric vehicles to receive
energy during off-peak hours improves the state of the power
system both technically and economically. However, owners
of these cars may benefit greatly from the use of electric
vehicles and their discharge in distribution networks during
peak electricity consumption, which is caused by the use and
operation of production units that are highly polluting and
have low efficiency [8], [9], [10].

A. LITERATURE REVIEW
In [11], a coordinated distribution strategy of electric vehicles
(EVs) is used to smooth out the production power caused by
renewable energy sources and microgrid load fluctuations.
In addition to meeting the demands of logistical distribu-
tion chores, the suggested design aims to decrease the total
cost of microgrid operation. Also, this method presents a
self adaptively Imperialist Competitive Algorithm (SaICA)
to solve the proposed model. In [12], the batteries of EVs
in a parking lot are used to store energy in a microgrid.
This approach considers a two-stage stochastic model for
the microgrid’s energy management coupled to the upstream
network. A heterogeneous continuous time Markov chain is
suggested to represent the changing parking capacity. Addi-
tionally, the Benders decomposition approach is used to solve
this model. In [13], a new frequency support strategy is

introduced to control the performance of DES and control-
lable loads, i.e., EVs. In this method, EV batteries with a
droop controller, communication links, and improved feed-
back mechanisms are used as modified droop controllers
(MDCs). Also, an aggregator(AG) is provided to coordinate
the fleet of EVs. In [14], it investigates optimal energy man-
agement in the structure of microgrids based on renewable
energy sources in the presence of grid-connected electric
vehicles (PEV). This method is equipped with a parking lot
to control and collect PEVs. The issue of placing wind power
plants in contemporary structures with sizable parking areas
for EV charging is looked at in [15].
Since the charging demand of electric vehicles usually

does not correspond to the power fluctuations of wind power
plants, the Markov decision process (MDP) is used to for-
mulate EV charging with wind power. Also, the method
based on distributed simulation is used for optimal charg-
ing. In [16], it investigates the economic optimization of
the performance of a low-voltage smart microgrid, includ-
ing electric vehicles (EVs) connected to the grid that uses
the Harmony Search Algorithm to control the charging of
EVs. In this method, the random parameters include loads,
renewable energy sources, and the driving pattern of EVs.
In [17], a predictive control algorithm is proposed for the
economic optimization of a microgrid, including electric
vehicle charging stations. The proposed algorithm manages
the purchase and sale of energy with the upstream network,
manages the use of energy storage devices, and maximizes
the use of renewable energy sources. Also, system modeling
has been done using the Energy Hubs method in this method.
In [18], energy management and optimal operational strate-
gies of electric vehicles (EVs) and Battery Swapping Stations
(BSS) in smart microgrids are introduced due to the effects
of uncoordinated charging of EVs and BSS. This method’s
main optimization problems are cost and profitmaximization.
A multi-objective algorithm is presented in [19] for the best
distribution of grid-connected hybrid electric vehicle (PHEV)
parking lots and renewable energy sources. The suggested
method establishes the quantity, position, and dimensions of
RES and parking lots, as well as the energy-related time of
each source. Under this approach, the artificial bee colony
(ABC) algorithm is utilized to solve the system cost reduc-
tion problem, which is regarded as an optimization problem.
Table 1 looks at the strategies that have been investigated
and contrasts them with the suggested approach. In [20],
a new model of an energy management system is presented,
which uses a new hybrid algorithm for microgrid energy
management. This hybrid algorithm includes multi objective
particle swarm optimization (MOPSO) and the Harmony
Search Algorithm (HS). In [21], optimal energy management
of distributed energy resources and parking of electric vehi-
cles is presented, which includes inherent uncertainties in the
output. In [22], a flexible microgrid planning and optimiza-
tion problem is proposed using meta-heuristic algorithms that
model the uncertainties of the problem. In [23], an optimal
design of intelligent and combined hydrogen, heat and power
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meters in the active system has been proposed, which reduces
the voltage and minimizes the total planning costs by using
different scenarios. In order to minimize the system costs
of the distribution network and the cost of battery discharge
from the presented electric vehicles in [24], a smart electric
vehicle charging strategywith limited chance in themicrogrid
is proposed. In order to provide a reliable power balance for
microgrid operation, in [25], a dynamic control system based
on Fuzzy-Sparrow Search Algorithm (SSA) is proposed.

In general, the main advantage of the proposed model in
this work is that it simultaneously provides the following
capabilities:

• participate more optimally in the next-day market
• predict the overall demand for parking charges
• predict the number of cars in the parking lot every hour
of the next day

• planning in the day-ahead market
• the real-time market
• the intelligent charging/discharging of cars
• Quickly perform algorithm calculations and improve
response speed

• Ability to implement the proposed method in a practical
way

This research presents an energy management system for
electric vehicles in parking lots and examines its practical
constraints. Multiple electric cars can be scheduled and man-
aged by the model that is being provided. This approach aims
to maximize parking profits, ensure that transactions between
the distribution system operator, vehicle owners, and parking
operator are transparent, and increase car owners’ happiness.
The profit function will be optimized once the entire daily
expenditures and parking income are modeled to maximize
the parking profit.

II. PROBLEM MODELING
In this section, a stochastic model is proposed to model the
behavior of electric vehicles. This approach generates several
scenarios for the driving behaviors of electric vehicles, such
as when the vehicle enters the parking lot, when it exits, and
how charged the battery is when it enters the lot. The process
for forecasting the demand for parking fees and the number
of vehicles in the lot the next day is described below. Finally,
using the scenarios obtained for the characteristics of electric
vehicles and the predictions made by the neural network, the
problem of optimal planning of intelligent electric vehicle
parking has been formulated, and its solution method has
been described.

A. MODELING THE BEHAVIOR OF ELECTRIC VEHICLES
It is vital to randomly take into account each EV owner’s
characteristics, such as the time the EV enters and exits the
parking lot, the initial state of charge of the EV upon entry,
and the battery capacity of the vehicles, in order to develop an
accurate model for the parking behavior of electric vehicles.
The quantity of SOC at the time of entry and departure and
the timing of entry are often determined using the truncated

TABLE 1. Review of the studied methods and their comparison with the
proposed method.

Gaussian distribution function to simulate the uncertainty of
the behavior of owners of electric cars [26]. Stated differ-
ently, for every EV, three random numbers the EV entry time
into the parking lot, the EV leave time from the parking
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lot, and the EV’s initial state of charge upon entering—are
produced using a truncated Gaussian distribution. Generating
random numbers will persist until all available parking spaces
are occupied. The parking lot’s automobile space limitations
are considered while creating random numbers. The process
above has to be performed to generate each of the scenarios.

To generate EV scenarios, the behavior of each EV is
modeled using equations 1 to 4 [27]. Equation 1 is used to
generate the scenarios of the arrival time of each electric car
in the parking lot, considering the Gaussian distribution cut
with the mean value µarv, standard deviation σarv, the lower
limit equivalent to the minimum arrival time tarv,minn and the
upper limit equivalent to the maximum arrival time tarv,maxn ,
Used. Equation 2 ensures that the generated scenarios are
reasonable. Therefore, the lower limit of the exit time of each
EV is equal to Max(tdep,minn , tarvn ) so that the exit time from
the parking lot is not earlier than the entry time. Based on
this, the cut area is considered for generating scenarios of the
time of leaving the parking lot according to equation 3. Also,
the SOC of each EV at the time of entering the parking lot is
obtained according to equation 4.

tarvi = fTG(x;µarv, σ
2
arv, (t

arv,min
i , tarv,maxi ) (1)

tarvi ≤ tdepi (2)

tdepi = fTG(x;µdep, σ
2
dep,max(tdep,min

i , tarvi ) (3)

SOCEV
i,tarvi

= fTG(x;µsoc, σ
2
soc, (soc

min
i , socmaxi ) (4)

Based on relationships 1 to 4, the SOC value of each EV that
arrived at the parking lot at time tarvi and left the parking lot
at time tdepi , without considering the energy exchange in the
parking lot, can be expressed as equation 5. Also, the total
number of cars that entered the parking lot at the time tarvi and
left the parking lot at the time tdepi is calculated by equation 6.

SOCEV
i,t =

{
SOCEV

i tarvi ≤ t ≤tdepi

0 Otherwise
(5)

NEV
tarv,tdep =

Nev∑
i=1

EVi,t tarvi ≤ t ≤tdepi (6)

In these equations, NEV
tarv,tdep is the total number of cars that

have entered the parking lot during the time interval between
tarvi and tdepi . Based on the above relationships, the number
of cars entering, the number of cars leaving, and the number
of cars in the parking lot at time t are determined based on
equations 7 to 9, respectively. Equation 10 also guarantees
that the number of parked cars is not greater than the number
of empty car spaces in the parking lot.

Narv
t =

Nev∑
i

{EVi;tarvi = t} (7)

Ndep
t =

Nev∑
i

{EVi;t
dep
i = t} (8)

NP
t = NP

t−1 + Narv
t − Ndep

t (9)

NP
t ≤ NP,max (10)

Each car’s capacity is determined by the type of battery it
uses. Twenty-four battery classifications for various kinds of
electric cars are mentioned in [28]. The probability distribu-
tion of capacities in each EV class is taken to be in order
to reflect the uncertainty surrounding the battery capacity of
electric vehicles in the parking lot [28].

B. PARKING BEHAVIOR MODELING
In this section, an artificial neural network (ANN) is used to
model the behavior of an intelligent parking operator. In this
method, using a neural network, the parking operator predicts
the charging demand of cars the next day and the number of
cars in the parking lot every hour. The parking lot operator
delivers a part of the charge demand needed by the cars
from the day-ahead market and participates in the day-ahead
market based on this estimate. To compensate for the changes
in car charging demand due to the unpredictable behavior of
cars, two strategies of buying and selling energy in the spot
market (balanced market), unloading cars in the parking lot
and recharging them in hours, are used.
The multilayer perceptron (MLP) network has a

feed-forward structure and uses the error back-propagation
method to learn the network. This is considered a monitored
network. In other words, to train this network, in addition
to the training data (network input), the correct output must
also be taught to the system. According to Kolmogorov’s
theorem, an MLP network with three layers can learn and
solve any linear and non-linear problem [28]. Figure 2 shows
the structure of a four-layer perceptron network. The goal is
to train anMLP neural network to predict the hourly charging
demand of all cars in the parking lot and the number of cars
in the parking lot each hour from the day’s network for the
next day. For this purpose, the parking information of electric
cars in the past few years can be used.
Typically, in an intelligent parking lot, car information such

as entry time, exit time, charging amount, and also the number
of cars connected to charging is stored every hour. Using data
stored for several years for different parking lots, a suitable
neural network can be trained to predict charging demand and
the number of cars in the parking lot. Neural network inputs
should be considered as parameters affecting the charging
demand of electric vehicles. The most important of these
parameters can be the hours of the day, days of the year, and
the capacity of the innovative park. It is possible to predict the
total parking fee demand and the number of cars in the park-
ing lot every hour by considering the specified parameters as
input to the neural network. As a result, Figure 3 shows the
neural network designed to predict the behavior of intelligent
parking.
Figure 3 shows that the neural network’s inputs include the

hour of the day T, the day of the year d, and the capacity of the
Npark intelligent parking lot. The total parking fee demand
per hour (Pdemand) and the number of automobiles in the
parking lot per hour (Nev) are further outputs of the neural
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FIGURE 2. Structure of multilayer perceptron (MLP) [28].

FIGURE 3. The structure is intended to predict the overall demand and
the number of electric cars in the parking lot every hour.

network. The parking operator may engage in the day-ahead
energy market more profitably by utilizing the information
that the neural network produces.

III. PROBLEM FORMULATION
In this section, the problem of optimal planning of bright
parking lots is mathematically formulated. The objective
function and constraints of the problem are explained
separately.

A. OBJECTIVE FUNCTION
Based on the explanations provided, the goal is to minimize
the costs related to the intelligent parking operator, the price
of buying energy-generating carpets the next day in the mar-
ket, the cost of buying and selling energy in the balanced
market, and the bonus paid to electric car owners. According
to the explanations provided, the objective function of the
problem is considered as equation 11, which includes the
costs of meeting the charging demand of electric vehicles and
should be minimized.

Min
NT∑
T=1

(
CDA
t +ECRT

t

)
(11)

In equation 11, CDA
t and ECRT

t are the market cost for the
following day and the energy balance market cost in hours
t, respectively. The cost related to the reward paid to EV
owners is also considered within the equilibrium market cost
because this cost is determined when the operator decides to
participate in the equilibrium market. The market price for
the next day is obtained according to equation 12.

CDA
t = ρ

DA,Buy
t PDA,Buy

t − ρ
DA,Sell
t PDA,Sell

t (12)

In this equation, PDA,Buy
t and PDA,Sell

t are the amount of
energy bought and sold in the equilibrium market. The park-
ing lot operator can decide to sell energy at certain hours of
the day by relying on the ability to discharge the cars in the
parking lot to maximize his profit. Also, ρDA,Buy

t and ρ
DA,Sell
t

are energy buying and selling prices in the next-day market,
respectively. The cost of participating in the real-time market
is also calculated as 13.

ECRT
t =

Ns∑
s=1

πs

(
ρ
RT ,Buy
t,s PRT ,Buy

t,s

)
−

Ns∑
s=1

πs

(
ρ
RT ,Sell
t,s PRT ,Sell

t,s

)
−

Ns∑
s=1

πs

[
Nev∑
i=1

(
ρ
p,ch
t PChi,t,s − ρ

p,dch
t PDchi,t,s

)]
(13)

In this equation, PRT ,Buy
t,s and PRT ,Sell

t,s respectively determine
the power bought and sold to the network by smart parking
for hour t and in scenario s. ρRT ,Buy

t,s Moreover, ρRT ,Sell
t,s is the

price of buying and selling energy in the equilibrium market
for hour t and scenario s. πs The probability of scenario s
and Ns is the total number of scenarios. PChi,t,s Furthermore,
PDchi,t,s are the charging and discharging power of vehicle i at

time t and scenario s, respectively. ρp,cht Moreover, ρp,dcht is
the agreed price between the parking operator and the owners
of electric cars for charging and discharging from the car
batteries based on $/kWh.
As explained, the goal of the electric vehicle operator is to

meet the demand for electric vehicle charging at the lowest
cost by participating in the day-ahead market and the balance
market and with optimal planning in these two markets. Par-
ticipating in both markets is subject to certain limitations that
must be considered and respected by the parking operator.
These restrictions are explained for each market separately.

IV. NEXT DAY MARKET RESTRICTIONS
The intelligent parking lot operator’s primary responsibility is
to provide all the energy required to charge any electric cars
that arrive in the lot. Consequently, the energy purchased and
sold in the next day’s market ought to be sufficient to meet the
neural network’s estimated total charging need for intelligent
parking. Equation 14 is the formulation for this condition.

PDA,Buy
t − PDA,Sell

t = Pdemandt (14)

In this equation, Pdemandt is the demand predicted by the
neural network for smart parking at hour t. Based on the
amount of power bought and sold in the market the next day,
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the amount of power exchanged in this market is obtained in
the form of the following relationship.

PDAt = PDA,Buy
t − PDA,Sell

t (15)

In this equation, PDAt is the amount of power exchanged in
the next day’s market. According to the prediction made by
the neural network for the cars that are present in the parking
lot every hour, and relying on the ability to discharge electric
cars according to the previous bilateral agreement with the
car owners, the parking operator can start selling energy at
certain hours in the next day market. Slow: The amount of
capacity available in the parking lot should determine how
much is scheduled to be sold in the market the next day. The
neural network’s estimate of the number of automobiles in the
parking lot may also be used to determine the lot’s capacity.
Based on this, equation 16 sets a maximum restriction on the
quantity of electricity that may be sold in the market the next
day for each hour of parking.

PDA,Sell
t ≤ NevtCapev (16)

In this equation, Nevt is the number of electric cars in the
parking lot at hour t, which the neural network predicts.
Capev is the maximum capacity of the car battery that the
parking operator is allowed to discharge. In each hour, the
parking lot can only sell or buy energy from the grid, and
both tasks cannot be done simultaneously. This adverb is also
modelled as equations 17 and 18.

0 ≤ PDA,Buy
t ≤ PDA,Buyt

max (17)

0 ≤ PDA,Sell
t ≤ PDA,Sellt

max (18)

In this equation, zt is a binary variable, if it is one, it indicates
the purchase of energy from the grid at hour t, and if it is zero,
it indicates the sale of energy to the grid at hour t. Applying
clauses 17 and 18, the maximum power bought and sold in
the next-day market is also limited. In this equation, PDA,Buy

max
and PDA,Sell

max are the maximum power that can be bought and
sold from the parking lot to the network.

A. REAL TIME CONSTRAINTS
Considering that participation in the next-day market is based
on the forecast, it is necessary to compensate for the possible
changes related to the forecast error. Part of the prediction
error compensation for the desired parking lot is done by
participating in the real-time market. The decision to charge
and discharge electric vehicles is also made simultaneously
with the real-time market. As previously said, meeting the
demand for car charging is the parking operator’s primary
responsibility. This is accomplished by taking part in the day-
ahead, balancing markets, and draining the cars’ batteries
while parked in the lot. As a result, the difference between
the total charging and discharging power of every car in the
parking lot must be equal to the total power exchanged in
the day-ahead and balancing markets. Equation 19 is used to
formulate this requirement.

PDA,Buy
t + PRT ,Buy

t,s − PDA,Sell
t − PRT ,Sell

t,s

=

Nev∑
i=1

(
PChi,t,s − PDchi,t,s

)
(19)

Based on the power bought and sold in the real-time mar-
ket, the power exchange in the next-day market is obtained
according to the following equation.

PRTt,s = PRT ,Buy
t,s − PRT ,Sell

t,s (20)

The maximum amount of power the parking lot operator is
allowed to buy or sell energy to the network is also limited.
These constraints are modelled as equations 21 and 22.

0 ≤ PRT ,Buy
t,s ≤ PRT ,Buyt,s

max (21)

0 ≤ PRT ,Sell
t,s ≤ PRT ,Sellt,s

max (22)

In this equation,PRT ,Buy
max andPRT ,Sell

max are the maximum power
that can be bought and sold to the network in the real-time
market. In this regard, yt,s is also a binary variable that
prevents the simultaneous buying and selling of energy in the
equilibrium market.
Electric cars’ charging and discharging also face lim-

itations, such as the power of charging and discharging
of electric cars is limited. Also, charging and discharging
cars simultaneously is impossible, and these restrictions are
applied based on equations 23 and 24.

0 ≤ PChi,t,s ≤ PChi,t,smax (23)

0 ≤ PDchi,t,s ≤ PDch,maxi,t,si (24)

In these equations, PCh,maxi and PDch,maxi are the maximum
charging and discharging power of vehicle i, respectively.
ui,t,s is a binary variable; if it is one, it indicates the charge,
and if it is zero, it indicates the discharge of vehicle I at time t
and scenario s. The charge level of the electric vehicle battery
in each hour is obtained based on the charge level in the
previous hour, the charging power, and the discharging power
in the current hour, according to equation 25.

SOCEV
i,t,s = SOCEV

i,t−1,s +
ηEVi PCh,EVi,t−1,s1t

CapEVi
−
PDch,EVi,t−1,s 1t

ηEVi CapEVi
(25)

In this equation, SOCEV
i,t,s is the charge level of the car’s battery

at time t and scenario s. ηEVi is the charging and discharging
efficiency of vehicle i and 1t is the simulation time step.
CapEVi is also the battery capacity of electric vehicles, i.

The maximum charging and discharging power of electric
vehicles is considered fixed. This is while cars’ maximum
charging and discharging capacity depends on their charging
level. For charging levels lower than a specific value indi-
cated by SOCSat_EV

i , the charging and discharging of vehicles
can be considered constant current (CC), equal to the same
nominal charging and discharging current. However, for a
charge level greater than SOCSat_EV

i , the charge current is
reduced based on the charge level, and the charge correction
is performed using the constant voltage (CV) method. In the
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CV method, the charging current decreases linearly with
increasing SOC. This limitation related to car charging is
modelled as equations 26 and 27.

0 ≤ PChi,t,s ≤ P

Ch

(
1−SOCEVi,t,s

1−SOC
SatEV
i

)
i,t,s

max (26)

0 ≤ PDchi,t,s ≤ P

Dch

(
1−SOCEVi,t,s

1−SOC
SatEV
i

)
i,t,s

max (27)

According to the bilateral agreement between the competent
parking operator and the owners of electric cars, the charging
level of the cars when leaving the parking lot must be greater
than a certain level. This condition is also formulated as
equation 28.

SOCEV
i,tdepi ,s

≥ SOCdepEV
i (28)

In this equation, SOCdep_EV
i is the charge level of car I

when leaving the parking lot. It is assumed that the value
SOCdep_EV

i has already been communicated to the intelligent
parking operator through the electric car owners.

Finally, when electric cars are in the parking lot, their
charge level must be maintained between the minimum and
maximum allowed values. This stipulation means that the
parking lot operator is not allowed to discharge more than
the limit of the car battery and prevents excessive deprecia-
tion of the car battery. The limitation above is modelled as
equation 29.

SOCmin_EV
i ≤ SOCEV

i,t,s ≤ SOCmax _EV
i− tarri ≤ t ≤ tdepi (29)

In this equation, SOCmin_EV
i and SOCmax_EV

i are, respec-
tively, the minimum and maximum allowed values for the
charge level of cars.

V. PROBLEM SOLVING METHOD
All the equations presented for the problem in question
are linear except equations 26 and 27. On the other hand,
the problem has continuous and binary variables. Therefore,
by linearizing two equations, 26 and 27, the desired prob-
lem is formulated as a mixed integer linear programming
(MILP). In these equations, the term that makes these equa-
tions nonlinear is the multiplication of the variable SOCEV

i,t,s
in the binary variable ui,t,s. The multiplication of a binary
variable in a continuous variable can be easily linearized. For
this, a replacement variable named χEV

i,t,s is considered. The
following restrictions apply for the variable χEV

i,t,s to be equal
to the product ui,t,sSOCEV

i,t,s.

χEV
i,t,s ≤ ui,t,s

χEV
i,t,s ≥ 0 (30)

χEV
i,t,s − SOCEV

i,t,s ≤ (1 − ui,t,s)

χEV
i,t,s − SOCEV

i,t,s ≥ −
(
1 − ui,t,s

)
(31)

FIGURE 4. Considered scenarios for energy prices in the real time
market [29].

VI. SIMULATION RESULTS
In this section, an intelligent parking lot with the capacity
to connect 100 electric cars at the same time is considered.
As mentioned in the previous sections, the balanced market
is associated with uncertainty, and its prices are uncertain
until the time of operation. Therefore, the ten scenarios in
Figure 4 are considered hourly energy prices for the real-time
market [29]. The tariff for selling electricity to electric cars,
which the parking operator announces, and the market price
of the next day are considered in Figure 5. It is known that
the cost of charging electric cars is in the form of a three-time
tariff and is based on the time of use (TOU) price.

As explained, the battery capacity of cars is also obtained
probabilistically. For this purpose, the probability distribution
of battery capacity was used in [27], shown in Figure 6.
The curves depicted in Figure 7 are Gaussian curves that

were derived in [30]. These curves were utilized to construct
scenarios pertaining to the time of entering the parking lot,
the time of leaving the parking lot, and the starting charge
level of the charging stations.

According to Figure 7, cars’ minimum and maximum
charging levels when entering the parking lot are considered
30 and 90 per cent, respectively. Theminimum andmaximum
time to join the parking lot is 5 and 5, and the minimum
and maximum time to leave the parking lot is 11 and 24,
respectively.

A. NEURAL NETWORK TRAINING
To train the neural network, data collected from actual park-
ing lots, including the time of entry and exit of cars to the
parking lot, the battery capacity of electric vehicles, and the
charging level of the cars at the time of entering the parking
lot, are needed. To train the neural network in this work, data
from four different parking lots with capacities of 25, 50,
100, and 200 cars were used during one year. A three-layer
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FIGURE 5. Tariff for selling energy to cars and the next day market
price [29].

FIGURE 6. Probability distribution of electric vehicle battery capacity [27].

neural network with five hidden neurons in the hidden layer is
considered to predict parking behaviour. Figure 8 shows the
results of the trained neural network. According to this figure,
it is clear that the accuracy of the neural network has reached
0.00158, which is an acceptable value. For a parking lot that
can accommodate 100 electric automobiles, Figure 9 displays
the charging demand as anticipated by the neural network
and its actual value. This method is robustness metric that is
attack-independent and can be applied to any arbitrary neural
network [31].
Figure 9 shows that the neural network’s accuracy is very

suitable for estimating the charging demand of cars. Figure 10
also shows the neural network results and accurate informa-
tion for the number of vehicles in the parking lot for three
consecutive days. Based on this figure, it is clear that the
neural network has a very high accuracy in estimating the
parking behavior of electric cars.

As previously said, the operator decides on the market for
the next day based on the output results from the neural net-
work, which include the total charge demand of the parking
lot and the number of automobiles there annually.

FIGURE 7. Truncated Gaussian distribution parameters related to the
characteristics of electric vehicles [30].

FIGURE 8. Results related to neural network training.

B. OPTIMIZATION RESULTS
Figure 11 provides the created scenarios for the number of
automobiles in the parking lot for each hour of the day,
which are used for the modeling of electric cars. Also, the
probability distribution of car capacity has been obtained
according to Figure 12. In the following, three different cases
are considered, and the problem of parking charge manage-
ment is solved based on the generated scenarios.

To evaluate the proposed model, the following three items
are considered:
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FIGURE 9. Charging demand predicted by the neural network and its
actual value for a parking lot with a capacity of 100 electric cars for three
consecutive days.

FIGURE 10. Neural network results and real data for the number of cars
in the parking lot for three consecutive days.

• Smart parking should meet the entire demand for car
charging through participation in the real-time market.
In this scenario, it is assumed that the parking operator
has no information about the behaviour of the vehicles
for the next day, and inevitably, all the charging demand
of the vehicles must be met through participation in the
balancing market. Also, in this scenario, it is assumed
that it is not possible to discharge electric vehicles.

• Smart parking meets the demand for car charging
through participation in the next-day and real-time mar-
kets. In this scenario, the parking operator, using the
neural network, can predict the parking conditions on the
next day. Through optimal participation in the day-ahead
market and the equilibrium market, he provides the
charging demand of the cars. In this scenario, it is also

FIGURE 11. Generated scenarios for the number of cars in the parking lot
for each hour.

FIGURE 12. Probability distribution obtained for the capacity of cars.

assumed that it is not possible to discharge electric
vehicles.

• With the exception of the fact that the parking lot man-
ager is permitted to empty the electric cars’ batteries
there, it is comparable to item 2.

Based on the three cases defined above, it is possible to evalu-
ate and compare the impact of each of the options for meeting
the parking charge demand, i.e., presence in the next-day
market, presence in the real-time market, and the possibility
of discharging electric vehicle batteries. The results related to
each of the mentioned cases are presented and analyzed.

1) RESULTS OF SCENARIO 1
In this case, parking costs only $8 per day, which is a very
little profit. Given that there is no way to discharge the cars
in this situation and that the whole amount of power needed
to charge them must come from the real-time market, the
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FIGURE 13. The amount of energy exchange of smart parking in the real
time market in scenario 1.

parking operator has to purchase energy from the network
around-the-clock. The energy bought in each scenario from
the real-time market is displayed in Figure 12. This energy
is equivalent to the energy needed in all circumstances and
every hour to charge the automobiles in the parking lot. The
energy exchange value of intelligent parking in scenario 1’s
real-time market is displayed in Figure 13.

Figure 13 makes it evident that, in case 1, there are signif-
icant fluctuations in the quantity of energy bought from the
real-time market. These fluctuations are brought on by the
unpredictability of car behavior, including when cars enter
and exit parking lots and the degree of initial charging of elec-
tric vehicles. However, there are no alternative possibilities
(vehicle unloading or the next-day market), and the real-time
market reflects all the uncertainties. It is clear from scenario
1’s $8 profit that parking will not benefit significantly from
this kind of power exchange in the real-time market. In this
case, the cost of buying energy in the real-time market is
$62.34, and the income from selling energy to electric cars
is $70.38.

2) RESULTS OF SCENARIO 2
In this case, the parking profit equals 32.57 dollars, which
has increased by 24.57 dollars compared to the previous situ-
ation, equivalent to a triple increase in the intelligent parking
profit. This profit increase is due to the participation of smart
parking in the next-day market. For this case, the amount of
power purchased from the day-aheadmarket and the real-time
market are shown in Figures 14 and 15, respectively. Accord-
ing to Figure 14, most of the energy needed for parking is
purchased from the market the next day between 13:00 and
18:00, which is the reason for the high real-time market price
during these hours.

A comparison of figures 14 and 15 shows that participation
in the day-ahead market has caused a significant reduction

FIGURE 14. The amount of energy purchased from the market the next
day in scenario 2.

in the purchase of energy from the real-time market. Most
purchases from the real-time market are related to 10 o’clock,
which is the time of transition from low load to medium load.
In other words, the parking operator always seeks to supply
charging demand prediction errors in the best possible time
from the real-time market. At 10 o’clock, when the purchase
from the real-timemarket was high, on the one hand, the price
did not increase suddenly, and on the other hand, there were a
large number of cars in the parking lot, and the operator was
able to charge them. In this instance, the price of electricity
purchased from the real-time market is $3,364, the price of
energy purchased from the next-day market is $62,145, and
the revenue from selling energy to automobiles is $98,085.
Due to more automobiles being charged during peak hours,
which raised the parking profit, there was an increase in
income from the selling of energy to cars as compared to
scenario one.

3) RESULTS OF SCENARIO 3
In this case, the cost of removing energy from an electric car’s
battery is calculated to be 7 cents per kilowatt-hour, or the
cost of selling energy to automobiles for an hour of interme-
diate load. The benefit from smart parking in this instance is
$97.34, which is significantly more than in scenarios 1 and 2.
The energy traded in the third scenario’s day-ahead market
and real-time market are depicted in Figures 16 and 17,
respectively.

In Figures 16 and 17, the negative values indicate the sale
of energy by parking to the grid. Based on the results, it can
be seen that the operator only bought energy in the market the
next day and did not sell energy. The reason for this issue is
the high uncertainty in the behaviour of cars, which makes it
difficult to compensate in the equilibrium market. However,
in the real-time market, buying and selling have increased so
much that in the early hours of the day, when the real-time
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FIGURE 15. Amount of energy purchased from the real time market in
scenario 2.

FIGURE 16. Amount of energy exchanged in the next day market in
scenario 3.

market price was low, the parking operator bought energy
with the maximum capacity and stored it in the car’s battery.
In addition, with the increase in the real-timemarket price, the
parking operator has sold surplus energy. This is why parking
in this case is nearly four times the profit of parking in the
second case.

Figures 18 and 19 show the total charging and discharging
energy of all cars in each scenario, respectively. Based on
these figures, it is clear that most cars were charged in the
hours before noon when the real-time market price was low.
Most vehicles are discharged at noon and later due to the
high real-time market price during these hours. Also, the
comparison of Figure 16 with Figure 17 shows that the total
amount of car discharge in some hours was more than the
energy sold by the parking lot to the grid, which indicates that

FIGURE 17. Amount of energy exchanged in the real time market in
scenario 3.

FIGURE 18. Charging energy of all cars per hour for each scenario in
scenario 3.

the parking operator used the car discharge energy to charge
other cars.

In this case, the difference between the income from
the sale of energy to cars and the interest paid to them
equals 123 dollars. The cost of the day-ahead market and the
real-time market are 46.54 and 105.25 dollars, respectively.
The income from the sale of energy in the real-time market
equals 126 dollars. Some of the energy purchased in the
next-day market has been sold in the real-time market, which
has been in line with the increase in profit due to the price
difference between these two markets. The results showed
that parking participation in different markets and the ability
to discharge cars cause a significant increase in the profit of
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FIGURE 19. Discharge energy of all cars per hour for each scenario in
scenario 3.

TABLE 2. Comparison of the results obtained in three study scenarios.

intelligent parking. In Table 2, the results of the three studied
cases are compared.

VII. CONCLUSION AND FUTURE WORK
An extensive model for making better use of light parking lots
is presented in this research. In this model, an artificial neural
network is trained to forecast the total demand for parking
fees and the number of automobiles in the parking lot every
hour of the next day to participate more profitably in the next-
day market. Concurrently with the issue of planning parking
participation in the day-ahead market, the real-time market
and intelligent car charging/discharging have been developed.
The suggested architecture offers the capacity to use a neural
network to estimate parking lot charging demand, participate
in the day-ahead and balancing markets, and use the ability
to discharge electric vehicles for the parking lot operator.

In the coming years, with the increase in the number of
electric cars, the number of parking lots will also increase.
In such a situation, parking lots must consider electric car
owners’ benefits in their plans. Providing profit to the owners
of electric cars will encourage them to use the desired parking
lot again. Therefore, in continuation of this work and to make
the proposed model more comprehensive, the problem can be
modelled and solved by combining the profit of parking and

electric car owners. This work can eventually lead to more
use of intelligent parking lots and ultimately increase their
profits.
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