
Received 3 June 2024, accepted 24 June 2024, date of publication 28 June 2024, date of current version 8 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3420425

On the Attractive and Repulsive Forces of
Generalized Stochastic Neighbor Embedding
With Alpha-Divergence
HSIN-YI LIN 1, (Member, IEEE), HUAN-HSIN TSENG 2, AND
JEN-TZUNG CHIEN 3, (Senior Member, IEEE)
1Department of Mathematics and Computer Science, Seton Hall University, South Orange, NJ 07079, USA
2Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
3Institute of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

Corresponding author: Hsin-Yi Lin (hsinyi.lin@shu.edu)

ABSTRACT Stochastic neighbor embedding (SNE) performs nonlinear transformation from high-
dimensional observation space to low-dimensional latent space which preserves neighbor affinities. Data
pairs in latent space tend to be crowded due to the dimensionality reduction. To mitigate the crowding
problem, certain characteristics are favorable in the design of the SNE setting. This study presents a
fundamental analysis of SNE that not only generalizes the previous SNEs but also provides a systematic
way to understand the intrinsic properties. From the perspective of theoretical connection, we are able to
conceive a new generalized SNE (g-SNE) by introducing a regularized power-law distribution with the
α-divergence for manifold learning. The proposed method generalizes and incorporates various favorable
features for the clustering process. In addition, the proposed method provides high flexibility, admitting
tailored realizations to properly reflect the similarity between original and dimension-reduced samples.
Experiments are performed to analyze the proposed method, and its effectiveness is demonstrated with
several learning tasks.

INDEX TERMS α-divergence, clustering, dimensionality reduction, data visualization, manifold learning,
stochastic neighbor embedding.

I. INTRODUCTION
With the advancement of modern technologies, vast data
collected from diverse sources like social media, sensors, and
digital images introduces the challenge of high dimension-
ality, which complicates data analysis and model training
processes. Dimensionality reduction techniques effectively
address these problems by condensing data into a lower-
dimensional space, preserving crucial information while
eliminating redundancies. This does not only accelerate com-
putational tasks but also improves data interpretability [1],
[2], aiding in pattern discovery to enhance model perfor-
mance of a learned machine. For example, an optimal graph-
based dimensionality reduction was applied to enhance and
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improve the performance for semi-supervised learning [3].
In another example, dimensionality reduction was used to
manage the complexities of varying domain characteristics,
while equilibrium distribution was leveraged for domain
adaptive learning [4]. Solutions to dimensionality reduction
are pivotal for efficient data analysis and visualization across
diverse domains [5].
Dimensionality Reduction algorithms range from linear

transformations, such as Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA), to nonlinear
mappings, such as Locally Linear Embedding (LLE) [6] and
Stochastic Neighbor Embedding (SNE) [7], [8], [9], [10]
which are regarded as nonparametric mappings. A parametric
mapping based on deep neural network [11], [12] was learned
to handle the unseen data in manifold learning [13], [14],
while SNE has been extensively developed for probabilistic
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dimensionality reduction and data visualization. Based on
previous works, several methods with geometric insights
have been introduced into generalized manifold settings.
An extension of PCA to Symmetric Positive Definite (SPD)
matrix manifolds was developed in [15]. HoroPCA [16],
on the other hand, provides a PCA fitting for data lives
on a hyperbolic space. More recently, an adapted SNE on
the non-Euclidean hyperbolic space was introduced in [17].
Uniform Manifold Approximation and Projection (UMAP)
[18] was proposed with a similar core idea as SNE, where
similarity matrices in the high and low-dimensional space
are compared. One key difference between SNE and UMAP
is the optimization measurement. In fact, SNE frequently
applies the Kullback-Leibler (KL) divergence, while UMAP
applies the cross-entropy.

SNEs [7], [19] transform the data space into a probabilistic
space and endow probability distributions on data points.
The KL divergence is a typical measurement for the
distributions in the high-dimensional space and that of
the low-dimensional space [20], [21]. However, there is
no clear analysis regarding how divergences and under-
lying probability functions mitigate the crowding problem
where the pairwise distances in low-dimensional latent
space do not fully manifest those in the high-dimensional
observation space. Certain attempts by replacing the low-
dimensional distribution as a heavy-tailed one [9] such as
the Student-t distribution [8] were proven to be empirically
helpful. Later on, it was pointed out that the power-law
distribution (p-SNE) can further help with the clustering
separation [22], from which this study is considerably
extended.

This work intends to generalize SNE in a broader setting
by integrating favorable characteristics. Initiated from a solid
mathematical formulation, we propose a new generalized
SNE that relaxes the usage of similarity measures, distri-
bution functions, and divergences. Particularly, this study
proposes employing a regularized power-law distribution
of a symmetric target similarity on the general Rieman-
nian structures. The proposed method is developed for a
flexible manifold learning based on α-divergence to align
the distributions in high-dimensions and low-dimensions.
An additional parameter α admits extra degrees of freedom
for flexibility. It is noticed that when α = −1 and α = 0,
they correspond to the KL divergence and the Hellinger
distance, respectively. With this generalized framework,
we are allowed to explore the effect of attractive and repulsive
forces and demonstrate how the low-dimensional neighbor
representation is characterized. In this framework, it is found
that the clustering performance is improved to a wide-
separated visual representation, as shown in the experimental
results.

Even with the aforementioned benefits, SNE can be
computationally expensive, especially as the size of the
dataset grows. This is due to the complexity of calculating
pairwise probabilities and the iterative nature of minimizing
the cost function. Although the proposed method inherits

the limitations from the SNE framework, this weakness
can be mitigated by GPU acceleration. This work focuses
on comprehending the underlying mechanism of SNE
clustering and generalizing it with favorable characteristics.
The contributions of this work are summarized as follows:
1) This work investigates the fundamental mechanism of

SNEs by analyzing individual fundamental principles
and general properties. Moreover, the connection to
attractive and repulsive forces is discussed as seen in
Sec. IV, which yields insights into how SNE can be
enhanced.

2) A new generalized SNE is proposed by the extended
formulation to provide flexibility with favorable features
where visual representations are illustrated as seen in
Section III.

3) Our analyses demonstrate the influence of divergence
measures in a loss function. By relaxing the typical
Kullback-Leibler divergence into α-divergence, the
proposed method is equipped with various capacities for
realizing data similarity, as addressed in Sec. IV-A.

II. RELATED WORKS
SNE has several variants that adopt different types of simi-
larity distributions in high-dimensional and low-dimensional
space. The original SNE [7] describes the similarity distri-
butions with conditional probabilities using the form of the
Gaussian distribution

pj|i =

exp
Ä
−∥xi − xj∥2

ä∑
k ̸=i exp

(
−∥xi − xk∥2

) (1)

qj|i =

exp
Ä
−∥yi − yj∥2

ä
∑

k ̸=i exp
Ä
−∥yi − yk∥2

ä (2)

where {xi} and {yi} denote samples in the high-dimensional
and the low-dimensional space, respectively. pj|i and qj|i
denote the conditional probability distributions given xi and
yi of the high-dimensional and low-dimensional spaces,
respectively. The symmetric SNE [23], on the other hand,
employs the joint probabilities with the Gaussian distribution
with variance parameter.

Following the symmetric assumption, t-SNE [8] was then
proposed to deploy the Student-t distribution of the following
symmetric joint probability form for the low-dimensional
space:

qij =

Ä
1 + ∥yi − yj∥2

ä−1

∑
k ̸=l

Ä
1 + ∥yk − yl∥2

ä−1 . (3)

On the other hand, the p-SNE [22] applied the power-law
distribution in the following form for low-dimensional space

qij =

®
c/∥yi − yj∥2 if ∥yi − yj∥ ≥ r0,
0 otherwise

(4)

with a cut-off radius r0 > 0. A spherical version of SNE,
called s-SNE, was also introduced to visualize the hyper-
spectral data in [24], where the target geometry was set to be
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the non-Euclidean d-dimensional unit sphere Sd . The discrete
exit distribution [25] was then adopted as

qij =
∥yj − ρyi∥−d∑
k ̸=l∥yk − ρyl∥−d (5)

for any latent pair yi, yj ∈ Sd−1 with a constant ρ ∈ [0, 1).
In fact, various SNEs can be considered as special

realizations of the method we develop next in Sec. III
under the general Riemannian geometry with the arbitrary
inner products (called Riemannian metrics) to provide the
weighted similarity measures [26]. In deep learning terms,
they correspond to the attention (weights) of the projected
data. The proposed method derived from the Riemannian
framework will then contain rich information in embedding
structures.

Typically, SNEs were implemented by minimizing the KL
divergence between high and low-dimensional distributions
of data points. Other divergence measures such as β, γ ,
or Rényi may also be considered as well [27], [28]. Notably,
one may also attempt to symmetrize the divergence measure
between P and Q by combining two KL loss functions [29].
As divergence functions were studied and explored for

their important role in general learning theories and opti-
mization implementations, different classes of divergence
functions can be incorporated into the SNE framework. α-
divergence [30], [31] is a broader convex divergence function
that includes the KL divergence as a special case. A study
for a further generalized convex divergence measure can be
found in [32].
This work extensively generalizes SNE and sets up a

mathematical foundation that maximally captures the geo-
metric features for clustering performance. An additionally
proposed distribution in the study possesses both the heavy-
tail property and the quick-growing behavior near the origin.
There are two parameters η and β to adjust the probability
decay rate and concentration at the origin. On the other
hand, α-divergence is utilized to tune the clustering effect
with a convex parameter α. The proposed generalization
naturally includes the t-SNE as a special case while having a
similar yet smoother behavior near the origin as the p-SNE.
The comparison of the previous methods to the proposed
framework will be discussed in Sec. IV.

III. GENERALIZED STOCHASTIC NEIGHBOR EMBEDDING
A. GENERAL FRAMEWORK
This study generalizes the SNE from the Riemannian
geometry perspective. Let (M, h) and (N , g) be the Rieman-
nian manifolds representing the high-dimensional space of
dimension D and the low-dimensional space of dimension
d , respectively. Given a set of N original (high-dimensional)
data points X = {xi ∈ M|i = 1, . . . ,N }, the goal of SNE is
to find a low-dimensional representation Y = {yi ∈ N |i =

1, . . . ,N } such that yi preserves the pairwise similarity of
xi in the latent space N . The pairwise similarities inM, N
are typically modeled by the conditional probability pj|i of

FIGURE 1. A dimension reduction map ϕ from the high-dimensional
space M to the low-dimensional space N . The process of stochastic
neighbor embedding is depicted by dash lines.

finding xj as a neighbor of xi and the conditional probability
qj|i of having yj as a neighbor of yi, where the exact definition
of pj|i and qj|i will depend on the distance measure given by
the Riemannian metric later in Eq. (7).

Following closely on the interpretations and definitions
in [8], we know that comparing and aligning two sets of
probability distributions P = {pi} = {pj|i} and Q = {qi} =

{qj|i}will serve the purpose of preserving data structures. The
process of matching P and Q is rendered by minimizing the
(probability) divergences over samples as a cost function L

L(P,Q) =

∑
i

Df (pi∥qi) =

∑
i

∑
j

pijf
(
qij
pij

)
(6)

where pij := (pi|j + pj|i)/2N , qij := (qi|j + qj|i)/2N with
sample size N are as defined in [33], and Df (pi∥qi) is a
divergence measure between probability measures pi and qi
of samples xi and yi, respectively. The specific form of pij and
qij in our generalization is to be discussed in Eq. (10), (11).
A convex differentiable function f : R+

→ R is typically
chosen with f (1) = 0. This objective evaluates how much
two sets of distributions pi = {pij} and qi = {qij} agree to one
another. Indeed, the loss function Eq. (6) attains the minimum
value 0 when pij = qij for the pairwise samples i, j.
As a result, the minimization of Eq. (6) acts as an implicit

dimension reduction map ϕ : M → N found by an SNE to
obtain the compressed samples Y = ϕ (X ) in N . Note that
by considering the distribution of pairwise similarity, SNE
transforms data X and Y into probability spaces (6,F6,P)
and (�,F�,Q) with induced mapping ξ and τ respectively,
as shown in Fig. 1, where F6 = 26 , F� = 2� denote
their corresponding σ -algebras [34]. The learning process
of SNE occurs in probability spaces by minimizing the
divergence between two distributions. This mechanism is
different from dimension reduction maps such as PCA and
autoencoders [35], where a mapping ϕ is directly sought
between data spaces X and Y .

B. PROPOSED METHOD
Our formulation above contains three key factors that
uniquely determine an SNE:

1) The distance measure between sample pairs {xi, xj} on
M and {yi, yj} on N ,

2) The distribution function for conditional probabilities
pj|i and qj|i (or joint probabilities pij and qij),
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3) The divergence measure between probability spaces P
and Q.

The proposed method, called the generalized SNE (g-
SNE), extends these three factors to incorporate favorable
features for clustering. The three extensions are explained in
the following subsections:

1) DISTANCE MEASURES
Neighboring embedding is affected by the distance measure
in the data space. A distance measure can stem from
a Riemannian metric [36] that uniquely characterizes the
geometry of a space, such as the shape of a sphere or a torus.
Given Riemannian metrics h : TM× TM → R onM and
g : TN × TN → R on N , intrinsic distances onM and N
are induced by

dij := d(xi, xj) :=

»
h(xi − xj, xi − xj)

rij := r(yi, yj) :=

»
g(yi − yj, yi − yj) (7)

where TM, TN denote the tangent bundles of M, N ,
and certain parallel transport structures are assumed for
simplifications. Consequently, Eq. (7) results in a general
form for distance measures

dij =

Ã
D∑
k=1

D∑
l=1

hkl(xik − xjk )(xil − xjl) (8)

rij =

Ã
d∑
k=1

d∑
l=1

gkl(yik − yjk )(yil − yjl) (9)

where {hkl, gkl} are dynamical weights at the coordinate
{xik , xjl, yik , yjl} of vectors {xi, xj, yi, yj}. Again, D and d are
the dimensions of M and N , respectively. Indeed, given a
local coordinate or a basis {vk}dk=1 on N , a latent point can
be expanded by yi =

∑
k yikvk with coefficients yik ∈ R.

Under the expansion, one has g(yi, yj) =
∑

k
∑

l gklyikyjl
with gkl := g(vk , vl) (y1, . . . , yN ) to give Eq. (9). Since
each gkl is a real-valued function of (y1, . . . , yN ), it can be
regarded as the dynamical weighting at samples y1, . . . , yN .
The regular Euclidean distance ∥yi−yj∥2 =

∑
k (yik−yjk )2 is

then seen as a special case when gkl = δkl , a Kronecker delta
function. The Mahalanobis distance [33] becomes another
special realization when gkl are all constants. In the term
of deep learning, gkl is an attention weight [37]. Similar
computations can be carried out to yield attention weights hkl
in Eq. (8).

2) DISTRIBUTION FUNCTIONS
With the generalized distance measures {dij} and {rij} defined
by Eq. (8), and (9), respectively, we may further generalize
the distribution functions P : F6 → [0, 1] and Q : F� →

[0, 1] by

P(xi, xj) = pij =
p(dij)∑
k ̸=l p(dkl)

(10)

Q(yi, yj) = qij =
q(rij)∑
k ̸=l q(rkl)

(11)

where p : R+
→ R+ and q : R+

→ R+ are non-
negative decreasing functions, i.e., ṗ(d) ≤ 0 and q̇(r) ≤ 0 and
the conditions P(xi, xi) = 0 and Q(yi, yi) = 0 are met.
Distribution P(xi, xj) characterizes the probability of having
sample xj as a neighbor of xi, similarly for Q(yi, yj) in a way
to reflect the similarity or affinity between data points.

This is usually a key measure in an SNE that shapes up
the physical behavior of the latent space. In this regard, the
original data distribution p(dij) is assumed to be Gaussian,

p(dij) = exp
Ä
−d2ij
ä

. (12)

We propose a regularized power-law distribution in N by
letting

q(rij) =
1

η + rβ
ij

(13)

with two parameters η > 0 and β > 0. The distribution
is heavy-tailed for all β > 0, which controls the
decay rate, while η connects to the steepness of how rij
approaches zero. This distribution is proposed to mitigate the
crowding problem by merging the beneficial characteristics
of clustering effects in t-SNE [8] and p-SNE [22]. Indeed,
our extension includes the Student-t distribution in Eq. (3) as
a special case when η = 1 and β = 2, and the power-law
distribution in Eq. (4) as η → 0, β = 2.

3) DIVERGENCE MEASURES
To obtain the generality in comparing probability distri-
butions, the α-divergence is employed in Eq. (6) as a
measurement between P and Q by defining

fα(t) =
4

1 − α2

ï
1 − α

2
+

Å
1 + α

2

ã
t − t

1+α
2

ò
(14)

where t > 0 and α ∈ R is a convexity parameter. Eq. (14) was
derived by considering the 1-parameter α-connection family
where the corresponding statistical interpretations have been
explored and addressed in [38].

The α-divergence is differentiable and convex with f ′′
α (t) =

t (α−3)/2
≥ 0. These nice properties allow this framework

to explicitly calculate and analyze the SNE optimization
process. Furthermore, the α-divergence includes the KL
divergence and the Hellinger distance as two special cases
whenα = −1 andα = 0, respectively. This variational nature
of α offers flexibility when catering to diverse data.

IV. ATTRACTIVE AND REPULSIVE FORCES IN SNES
The optimal solution Y∗

= (y∗

1, . . . , y
∗
N ) of the objective

function in Eq. (6) determines the final SNE clustering
result. The minimization process {yi(t) → yi(t + 1)}
for each iteration t of sample i characterizes the SNE
mechanism. As there is no closed-form for the dynamical
process yi(t)

t→∞
−−−→ y∗

i , the gradient descent (GD) algorithm
is commonly utilized to estimate the optimal solution.
Consequently, the behavior of gradient values ∂L

∂yi
can be used

to analyze and compare different types of SNEs.
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FIGURE 2. The directions of (a) an attractive force and (b) a repulsive
force on particle yi due to another particle yj in the latent space.

In fact, the gradient vectors can be connected to the
attractive and repulsive forces from the perspective of
mechanics. By depicting the loss function in Eq. (6) as a
force field, the neighbor embedding behavior in N can be
illustrated as the interaction between particles.

A mechanical system of N particles inN = Rd with mass
m and position yi(t) ∈ N subject to the potential energy V =

V (y1, . . . , yN ) has the Lagrangian [39]

L (y1, . . . , yN , ẏ1, . . . , ẏN ) = T − V (15)

where ẏi is the velocity and T =
m
2

∑N
i=1∥ẏi∥

2 denotes
the total kinetic energy. Note that the Lagrangian L is to
be distinguished with the loss function L. The equation of
motion for N particles Eq. (15) follows from the Euler-
Lagrange equation ∂L

∂yi
=

d
dt

∂L
∂ ẏi

to give

Fi = mÿi = −
∂V
∂yi

(16)

which indicates the force exerted on particle yi as ÿi denotes
the acceleration of yi.
SNE fits into this perspective when the learning objective

L is identified with potential V . Put V = L, one has

Fi = −
∂V
∂yi

= −
∂L
∂yi

. (17)

Then the loss gradient ∂L
∂yi

is legitimately regarded as the force
on yi, by a negative sign. The existence of force naturally
leads to the motion of latent variables yi, and therefore, the
optimization process yi(t)

t→∞
−−−→ y∗

i to be discussed.
With the perspective of mechanics, we first examine a

special case to see how the neighbor embedding process is
transformed into force interactions. Under the KL divergence
andM = RD,N = Rd , Eqs. (6), (10), (11), and (17) yields

Fi = −2
∑
j

pij
q̇(rij)
q(rij)

(
yj − yi
rij

)
+

2
Z

∑
j

q̇(rij)
(
yj − yi
rij

)
,

(18)

where Z =
∑

k ̸=l q(rkl) is the partition function for
normalization. Here (yj − yi)/rij denotes the unit vector of
attractive force. It is found that attractive force is greater than
repulsive force whenever pij > qij and vice versa so that the
system seeks for the equilibrium when pij ≡ qij, which meets
our intuition for the manifold learning [40], [41]. Notably, the
joint distribution pij of original data {xi, xj} only affects the

attractive force rather than repulsive force. Repulsive force
behaves like a global effect.

For the proposed generalizations in Sec. III-B, the gradient
can be analytically computed by Eqs. (6), (8), (9), (10), (11),
and (17) in a form of

∂L
∂yi

=
2
Z

∑
j

q̇(rij)f ′

(
qij
pij

)(
yi − yj
rij

)

−
2
Z2

∑
k ̸=l

f ′

Å
qkl
pkl

ã
q(rkl)

∑
j

q̇(rij)
(
yi − yj
rij

)
+

1
2Z

∑
k ̸=l

q̇(rkl)f ′

Å
qkl
pkl

ã
(∇yir)(yk , yl)

rkl

−
1

2Z2

∑
m̸=n

f ′

Å
qmn
pmn

ã
q(rmn)


∑
k ̸=l

q̇(rkl)
(∇yir)(yk , yl)

rkl

 (19)

where f ′(t) =
d
dt f (t) and Z =

∑
k ̸=l q(rkl) and

(∇yir)(yk , yl) =

∑
m̸=n

Å
∂gmn
∂yi

ã
(ykm − ylm) (ykn − yln) .

In the usual implementation where the Euclidean inner
product as the Kronecker delta function gnm = δnm is
considered, Eq. (19) can be simplified as

∂L
∂yi

=
2
Z

∑
j

q̇(rij)f ′

(
qij
pij

)(
yi − yj
rij

)

−
2
Z2

∑
k ̸=l

f ′

Å
qkl
pkl

ã
q(rkl)

∑
j

q̇(rij)
(
yi − yj
rij

) .

(20)

The effect of divergence measures can then be observed
succinctly here. Furthermore, using α-divergence as given in
Eq. (14), the gradient in Eq. (20) becomes

∂L
∂yi

=
4

(1 − α)Z

∑
j

q̇(rij)

(
1 −

(
qij
pij

) α−1
2
)(

yi − yj
rij

)

−
4

(1 − α)Z2

∑
k ̸=l

(
1 −

Å
qkl
pkl

ã α−1
2

)
q(rkl)


×

∑
j

q̇(rij)
(
yi − yj
rij

) . (21)

It can be seen that the force composition can be complicated
in general. However, when the special case using KL-
divergence α = −1 is adopted, the resulting g-SNE reveals
that

∂L
∂yi

= 2
∑
j

pij
q̇(rij)
q(rij)

(
yj − yi
rij

)
−

2
Z

∑
j

q̇(rij)
(
yj − yi
rij

)
.

(22)
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TABLE 1. Comparison of the attractive and repulsive forces of various
SNEs, when considering the special case of gnm = δnm and α = −1.

A few more properties can be observed here. First,
in Eq. (22), the first term is the attractive force, and the
second term is the repulsive force since q̇(rij) < 0. Second,
only attractive force is coupled to pij. Namely, only attraction
is related to the raw data affinity pij while the repulsion is
universal, which does not concern data {xi} at all. Third,
Eq. (22) depicts that the attraction is proportional to the
decay rate of the target similarity q̇ij since pij is fixed.
In fact, it is determined by q̇(rij)/q(rij) =

d
dr log q(rij) <

0, which is generally weak in magnitude since log q(rij) is
involved. Therefore, qualitatively choosing a fast-decaying
target similarity will increase the latent particle force for
separation. Fourth, the proposed g-SNE in Eq. (19) is not
restricted to the α-divergence. The other divergences can
also be applied, such as the χ2-divergence by letting f (t) =

(t − 1)2.

A. COMPARISON BETWEEN SNES
We can utilize Eq. (21) as a comprehensive tool to compare
the following four realizations of SNE.

F sne
i = 4

∑
j

ï
pijrij −

1
Z
rij exp (−r2ij)

ò(yj − yi
rij

)
(23)

F t-snei = 4
∑
j

[
pijrij
1 + r2ij

−
1
Z

rij
(1 + r2ij)

2

](
yj − yi
rij

)
(24)

Fp-snei = 2
∑
j

βpij
rij

−
1
Z

β

rβ+1
ij

(yj − yi
rij

)
(25)

Fg-snei = 2
∑
j

pijβrβ−1
ij

η + rβ
ij

−
1
Z

βrβ−1
ij

(η + rβ
ij )

2

(yj − yi
rij

)
.

(26)

B. DISCUSSION ON THE EXTENSION OF DISTRIBUTIONS
The calculations provide comparisons between SNEs from
the perspective of forces. Table 1 contrasts the analytical
forms of attractive and repulsive forces among four SNEs.
Observing the repulsive force of SNE and t-SNE, it is found
that the repulsive force of t-SNE has polynomial decays
while rij increases, contrasting the exponential decays of
the traditional SNE. The persistent repulsive force leads to
improved cluster separation while reaching the equilibrium.
From the perspective of attractive and repulsive forces, we see

FIGURE 3. Magnitudes of (a) the attractive forces and (b) the repulsive
forces versus latent distance rij (horizontal axis) for SNE, t-SNE, p-SNE,
and g-SNE with β = 2, η = 0.25.

that t-SNE mitigates the crowding problem by increasing
repulsion to those lower-dimensional particles Y = {yi}.
p-SNE and g-SNE both possess polynomial decay as

t-SNE to keep favorable characteristics for clustering.
In addition, the hyperparameter β adjusts the strength of
polynomial decay in p-SNE and g-SNE. When β = 2, the
decay rate of p-SNE and g-SNE are the same as that of t-
SNE. As β decreases, the decay rate of the repulsive force
decreases, which results in stronger repulsive forces for large
rij.

The behavior of attractive force, on the other hand,
is different among t-SNE, p-SNE, and g-SNE. As rij
decreases, the attractive force by t-SNE converges to zero,
while p-SNE diverges to infinity. A strong attractive force
may encourage the clustering effect, but the divergence may
be harmful for reaching equilibrium and could result in
instability. The design of g-SNE possesses the convergence
around small rij for stability and, at the same time, introduces
the parameter η to control the power of attractive forces.
Due to the strong-force motions that lead to widely separated
particles of different affinities, the crowding problem in g-
SNE can be substantially mitigated.

The choices of hyperparameters for data visualization can
be assisted with the understanding from the perspective of
the forces. Figures 9 and 10 show the clustering effect of
the hyperparameters β and η. Ideal clustering is expected
to attract high-similarity samples (small rij) and repulse
those with low similarities (large rij). The hyperparameter β

controls the decay rate of repulsive forces as rij increases.
As β increases, the repulsive force decays faster, which
results in weaker repulsive forces between low-similarity
samples. On the other hand, η connects to the strength
of forces for sample pairs. As η decreases, the strength
increases, which leads to better cluster separations.

C. DISCUSSION ON THE EXTENSION OF DIVERGENCE
MEASURES
As smaller (or more negative) α in divergence measure
Eq. (14) yields higher costs Lα(P,Q) as shown in Table 3,
the target probability Q is forced to get closer to the original
data distribution P to result in loose clustering results such as
the right most subfigures in Figs. 12 and 13. This illuminates
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that total recovery of P byQmay not always be desired in the
compressed dimension. Instead, allowingQ to deviate from P
slightly provides wiggle room for latent samples to mitigate
the crowding problem. The experimental results from this
study suggest that a slight probability distortion improves the
clustering effects in lower dimensions.

Considering the cases of larger α, the sensitivity to
probability measure is then weakened to reflect flexibility
on the latent points yi of qij so that attractive and repulsive
forces have more freedom to move latent particles without
causing considerable variation in the loss function. This
result justifies why larger α provides wider separation and
more compact clustering. Consequently, one can tune α to
adjust the divergence measure and sensitivity of similarity for
the dataset to be learned in an unsupervised manner. In an
illuminating example in Fig. 14(a), one may adjust proper α

to unravel the entangled map in SNE with α = −1 (Fig. 4(a))
such that this method has the potential to further reduce the
crowding problem like t-SNE. Thus, from this example, one
observes that the crowding problem does not solely result
from the probability distribution but also from the divergence
measure.

V. CONNECTION WITH SPHERICAL SNE
Our discussion below explores the connection between the
spherical SNE (denoted by s-SNE) [24] and the g-SNE.
The s-SNE maps the Gaussian probability P = {pij} of
flat geometry M = RD in Eq. (1) to the exit distribution
Q = {qij} of Eq. (5) on a sphere N = Sd−1.
The latentmapY = {yi ∈ Sd−1

} is obtained byminimizing
the KL divergence

Ls-sne =

∑
i

∑
j

pij log
(
pij
qij

)
+

∑
i

λi

Ä
1 − ∥yi∥2

ä
(27)

where the spherical constraint is imposed by Lagrange
multiplier λi ∈ R. Then, the gradient of Eq. (27) is given
by

∂Ls-sne
∂yi

= d
∑
j

pij

Ç
yi − ρyj

∥yi − ρyj∥2
+ ρ

ρyi − yj
∥yj − ρyi∥2

å
+d

Ñ
ρ

∑
j

qij
yj −ρyi

∥yj − ρyi∥2
−

∑
j

qji
yi − ρyj

∥yi − ρyj∥2

é
− 2λiyi. (28)

The detailed derivation from Eq. (27) to (28) can be found in
Appendix A.

We note that when ρ → 1, we let ρ = 1 − ϵ with
ϵ → 0+ and the first two terms on the right-hand-side of
Eq. (28) can be decomposed by Taylor series with respect to
ϵ at reasonable distance rij = ∥yi − yj∥ ≫ ϵ

yi − ρyj
||yi − ρyj||2

=
1

r2ij

[
(yi − yj) + ϵyj −

2ϵ

r2ij
×⟨yj, yi − yj⟩(yi − yj)

]
+O(ϵ2) (29)

FIGURE 4. A visualization of MNIST digits in four SNEs. The proposed
g-SNE shows a map with tighter and more widespread grouping.

FIGURE 5. A visualization of COIL-20 dataset in four SNEs.

ρ
ρyi − yj

||yj − ρyi||2
=

1 − ϵ

r2ij

[
(yi − yj) − ϵyi +

2ϵ

r2ij
×⟨yi, yi − yj⟩(yi − yj)

]
+O(ϵ3) (30)

whereO(ϵk ) denotes the k th-order term of ϵ and beyond. The
other two terms of Eq. (28) can be similarly decomposed so
that collectively we have

F s-snei = −
∂Ls-sne

∂yi

= 2 d
∑
j

1
rij

(
pij − qij

)(yj − yi
rij

)
+ 2λiyi +O(ϵ1).

(31)
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FIGURE 6. Davies-Bouldin indices of SNE, s-SNE, t-SNE and g-SNE (from left to right) in MNIST corresponding to
Fig. 4. The true class number is 10.

FIGURE 7. Davies-Bouldin indices of SNE, s-SNE, t-SNE and g-SNE (from left to right) in COIL-20 corresponding to
Fig. 5. The true class number is 20.

FIGURE 8. [Left] t-SNE v.s. [right] g-SNE (β = 2.2) for clustering of 500 MNIST images of digit ‘‘6’’ only. Auxiliary green lines
show the natural separation of different writing styles. It is noticed in g-SNE, for instance, that the curly ‘‘6’’ are mostly
confined at the upper-left corner, while the slanted ones are on the lower-right corner.

Comparing Eq. (31) with Eq. (25), we recognize that the
leading term of the force (gradient) of s-SNE and p-SNE are
identical when latent samples are close. This shows that s-
SNE has a similar gradient force behavior as the p-SNE, i.e.,
g-SNE of η → 0.

VI. EXPERIMENTS
A. EXPERIMENTAL SETUP
Experiments are conducted to investigate the effect of
dimensionality reduction on three datasets: the MNIST
handwritten digits [42], the COIL-20 objects [43], and the
Olivetti faces [8]. The MNIST dataset has 60,000 training
images of 10 handwritten digits, each of which is an image of
28 × 28 pixels. The COIL-20 dataset contains 1,440 images
of 20 different objects, each of which was snapshotted in
72 angles equally sampled among 360◦. The image size is
128 × 128. The Olivetti faces dataset comprises 400 images

from 40 distinct persons, each of which has 10 facial
variations from viewpoints or expressions. The image size is
64 × 64.
The proposed method is implemented by PyTorch with

GPU support available at https://github.com/
hsinyilin19/generalizedSNE. During the SNE learning, the
PCA whitening process is applied to all datasets to reduce
to 50 dimensions such that some noises are suppressed with
most data structures retained. Subsequently, different SNEs
are performed to reduce the dimension from D = 50 to
d = 2 for visualization. Latent variables yi are randomly
initialized in a bounded disk centered at zero. In MNIST,
6,000 images among 10 digits were randomly selected for
evaluation. Different classes of digits, objects, and faces are
shown in different colors. The experiments compare several
SNE methods including SNE [7], t-SNE [8], s-SNE [24] and
the proposed g-SNE with the realization using α-divergence.
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FIGURE 9. Comparison of g-SNE on β = 1.5, 1.8, 2, 2.5, 3 (from left to right) in MNIST with fixed divergence α = −1.

FIGURE 10. Comparison of g-SNE on η = 5, 1, 0.1, 0.075 (from left to right) on MNIST with fixed α = −0.5 and β = 3.

FIGURE 11. Comparison of g-SNE on β = 1.5, 1.8, 2, 2.5, 3 (from left to right) in COIL-20 with fixed divergence α = −1.

B. EXPERIMENTAL RESULTS
1) COMPARISON OF DIFFERENT SNES
Fig. 4 displays the latent maps of different SNEs on
MNIST under KL divergence where the crowding problem
is accompanied by dimensionality reduction from D =

50 to d = 2. The SNE (as shown in Fig. 4(a))
obviously suffers more from the problem where 10 digits
in different colors can be confusing in a two-dimensional
representation. As one uses the other SNEs with stronger
attractive and repulsive forces, such as t-SNE, the
clustering effect for visualization becomes more clear.
Fig. 4(c) on MNIST and Fig. 5(c) on COIL-20 show this
property.

For s-SNE, the clustering effect significantly improves
when ρ → 1 as in Fig. 4(b) and 5(b). As analyzed above, s-
SNE is locally indistinguishable due to the property of power-
law behavior.

In the experiments, the proposed g-SNE is observed to
result in a clear separation between different groups in
MNIST and COIL-20, Fig. 4(d) and 5(d), respectively, when
compared with t-SNE and s-SNE. Distinct objects are also
expelled far apart from one another due to the strong forces
resulting from the distribution function. Ideally, each object
in COIL-20 should shrink to a tiny circle as depicted by t-
SNE and g-SNE in Fig. 5, while the SNE, on the contrary, has
multiple objects overlapped and non-separated in Fig. 5(a).

Two scores are used to evaluate the performance of a
dimension reduction map. The clustering performance may
be measured by the Davies-Bouldin index (DBI) [44] as
shown in Fig. 6 and 7, where the lowest DBI is given
by g-SNE to approximate the true number of classes. The
grouping accuracy is measured by the generalization error of
one nearest neighbor (1)-NN) with 10-fold cross-validation
applied. Table 2 indicates that g-SNE and t-SNE outperform
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FIGURE 12. Comparison of SNE with the Student-t distribution under different divergences α = 0, −0.5, −1.5, −2 (from left to
right) on MNIST. α = −1 (KL divergence) was given in Fig. 4(b).

FIGURE 13. Comparison of g-SNE under different divergences α = −0.8,−1.2, −1.5, −2 (from left to right) on MNIST with fixed
β = 2.

FIGURE 14. Illustration of symmetric SNE with different α may unravel
entangled samples (6,000 MNIST images) in the latent space. Fig. 4(a) of
α = −1 (KL divergence) should be included for comparison here.

SNE and s-SNE in different datasets and conditions. The
proposed g-SNE performs better than t-SNE for most cases
in Table 2.
We further conduct a separate experiment on single-digit

images of MNIST to visualize the clustering effect. Fig. 8
illustrates the map of 500 samples with digit ‘‘6’’ only, where
g-SNE (β = 2.2) is used to plot against t-SNE. One notices
that there exist spatial divisions that naturally distinguish
several hand-writing styles of ‘‘6’’, as shown by auxiliary
green lines. This is also believed to be a consequence of
strong forces that attract (resp. expel) similar (resp. distinct)
handwriting. However, such a phenomenon is less clear
in the case of t-SNE. Next, we further analyze the effect
of g-SNE.

TABLE 2. Comparison of error rates by using 1-NN classifier with 10-fold
cross-validation. ρ = 0.95 and β = 2 was used for s-SNE and g-SNE,
respectively.

2) EVALUATION OF G-SNE
By varying the exponent β of the target similarity q(rij) =

1/(η + rβ
ij ), one derives different embeddings. As shown

in Fig. 9 on MNIST and Fig. 11 on COIL-20, smaller β

gives tighter clustering while larger β shows bigger blobs
but yields consistent grouping effect. This can be understood
from Eq. (26) since the attractive force increases linearly with
β for fixed pij and rij while the repulsion has exponential
growth (or decay) when two latent particles yi and yj are
close rij → 0 (or far apart rij ≫ 1). Consequently, slightly
dis-similar objects tend to be expelled easily under large β,
making it hard to form compact clustering. Empirical range
β ∈ [1.5, 3] typically yields stable numerical convergence.
Slight differences exist for different datasets.

The effect of parameter η can be observed from Fig. 10.
As η decreases, the cluster separation effect grows stronger.
Fig. 10 shows the distinction between the t-SNE (η = 1) and
the p-SNE (η → 0). It was observed that the introduction of
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FIGURE 15. t-SNE (upper 4 figures) v.s. g-SNE (lower 4 figures) under various sample sizes in MNIST, N = 1K , 3K , 10K , 14K (from
left to right) with α = −1 (KL divergence).

η grants the g-SNE more stability than the p-SNE. Increased
stability of g-SNE enlarges the viable range of parameters
such as β, and thus more flexibility can be ensured.

3) EVALUATION OF DIVERGENCE MEASURES
To observe how divergences affect the dimensionality reduc-
tion behavior, we utilize the proposed g-SNE with different
α-divergence to view the corresponding change. Fig. 12
demonstrates the effect of different α on t-SNE, while Fig. 13
shows how α adjusts the g-SNE map. Although theoretically
positive α > 0 is possible, our empirical study shows that
α ≤ 0 is more numerically viable.

Both Fig. 12 and 13 suggest that larger α achieves
better separation between distinct clusters. A qualitative
explanation is that smaller (more negative) α requires higher
conformity between two probabilities pij and qij. Thus the
latent distribution qij of either t-SNE or g-SNE is forced to
approach the original pij in order tominimize the loss function
Eq. (6), where in this case pij is the Gaussian with wider
support. Since a smaller α is sensitive to the difference of
distributions, it leads to wide-spread clusters as in the case
of α = −2. A numerical illustration in Table 3 exemplifies
this assertion.

On the other hand, larger α may weaken the sensitivity to
the difference of pij and qij so that attractive and repulsive
forces have more freedom to move latent particles yi without
increasing loss values. Thus, more flexibility can be acquired
to derive wider separation and compact clustering under
larger α. Consequently, tuning both α and β allows us to
adjust the divergence measure and sensitivity of similarity
depending on tasks. An illuminating example Fig. 14 shows
that adjusting a proper α unravels an entangled map from
Fig. 4(a) to Fig. 14(a) and (b) under the same SNE. This
suggests that the other SNEmethods also have the potential to

TABLE 3. Numerical values of Lα(P, Q) computed by Eq. (6), (14) with an
example p(rij ) = exp (−r2

ij /30), q(rij ) = 1/(1 + r2
ij ). Observe that Lα(P, Q)

increases with decreasing α, where α = 0, −1 corresponds to the
Hellinger and the KL divergence, respectively.

FIGURE 16. Visualization of Olivetti faces using t-SNE and the proposed
g-SNE with α = −0.8 and β = 2.2.

reduce the crowding problem, just like t-SNE. This example
also reveals that the crowding problemmay be alleviated from
the perspective of a probability distribution or a divergence
measure.
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FIGURE 17. Visualization of Olivetti faces represented by g-SNE corresponding to Fig. 16(b).

4) EVALUATION OF VARIOUS SAMPLE SIZES
We also study the effect of g-SNE under various sample
sizes using MNIST. Fig. 15 shows that g-SNE driven by the
strong forces in general provides good clustering effects even
when samples are few (e.g., N = 1K ). As the sample size
grows, reduction maps of both t-SNE and g-SNE acquire
better representation, such as lower classification error and
lower DBI. However, it is also known that for large datasets,
SNE techniques soon become numerically intense due to
the complexity O(N 2) for a dataset of N samples. Some
possible modifications of SNE for large data were via the use
of random walk-based similarities [8] or adaptations of the
quad-tree approximation [45].
In the final, we compare the visualization of Olivetti faces

using t-SNE and the g-SNE with α = −0.8 and β = 2.2 in
Fig. 16. The face images corresponding to the proposed

method are shown in Fig. 17, where the faces of distinct
persons are clearly separated.

VII. CONCLUSION
This study developed a generalized stochastic neighbor
embedding approach. By setting off from general conditions
on Riemannian manifolds (M, h, d) and (N , g, r) equipped
with flexible probability distributions {pij} and {qij} and
an arbitrary α-divergence function Dfα , a comprehensive
analysis for the stochastic neighbor embedding was derived.
The generalized SNE not only unified several SNEs but also
revealed intrinsic properties of dimensionality reductions.
Moreover, a connection between mathematics and physics
was established. The mechanism accounting for the cluster-
ing effect was fully determined by the geometric elements
given above. The attractive and repulsive force correspon-
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dence characterized the dynamics of latent variables as
mechanical particles in the lower dimension.

By analyzing our general formulation, a new method g-
SNE was further conceived to incorporate favorable charac-
teristics for flexibility and proposed to enhance the clustering
performance. Extensive experiments were further conducted
to investigate the effects of g-SNE. Overall, observations
showed that the proposed generalizations provided higher
flexibility by appropriate combinations of (α, β, η), and the
proposed g-SNE offered strengthened clustering results.

APPENDIX A THE DERIVATION FROM EQ. (27) TO (28)
Lemma 1: For any vectors yi, yj, yk ∈ Rs, we have

∂
∂yi

⟨yj, yk ⟩ := ∇yi⟨yj, yk ⟩ = δijyk + δikyj.
Proof: Let yi =

∑
α yiα eα where {eα ∈ Rs

} is a
chosen coordinate basis and yiα ∈ R1 are the corresponding
coefficients. Similarly, we expand yj =

∑
β yjβ eβ and yk =∑

γ ykγ eγ in terms of the basis with yjβ , ykγ ∈ R1. Since the
gradient is defined by ∇yi =

∑
α eα

∂
∂yiα

, we have

∇yi⟨yj, yk ⟩ :=

∑
α

eα

∂

∂yiα
⟨yj, yk ⟩ (32)

=

∑
α

eα

∂

∂yiα

Ñ∑
β

yjβ ykβ

é
(33)

=

∑
α

eα

Ñ∑
β

(
δij δαβ ykβ + yjβ δikδαβ

)é
(34)

=

∑
α

eα

(
δijykα + δikyjα

)
= δijyk + δikyj (35)

where δij, δαβ , etc denote the standard Kronecker delta
functions and the usual 1-dimensional calculus is applied
from (33) to (34). □
Lemma 2: ∇yi ||yk − ρ yj||2 = 2

(
yk − ρ yj

) (
δik − ρ δij

)
.

proof: As ∇yi ||yk − ρ yj||2 = ∇yi⟨yk − ρ yj, yk − ρ yj⟩,
similar calculations to Lemma 1 lead to the conclusion. □
Lemma 3: For a differentiable real-valued function f :

R+
→ R, we have ∇yi f (||yk − ρ yj||2) = 2 f ′(||yk −

ρ yj||)
(
yk − ρ yj

) (
δik − ρ δij

)
.

Proof: Let z = ||yk − ρ yj||2 and

∇yi f (||yk − ρ yj||2) =

∑
α

eα

∂

∂yiα
f (z)

=

∑
α

eα

∂f (z)
∂z

∣∣∣∣
z=||yk−ρ yj||2

·
∂z

∂yiα

=
∂f (z)
∂z

∣∣∣∣
z=||yk−ρ yj||2

·

(∑
α

eα

∂z
∂yiα

)
︸ ︷︷ ︸

∇yi ||yk−ρ yj||2

□
Lemma 4: ∇yi ||yk−ρ yj||−d = −

d(yk−ρ yj)
||yk−ρ yj||d+2

(
δik − ρ δij

)
.

Proof: Apply Lemma 3 with a special case f (z) = z−d/2.□

Lemma 5: ∇yi

Ä∑
m̸=n ||ym−ρ yn||−d

ä
= −d

∑
m̸=i ||yi−

ρ ym||
−d−2 (yi−ρ ym)+dρ

∑
m̸=i||ym−ρyi||−d−2 (ym−ρyi).

Proof: Apply Lemmas 2, 3 and 4 to obtain the result. □
Next, we compute ∂

∂yi
Ls-sne withLs-sne defined by Eq. (27).

Since
∑

jk pjk log pjk has no relationwith the lower dimension
coordinate y, i.e. ∂

∂yi
(
∑

jk pjk log pjk ) ≡ 0, we have

∂

∂yi
Ls-sne

= −∇yi

Ñ∑
jk

pjk log qjk

é
− 2λi yi (36)

= −

∑
jk

pjk
qjk

(
∇yiqjk

)
− 2λi yi (37)

= −

∑
jk

pjk
qjk

Ç
∇yi ||yk − ρ yj||−d∑
m̸=n ||ym − ρ yn||−d

(38)

−

||yk − ρ yj||−d∇yi

Ä∑
m̸=n ||ym − ρ yn||−d

äÄ∑
m̸=n ||ym − ρ yn||−d

ä2 é
− 2λi yi

(39)

where the definition of qjk in Eq. (5) is used to obtain the
last equality. Then, two major terms in Eq. (38),(39) can be
computed separately, where the first term in Eq. (38),

−

∑
jk

pjk
qjk

Ç
∇yi ||yk − ρ yj||−d∑
m̸=n ||ym − ρ yn||−d

å
(40)

= −

∑
jk

pjk
qjk

−d ||yk − ρ yj||−d−2 (yk − ρ yj
) (

δik − ρ δij
)∑

m̸=n ||ym − ρ yn||−d

(41)

= d
∑
j

pji
qji

||yi − ρ yj||−d−2 (yi − ρ yj
)∑

m̸=n ||ym − ρyn||−d
(42)

−dρ
∑
k

pik
qik

||yk − ρ yi||−d−2 (yk − ρ yi)∑
m̸=n ||ym − ρyn||−d

(43)

= d
∑
j

pji

ZZqji
ZZqji(yi − ρ yj)
||yi − ρ yj||2

− dρ
∑
k

pik
HHqik

HHqik · (yk − ρ yi)
||yk − ρ yi||2

(44)

= d
∑
j

pij

(
yi − ρ yj

||yi − ρ yj||2
− ρ

yj − ρ yi
||yj − ρ yi||2

)
(45)

where Lemma 4 is applied in Eq. (40) to get Eq. (41) and
using definition in Eq. (5) to derive Eq. (44) from Eq. (43).
Finally, by arranging the index in Eq. (44) and using the
symmetry pij = pji, Eq. (45) yields the first two terms of
Eq. (28). For the term in Eq. (39):

∑
jk

pjk
qjk

·

||yk − ρ yj||−d · ∇yi

Ä∑
m̸=n ||ym − ρ yn||−d

äÄ∑
m̸=n ||ym − ρ yn||−d

ä2
(46)
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=

∑
jk

pjk

ZZqjk
·
ZZqjk · ∇yi

Ä∑
m̸=n ||ym − ρ yn||−d

ä∑
m̸=n ||ym − ρ yn||−d

(47)

=

Ñ∑
jk

pjk

é
︸ ︷︷ ︸

1

·

∇yi

Ä∑
m̸=n ||ym − ρ yn||−d

ä∑
m̸=n ||ym − ρ yn||−d

(48)

= −d

∑
m̸=i ||yi − ρ ym||

−d−2 (yi − ρ ym)∑
m̸=n ||ym − ρ yn||−d

(49)

+ dρ

∑
m̸=i ||ym − ρ yi||−d−2 (ym − ρ yi)∑

m̸=n ||ym − ρ yn||−d
(50)

= −d
∑
m̸=i

qmi
yi − ρ ym

||yi − ρ ym||2
+ dρ

∑
m̸=i

qim
ym − ρ yi

||ym − ρ yi||2

(51)

where again the definition of qjk in Eq. (5) is applied in
Eq. (46) to obtain Eq. (47). We notice that the summation
over j, k in Eq. (47) is only on pjk , no other terms involved.
Consequently, by definition, the probability pjk sums up to
1 to derive Eq. (48). Simply applying Lemma 5 on Eq. (48)
gets to Eq. (50) and subsequently using the definition in
Eq. (5) arrives at Eq. (51). Combining Eq. (45) and Eq. (51)
concludes the proof of Eq. (28).
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