IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 2 June 2024, accepted 23 June 2024, date of publication 28 June 2024, date of current version 8 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3420395

== RESEARCH ARTICLE

RLISR: A Deep Reinforcement Learning Based
Interactive Service Recommendation Model

MINGWEI ZHANG ™, YINGJIE QU -, YAGE LI, XINGYU WEN -, AND Yl ZHOU

Software College, Northeastern University, Shenyang 110169, China
Corresponding authors: Mingwei Zhang (zhangmw @swc.neu.edu.cn) and Yingjie Qu (quyj814@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61572117.

ABSTRACT An increasing number of services are being offered online, which leads to great difficulties in
selecting appropriate services during mashup development. There have been many service recommendation
studies and achieved remarkable results to alleviate the issue of service selection challenge. However, they
are limited to suggesting services only for a single round or the next round, and ignore the interactive nature
in real-world service recommendation scenarios. As a result, existing methods can’t capture developers’
shifting requirements and obtain the long-term optimal recommendation performance over the whole
recommendation process. In this paper, we propose a deep reinforcement learning based interactive service
recommendation model (RLISR) to tackle this problem. Specifically, we formulate interaction service
recommendation as a multi-round decision-making process, and design a reinforcement learning framework
to enable the interactions between mashup developers and service recommender systems. First, we propose
a knowledge-graph-based state representation modeling method, wherein we consider both the positive and
negative feedbacks of developers. Then, we design an informative reward function from the perspective of
boosting recommendation accuracy and reducing the number of recommendation rounds. Finally, we adopt a
cascading Q-networks model to cope with the enormous combinational candidate space and learn an optimal
recommendation policy. Extensive experiments conducted on a real-world dataset validate the effectiveness
of the proposed approach compared to the state-of-the-art service recommendation approaches.

INDEX TERMS Service recommendation, interactive recommender systems, reinforcement learning,
knowledge graph, mashup creation.

I. INTRODUCTION
As a result of the fast development of service-oriented
computing (SOC) technologies, the quantity and diversity
of Web APIs (also called services in this paper) have been
growing rapidly. By taking advantages of existing Web APIs,
Mashups offer a way to create completely new and innovative
services in an agile manner and to substantially accelerate
the development circle of Web applications [1]. However, the
enormous number of Web APIs makes it increasingly difficult
for mashup developers to quickly and accurately find desired
ones. To relieve this difficulty, researchers have proposed
powerful service recommendation methods [2], [3], [4] in the
past decade.

Although conventional service recommender systems have
shown their effectiveness in solving the issue of information

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhangbing Zhou

overload, they treat service recommendation as a one-round
prediction task and ignore the interactions between mashup
developers and recommender systems, leading to unsatisfied
recommendation results and bad user experience. For exam-
ple, after a developer inputs the requirement description of
the mashup to be developed, the recommender will generate
top-K recommendation list. Even when there is no required
Web API in the list, the conventional recommender won’t
take further action. In this not uncommon circumstance, the
recommender doesn’t work to relieve the burden of API selec-
tion for mashup developers. This motivates the development
of an interactive service recommender system in our work,
which encourages developer-recommender interactions to
help developers find their required APIs efficiently.
Interactive Service Recommendation (ISR) is formu-
lated as a multi-round decision-making process. In each
round, the recommender delivers a list of APIs to
the developer and will receive feedbacks from her/him

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

90204

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0002-8106-9653
https://orcid.org/0009-0001-8023-1065
https://orcid.org/0009-0008-2577-7429
https://orcid.org/0009-0009-8722-160X
https://orcid.org/0009-0000-3404-5758
https://orcid.org/0000-0002-3195-2253

M. Zhang et al.: Deep Reinforcement Learning Based Interactive Service Recommendation Model

IEEE Access

(i.e., the developer selects each recommended API or not),
according to which the recommender subsequently derives
the next recommendation decision in a sequential manner.
The recommendation-feedback interaction is repeated until
the end of this visit session of the developer. Taking an
“itinerary planning” mashup as an example, when the
developer selects one service— Google Maps from the first
round recommendation list, the developer’s requirements are
shifting and don’t need map services anymore. Then, the
recommender should not recommend additional map services
(e.g., Microsoft Bing Maps), but other types of services
(e.g., weather report services or hotel booking services) in
the second round recommendation list. The goal of ISR is
to explore developers’ dynamic requirements, as well as
to exploit the learned mashup profiles, to provide accurate
service prediction, so as to optimize the outcome of the entire
recommendation sequence.

The most similar works to ours are three recent models:
HISR [5], DINRec [6] and iSRec [7]. They all do the
next-round service recommendation, i.e., given the target
mashup to be developed and some selected services, they
make one-round prediction to recommend the following
services. Although they can capture developers’ shifting
requirements to some extent, they only pay attention to
the performance of the current round recommendation.
For example, they don’t consider the issue that they will
generate the same ranking list when the current top-K rec-
ommendation list contains no ground-truth services. In such
circumstance, the received feedbacks that the recommended
services in current round are not required by the developer
provide useful information that can help the recommender
make better recommendations in later rounds. The existing
next-round service recommendation approaches ignore the
important influences from current round to later ones, and
can merely provide locally optimal recommendations for
each round. Instead, a more desired approach should focus
on learning a globally optimal recommender taking all
interaction rounds as a whole.

To capture developers’ dynamic requirements and maxi-
mize the long-term performance over all interaction rounds,
we propose a deep Reinforcement Learning based Interactive
Service Recommendation model (RLISR). Specifically,
we formulate the problem of interactive service recommen-
dation as a Markov Decision Process (MDP) and design a
Reinforcement Learning (RL) framework with three main
components (i.e., state representation, reward setting and pol-
icy learning) to solve this problem. To obtain an informative
state representation, we first construct a Knowledge Graph
(KG) to effectively organize and make full use of related
information of mashups and APIs, then propose a KG-based
state representation learning method by integratedly utilizing
the constructed KG, the contents of Web APIs and the
historical interactions between the mashup developer and
the recommender system. We also consider the positive and
negative feedbacks at the same time to guarantee that the rec-
ommender can generate a new reasonable recommendation

VOLUME 12, 2024

list for the next round even if there is no required services in
the current round recommendation list. After that, we design
a reward function which comprises ID-based reward signals
to encourage the recommender to generate required APIs
as accurate as possible and round-based reward signals to
prompt the recommender to reduce the number of rounds
to complete the whole recommendation. Next, we adopt a
cascading Q-networks model to cope with the enormous
combinatorial action space and learn an optimal policy to
generate a recommendation list. Finally, we validate the
effectiveness of our approach by comprehensive experimental
results and analysis.

The contributions of our work can be summarized as
follows:

« We provide an in-depth analysis of the issue of interac-
tive service recommendation that have not been suffi-
ciently discussed. Unlike existing service recommenda-
tion models that only pay attention to the performance
of the single round or the next round, we formulate ISR
as a multi-round decision-making process and model its
target as maximizing the long-term performance of the
whole recommendation process.

o« We propose a RL-based interactive service recom-
mendation model, which features a KG-based state
representation component, an ID-based accuracy and
round number sensitive reward function and a cascading
Q-networks model based policy learning algorithm.
To the best of our knowledge, this is the first effort
to leverage deep RL to provide interaction ability for
service recommender systems to boost the efficiency of
mashup development.

« We conduct extensive experiments on a real-word
dataset from ProgrammableWeb. The comparative
results demonstrate that our approach achieves higher
performance compared to the state-of-the-art service
recommendation models.

The remainder of this paper is organized as follows.
Section II introduces the related works. In Section III,
we formulate the research problem. Section IV presents the
proposed RLISR framework in detail. Section V describes
the experimental settings, results and analysis. Section VI
concludes this paper and proposes the future work.

Il. RELATED WORK
Here we briefly review related work on two topics: service
recommendation and interactive recommendation.

A. SERVICE RECOMMENDATION
Service recommendation for mashup development has been
extensively studied. According to whether there are already
some selected services or not, we divide existing service
recommendation approaches into two types, i.e., single-
round service recommendation and next round service
recommendation.

Most service recommendation models are single-round
ones, that only predict a top-K recommendation list once.

90205

IEEE Access

M. Zhang et al.: Deep Reinforcement Learning Based Interactive Service Recommendation Model

These methods can further be divided into three categories
based on the information used: content-based, collabora-
tive filtering (CF) based, and hybrid service recommen-
dation models. Content-based service recommendation
approaches typically make recommendations by measuring
the similarity of the contents between mashups and services.
Early studies used keyword-based approaches such as Word-
Net [8] and the vector space model [9] to match mashups
and services. Although these methods are easy to implement,
they can’t really understand the semantics and recommend
semantically relevant services. Therefore, Li et al. [10], and
Zhong et al. [11] used topic modeling to explore the semantic
relationships between mashups and services, and bridge
the vocabulary gap between mashup developers and service
providers. Shi et al. [12] proposed a text expansion and deep-
model-based approach to deal with the data sparsity and
vocabulary gap problem through expanding the description
content at sentence level. To sum up, content-based service
recommendation methods have relatively low performance
for the limitation of textual and semantic similarities.
CF-based service recommendation methods generally
recommend the services used by the mashups which are
most similar to the target mashup. Wu et al. [13] proposed
a ratio-based method which get the similarity between devel-
opers or between services by comparing the attribute values
directly. Zou et al. [14] integrated mashup-based and service-
based similarity information into a singleton collaborative
filtering algorithm and removed mashups/services dissimilar
to the target mashup/service. Cao et al. [15] exploited
the implicit co-invocation relationship between services
to recommend diverse services for each mashup clusters.
Nevertheless, CF-based methods can’t guarantee that all
services used by the most similar mashups can meet the target
mashup’s requirements. Hybrid service recommendation
approaches integrate content and historical interaction
information to make recommendations. Yao et al. [16]
proposed a novel approach which considered simultaneously
both rating data and semantic content data of web services
by using a probabilistic generative model. Xiong et al.
[17] designed a framework, in which invocation interactions
between mashups and services as well as their functionalities
are seamlessly integrated into a deep neural network to
characterize the complex relations between mashups and
services. Botangen et al. [18] proposed a method for data
expansion of the matrix decomposition recommendation
model using geographical location information and function
description. Nguyen et al. [19] proposed an attentional PMF
model that mines the relationship between services from
both their contextual similarities and invocation history.
Generally, hybrid methods achieve higher recommendation
performance compared with the aforementioned two kinds
of methods. There are many other classic works not listed
here due to space limitation. Overall, single-round service
recommendation models only recommend services once for
a new mashup requirement regardless of the precision and
recall of their recommendation results. This makes them

90206

inefficient to help developers select required services or even
useless in the not uncommon circumstance that there is no
ground-truth service in the recommendation list.

To help developers select the remaining services, next
round service recommendation models have been proposed
in the recent time. Xie et al. [7] proposed a model that
can both make single-round recommendation and next round
recommendation by integratedly utilizing related information
in a way of constructing a heterogeneous information
network. Ma et al. [5] designed a model to make next-round
recommendation by capturing the interactions among the
target mashup, selected services and the following service
to recommend with an attention mechanism. Xiao et al. [6]
designed a model named DINRec to make the following
service recommendation by utilizing the composition and
cooperation relationships between services.

Although next round recommendation methods can poten-
tially be used to make multi-round service recommendation,
they only focus on the performance of the current recommen-
dation round, and overlook developers’ long-term satisfaction
over the whole recommendation process.

B. INTERACTIVE RECOMMENDATION

Interactive recommender systems (IRS) [20] have drawn
huge attention recently because of its flexible recommen-
dation strategy and the consideration of optimal long-term
user experiences. One way to implement IRS is multi-armed
bandit (MAB) methods [21], where recommending an item is
regarded as picking an arm while user’s feedback is collected
as the reward of the corresponding arm selection. However,
due to the limitation of the MAB modeling, these methods
assume that the user preferences remain unchanged during
the recommendation process, which goes against the dynamic
nature of IRS. During the past years, the landscape of RL
research has grown profoundly [22], [23], [24], resulting in
more and more RL-based IRS. By formulating multi-step
decision making as a Markov decision process, RL inherently
considers how users’ preferences evolve over time and
maximizes their long-term satisfaction with recommendation
results. Chen et al. [25] proposed a tree-structured RL-
based recommendation framework, for solving three main
challenges in IRS, i.e., time inefficiency, cold-start and
data inefficiency. Zhou et al. [26] proposed a knowledge
graph enhanced Q-learning framework for IRS to address
the sample complexity issue. Wu et al. [27] considered the
problem of cross-domain interactive recommendation and
proposed a novel framework aiming to be doubly-adaptive
to both static representation and dynamic interaction in IRS.
Lei and Li [28] modeled the user-specific information of both
preferences and relationships for IRS with explicit feedbacks.
Zou et al. [29] introduced a model to simulate the envi-
ronments and assist TD-based policy improvement for IRS.
Though there still are other representative IRS models, they
mainly focus on traditional recommendation fields, and there
is no research work on long-term performance oriented inter-
active service recommendation to the best of our knowledge.

VOLUME 12, 2024

M. Zhang et al.: Deep Reinforcement Learning Based Interactive Service Recommendation Model

IEEE Access

To sum up, interactive service recommendation is a
meaningful research topic. On the one hand, handling
the interactive nature in service recommendation scenario
can boost long-term satisfaction of mashup developers,
like popular social platforms (e.g., YouTube, TikTok, and
Instagram) make interactive recommendation for their users.
On the other hand, interactive service recommendation is
a non-trivial problem for it has unique input and output
information and feedback mode.

IIl. PRELIMINARIES

In this section, we introduce the related definitions and
formulate the problem of interactive service recommendation
for mashup creation. To help readers to understand easily,
Table 1 lists the key notations used in the following sections.

TABLE 1. Notations.

Notations Descriptions
M = {my,....,mpq|} | Setof all mashups in ISR.
T = {i1,.izl} Set of all APIs in ISR.

G={&R} The service recommendation KG.
Pr={i1,....0p} Set of APIs already selected for the
developed mashup at round 7.
N ={ityeeyin} Set of APIs recommended but not selected
at round 7.
O =P UN, Observations of the environment at round 7.
P = {it,eerir} Set of APIs remaining unfound of the

developed mashup at round 7.
Sty St The current state and its corresponding
representation at round ¢.

A ={d} ¢} Action at round ¢, i.e., recommending K
APIs.
ey r(ey+) The reward at round ¢ and its calculation
function.
Os Parameters of state representation network.

Parameters of K cascading Q-networks.
Replay Buffer.

©g = {O1,...,6}
D

A. SETTING

A service ecosystem in this work refers to a service
management platform to improve developer productivity
and accelerate Web application delivery with speed and
quality, in which there are a set of Mashups M =
{mi,ma, ..., mpq}, asetof Web APIsZ = {iy, &2, ..., i|7},
and their invocation information. To provide ISR functional-
ity for a service ecosystem, the interactive model between the
recommender system and the mashup developer is designed
to be simplistic yet typical. It’s set to be a multi-round
interaction process that lasts for a period of time. At each
round, according to the observations on past interactions,
the recommender agent delivers K Web APIs in one list to
a mashup developer. The developer provides feedback by
picking up some or none of these APIs according to the
requirements of the target mashup, and then the recommender
agent recommends a new list of K services. This process
continues until all the required services are selected out by the
developer or the number of recommendation rounds reaches a
predifined threshold. The advantage of this simplistic setting
is that the recommender system will be easy to access the
behavior of the active developer just by observing which
services in the recommendation list are selected by her/him.

VOLUME 12, 2024

However, it’s worth pointing out the limitations of the
ISR setting assumed in the paper and our corresponding
ISR model. First, we make service recommendation based
on service functionality and don’t consider the quality of
services like [30]. Additionally, we only focus on a particular
type of services, i.e., Web APIs, and don’t consider other
typical types of services, e.g., edge services [31] and IoT ser-
vices [32]. Furthermore, it will be more usable and convenient
if the developer can remove the selected services that she/he
regret choosing, or can do active searching by inputing some
information in the recommendation process to facilitate accu-
rate recommendation. We don’t consider these complicated
circumstances and leave such supports in the future.

B. PROBLEM FORMULATION

The nature of developer interaction with a service rec-
ommender system is sequential and the problem of rec-
ommending the best services to a mashup developer is
not only a prediction problem, but a sequential decision
problem as well. This suggests that the ISR problem could
be modeled as a Markov Decision Process (MDP) and be
solved by RL algorithms. Since RL is able to take into account
the long-term developer engagement with the recommender
system, it holds the promise to help mashup developer select
all required services out as quickly as possible.

To improve the potential recommendation performance of
RL models with only a limited amount of service interaction
data, we utilize knowledge graph (KG) techniques to guide
the RL-based learning method for ISR. Given a service
ecosystem, there exist various types of objects (e.g. mashups
and Web APIs) and rich relationships among them, which
can be modeled by constructing a Service Recommendation
Knowledge Graph (SRKG).

Definition 1 (SRKG): The SRKG can be defined as a set
of triplets G = {(en, 7, e)l(en, er € &) A (dlen), dler) €
E),(r € R) A@(r) € R)}, where £ is the set of entities,
¢ : &€ — ‘E is an entity type mapping function and each
entity e € £ belongs to an entity type ¢(e) € ‘E; R is the set
of relations connecting two entities, ¢ : R — R_is arelation
type mapping function and each relation » € R belongs
to a relation type ¢(r) € R . Each triplet (ep, r,e;) € G
characterizes the semantic relatedness between a head entity
ep € € and a tail entity ¢, € £ with the relation r € R.

According to existing studies [33], [34], not all information
accumulated in a service ecosystem contributes to the
accuracy of service recommendations. So we construct
SRKG by only using the most useful knowledge. Specifically,
E={M,S,C,T}and R = {MS,SM,MC,SC,MT, ST},
where M, S, C and T denote four main types of objects,
i.e., mashups, Web APIs, categories and topics respectively;
MS,SM,MC,SC,MT and ST denote six main types of
relations, i.e., the composed-by/composing relations between
mashups and Web APIs, the labeled-with relations from
mashups to their categories, and from Web APIs to their
categories, the described-by relations from mashups to their
topics, and from Web APIs to their topics. We adopt a vanilla

90207

IEEE Access

M. Zhang et al.: Deep Reinforcement Learning Based Interactive Service Recommendation Model

past selections before round 7+1
A

ol

@

Requirements
of the mashup

g | || @

S

to be developed

w

@ @ @ Interactions with mashup
= v developer
past selections before round ¢ Iteration
d
P ot > 000
EMNE | reward value ¥
p S | smmm
modeling .
state representation s; -
T \ 0 2 0 &
° .
i 5 :
N »
x ?4 ’ recommendation @
Ao/ e policy learning @

Knowledge graph Available Web APIs

FIGURE 1. The overall framework of RLISR.

probabilistic topic modeling method—LDA to identify the
entities with type T and extract relations with types M7 and
ST from description contents of mashups and Web APIs.

Considering the mashup developer and the service ecosys-
tem with its constructed SRKG as the environment and the
service recommendation algorithm as an RL agent, the ISR
process is formulated as an MDP in this work, in which the
key components are defined as follows.

o State S: This is a continuous state space that describes
the environment states. A state s, € S at round ¢ is
determined by both the requirements of the mashup
to be developed and the interaction history between
the mashup developer and the recommender agent
before . SRKG can provide rich and distinguishable
information for mashups and Web APIs by their
latent knowledge-level connection to generate state
representation.

o Action A: This is a discrete action space. An action
Az = {Cltl:K} = {ltl,

K atomic actions, and each atomic action a]t. € {d| ¢}
(1 < j < K) predicts one Web API iJ’. for

.t t .
S ig} € K is composed of

recommendation. means the set containing all

t
K
subsets of K items of Z;, where Z, € 7 are available
services to be recommended at round ¢. Thus, A; is a
subset of K APIs chosen by the recommender agent
based on current state s; from Z; to display to the mashup
developer.

o Reward R: Once the agent chooses a suitable action
a; based on the current state s; at round ¢, i.e.,
recommending a new list of APIs to a developer, the
developer will browse these APIs and pick out the APIs

90208

Recommender agent Recommended Web API list

to be used. Developer’s feedback on the recommended
APIs accounts for the reward r(s;, A;), which is used
to improve the policy m adopted by the recommender
agent.

o Transition probability 7P: The transition probability
p(si+118¢,a;) is defined as the probability of state
transition from s, to s,4+; when action a; is taken by
the agent. Because we adopt model-free RL methods,
p(si+1lst,a;) = 1, ie., once a new list of APIs
is recommended and the corresponding developer’s
feedback is provided, the state transition is determined.

« Discount factor y: The discount factor y € [0, 1] is
used to balance between future and immediate rewards.
With y = 0, the recommender agent becomes myopic,
i.e., it only focuses on immediate reward. On the
contrary, if y = 1, the agent becomes farsighted and
focuses more on future rewards.

With the notations and definitions above, the ISR problem
can be formally defined as follows: Given the historical MDP,
ie., (S, A, P, R, y), the goal is to find a recommendation
policy m* parametrized by 6 to maximize the expected
discounted cumulative reward over the whole ISR process as

T K
T = arg H}T%XE |:Z Z ytr(St, AI):| ,

t=0 k=1

ey

where 7 is the round number of the whole recommendation
process.

IV. THE PROPOSED MODEL

In this section, we detail the proposed RLISR model. As illus-
trated in Fig. 1, it supports the interaction between mashup
developers and recommender agent in an iterative way, and

VOLUME 12, 2024

M. Zhang et al.: Deep Reinforcement Learning Based Interactive Service Recommendation Model

IEEE Access

contains three main components: state representation, reward
setting and recommendation policy learning. Generally,
In RLISR, the recommender agent obtains state embeddings
via the state representation component which is modeled by a
dedicated neural network and takes the environment as inputs.
Then, the agent conducts recommendation under the policy
which is learned by the recommendation policy learning
component that models the policy as a cascading Q-networks
model [24] and updates the policy according to the received
rewards. The rewards are calculated by a reward function
designed to both consider the recommendation accuracy and
the round number to complete the whole recommendation
process. At last, the parameters of state representation and
policy learning are calculated at the same time through the
RL trial-and-error process.

A. SRKG-BASED STATE REPRESENTATION

State representation is a fundamental component in RLISR
and should summarize information from the environment
containing developers, APIs, and the context. As shown in
Fig. 2, we assume that the recommender system is performing
the #-th round recommendation. To model and learn a good
state representation, we encode the characteristics of 3 kinds
of information for a state, i.e., the service recommendation
knowledge graph (SRKG), the contents of Web APIs and the
historical interactions between the mashup developer and the
recommender system. To be specific, a GCN model is utilized
to incorporate rich information to generate representations of
mashups and APIs, a Doc2vec-based pre-training model is
utilized to exploit the contents of Web APIs to enhance API
representation, and a GRU model is adopted to encode the
historical interactions of the mashup developer.

1) SRKG-BASED ENCODING FOR MASHUPS AND WEB APIS
It’s a basic and critical task to represent mashups and APIs for
state encoding. As mentioned in Section III-B, we construct
SRKG to organize and exploit rich related information
for service recommendation. Since SRKG links mashups,
APIs and other entities like categories and topics together,
we can take advantage of the semantic and correlation
information among entities in SRKG for good mashup and
API embedding. We build upon the architecture of graph
convolution network (GCN) [35] to distill structural and
semantic knowledge in SRKG into a low-dimensional dense
node representation.

The computation of the node’s representation in a single
graph convolutional embedding layer is a two-step procedure:
information propagation and embedding aggregation. These
two procedures can naturally be extended to multiple hops
to capture high-order structural proximity among entities.
We use the notation k to identify the k-th hop, and denote
the representation of a head entity 4 or a tail entity ¢ at
the k-th hop as eﬁ € R% or e]t‘ € R%. In each layer,
first, we employ knowledge-aware attention mechanism [36]
to perform information propagation between a given head

VOLUME 12, 2024

State representation §; HEN

:%:
m/ \(lell
')

| oru | | ocru]
Selected APIs Rejected APIS? A
@&} (LORROIE
Mashup API representation module
representation . —_—
module !
mGI$I i’ 1 mEm i©
| GCN | | Doc2Vec-cat |

Requirement
contents

T
> <:<‘\ API contents
Vs

T SRKG

: [
e

Mashup developer

Web APIs

FIGURE 2. SRKG-based state representation, in which mashup
representation is generated by SRKG embedding, API representation is
generated by SRKG embedding and enhanced with content pre-training,
and positive and negative feedbacks are all considered to form the final
state representation.

entity / and its neighbors:

= D Fhoroeg)
(h,r,t)eN},
where Nj, = {(h, r, 1)|(h, r, t) € G} denotes the set of triplets
in which £ is the head entity. 77 (h, r, t) is the normalized value
of a coefficient m (h, r, t) across all triplets connected with &
by adopting the softmax function:

exp((h, r, 1)
D e, eXp((h, 1,)’
where 7 (h, r, t) acts as a filter controlling the decay degree
on each propagation on edge (h, r,t) and indicating how
much information being propagated from ¢ to /& conditioned

on relation r. It’s implemented via relational attention
mechanism in this paper, which is formulated as follows:

w(h,r, 1) =

3)

w(h, r, 1) = (Wyes™))T tanh ((W,e’,;*‘) + er), 4)

where ¢’ € R% denotes the embedding of relation r, and
W’ € R%*4 is the transformation matrix of r, projecting
entities from the d.-dimensional entity space into the d,-
dimensional relation space. This makes 7 (h, r, t) dependent
on the distance between ej, and e; in the relation r’s space and
capable of suggesting which neighbor nodes should be given
more attention to capture collaborative signals. We select tanh
as the nonlinear activation function and employ inner product
on these representations for simplicity.

The second procedure is to aggregate the entity represen-
tation e];fl and its neighborhood representation e’j\fh I as the

90209

IEEE Access

M. Zhang et al.: Deep Reinforcement Learning Based Interactive Service Recommendation Model

new representation e’,‘l of entity A:
k _ k—1 | k-1
¢} = LeakyReLU (Wi(ef ' +efzh+ i), (5)

where we sum two representations up and apply a non-
linear transformation by setting the activation function as
LeakyReLU. Wy and by are trainable parameters for k-hop
neighborhood aggregator.

After performing K layers, we obtain multi representations
for entity h, namely {eg, e}l, e e,’f }. The output of
different layers emphasizes different levels of connectivity
information. Therefore, we obtain the final representation by
concatenating the representation of each step into a single
vector, as shown below.

(VPN K
et, =elle,ll---lle,. (6)

For notational convenience, we denote the representation
of API node i generated from the previous K information
propagation and embedding aggregation steps as i¢ (i.e.,
i’ = e;). Generally speaking, i¥ is a mixture of initial
representations of i and its neighbors up to K hops away.
As the same way, we denote the representation of mashup

node m as mC.

2) CONTENT ENCODING FOR WEB APIS

In ISR scenario, each Web API has its contents (i.e.,
description content and categories) which are important to
identify its functionalities. To incorporate such valuable
information into state representation directly, we adapt
Doc2vec model [37] to learn a fixed length feature vector
for each API. Doc2vec is an unsupervised model to provide
fixed-length representations for variable-length pieces of
contents, such as sentences, paragraphs, and documents.
However, besides description content, the categories a service
belongs to are significant to distinguish it. So, we propose
a Doc2vec-cat model to encode the description content and
categories at the same time, and here have a brief introduction
of it.

As shown in Fig. 3, the distributed memory model of
paragraph vectors [37] is adopted. Every description content
is mapped to a unique vector which is represented by a
column in matrix D, every category is mapped to a unique
vector which is represented by a column in matrix C, and
every word is also mapped to a unique vector which is
represented by a column in matrix W. Given an API i,
its category vector is formed by averaging the vectors of
its categories. Then, the representation of i is formed by
concatenating its description vector and its category vector.
The API representation is asked to contribute to the prediction
task of the next word given many contexts sampled from its
description content. Specifically, word vectors are averaged
and then concatenated with the representation of i to predict
the next word in a context. After being trained, the obtained
representation can be used as the content encoding of i, and

is denoted as i€.

90210

Service
representation
HEEE

/%’\
T eeg

......

category
id

description
text id

category
id

FIGURE 3. Framework of Doc2vec-cat model.

3) HISTORICAL INTERACTION ENCODING

For an API i, we can obtain its content embedding i€ and
its graph embedding i® through the above two steps. Its
final embedding i is formed by concatenating these two
embeddings, i.e.,

i=iC)ic. 7

Then, we can encode the most important information for state
representation, i.e., the historical interactions between the
mashup developer and the recommender system.

ISR is a sequential decision-making process. At round
t, it is natural to form a selected API sequence P; =
{it,i2,...,ip} and an unselected API sequence N; =
{i1, i2, ..., i} ordered by the recommendation round and the
rank in the recommendation list for each round. P; is the
cumulative positive feedbacks of the mashup developer and
represents the already satisfied functional requirements of the
target mashup. N is the cumulative negative feedbacks of
the mashup developer and represents the unrelated functional
requirements or unmatched APIs of the target mashup.
We call P; and N; as the observations O; of the environment
(i.e., O; = P, UN,). They are both significant for predicting
APIs to be possibly used next to complete the mashup. Due
to the sequential nature of P; and N, any sequential neural
model (e.g., LSTM or Transformer) can be adopt to encode
them. Here, we utilize a classic neural network—GRU [38]
for its simplicity and efficiency. The encoding of mashup
developer’s historical interactions with the recommender
system is calculated as follows:

m! = GRU(P,)
where GRU denotes the whole GRU neural model. The

structure of its component blocks is not detailed anymore for
it isn’t the focus point of this work.

4) THE FINAL STATE REPRESENTATION
Based on the above discussions, we are ready to give the
final state representation in our model. For a state s, its

VOLUME 12, 2024

M. Zhang et al.: Deep Reinforcement Learning Based Interactive Service Recommendation Model

IEEE Access

representation s; is the combination of three representation
vectors:

s,:mG +m{’—mﬁv,)

where “+” and “—"" denote the element-wise addition and
subtraction operator respectively. m? is the graph embedding
of mashup m obtained via Eq.(6), m’ and m) are the
interaction embeddings at round ¢ calculated via Eq.(8). It is
worth mentioning that i€ is obtained through pre-training,
while i% m®, m! and m} are all learned in an end-to-end
manner.

For simplicity, the set of the whole network parameters
for computing s;, including parameters of SRKG-enhanced
encoding module and parameters of historical interaction
encoding module, is denoted as Og.

B. REWARD SETTING

The reward signal from environment reflects how good or bad
the agent is performing through developer’s selecting actions.
Therefore, designing informative reward signal is critical
for success of the recommender agent. In ISR scenario, the
ultimate goal is to recommend all required APIs as few rounds
as possible. This needs the recommendation list generated in
each round is of high performance in terms of accuracy.

1) REWARD DECOMPOSITION

Based on the above consideration, at round ¢, we define the
reward function by integrating two different reward functions:

r(ss, As) = rid(Atvft)‘f‘rrd(Az,TDt)’ (10)

where the action A, = {{, ..., %} is the recommendation
list at round ¢; 7_31 = {i’l, R i’,} denotes the set of
APIs remaining unfound of the developed mashup at t;
rid(-, -) and r4(-, -) measure the rewards on recommendation
accuracy and round number to complete recommendation,
respectively. Next we discuss how to set 7i4(-, -) and r4(-, -)
for our task.

2) ID-BASED REWARD

In recommender systems, the final performance is usually
measured based on the exact match of item IDs, and many
ID-based metrics are designed. We borrow a classic metric—
NDCG for ID-based reward function design. Formally,
given the ground-truth remaining API set P; and the
recommendation list A,, we define the reward function as:

K yelP K

ra(An Py = ’.+1/Z1 L an
j=1 og)

=1 log,

where reljp’ is an indicator equaling 1 if the API i} € A, at
rank j in the recommendation list is selected by the mashup
developer, zero otherwise. As we can see, rig(-,) is a full
position-aware reward function which assigns larger weights
on higher rank positions. It encourages the recommendation
agent to generate required APIs as early as possible.

VOLUME 12, 2024

3) ROUND-BASED REWARD

In the second reward function, we consider measuring the
quality of action .4; from the perspective of reducing the
round number to complete the whole recommendation. This
reward function is defined as:

AP = b BTNy
where p € (—1, 0) is a penalty for not finishing recommenda-
tion at the current round 7 (i.e., P; — A, #). Otherwise, the
reward value is 0. This prompts the recommendation agent to
finish recommendation as few rounds as possible.

By plugging Eq.(11) and Eq.(12) into Eq.(10), we can
derive the final reward function. By providing these two kinds
of reward signals, we expect the RL algorithm can be guided
to yield a better service recommendation performance.

C. RECOMMENDATION POLICY LEARNING

After modeling the mashup’s state s, and designing the
reward function R(s;, A;), we can then learn a recommen-
dation policy to combine these two kinds of information for
interactive service recommendation. The recommendation
policy needs to choose from a combinatorial action space

? , where each action is a subset of K APIs chosen from

a larger set Z; of |Z;| candidates. The action space can be
very large even for moderate |Z;| (e.g., 1,000) and K (e.g., 5).
To meet the challenge of the potentially high computational
complexity of the combinatorial action space, we adopt a
cascading Q-networks model [24] to learn an optimal policy
to estimate the long-term reward for a combination of APIs.
It can be regarded as a cascaded deep RL model [22],
which utilizes multiple RL agents sequentially to achieve the
final solution and each agent solves a sub-problem that is a
step towards the solution of a complex problem. However,
different with [22], the cascading Q-networks are dependent.

1) CASCADING Q-NETWORKS MODEL

Generally, if the size of the recommendation list is K,
the cascading Q-networks model consists of K Q-networks
which are connected in a cascading manner and select
K optimal items for recommendation in order. It uses
the Q-learning framework where an optimal action-value
function Q*(s, A) will be learned and satisfies Q*(s;, A;) =
E[r(si, A) + ymaxg,, cz,, Q" (Sr+1, Arg1)]. Once the
action-value function is learned, an optimal policy for
recommendation can be obtained as:

(s, Ar) = arg max(Q*(s;, Ar)), (13)
AT,
where Z; C 7 is the set of items available at time .

As illustrated in Fig. 4, the cascading Q-networks model
uses a set of K related Q-functions to address the enormous
combinatorial action space and generate the optimal K-
APIs combination. Denote a recommender action as A =
{a1.x} C T and the optimal action as A* = {aj;} =

90211

IEEE Access

M. Zhang et al.: Deep Reinforcement Learning Based Interactive Service Recommendation Model

WEMm State: s

*

a
oreme——] Q6.al0) > ArMax |—>urum

a
pp— 3| Os.ata o) > AgMax |—>uiiEm
ai

ag
P — L T T e B Sl R

FIGURE 4. Framework of cascading Q-networks model.

argmax 4 Q*(s, A). The cascading Q-networks model is
inspired by the key fact:

max Q%(s, ar.x) = max (max Q*(s, a;.x)). (14)
arg ai az.x

Based on this fact, a set of mutually consistent functions
Ql*, ..., OX* is defined to obtain each optimal atomic action
ay € {aj.g} as:
at = argmax{0"*(s, 1) = max0*(s, a1}
ay az.K
@ = argmax| 0¥*(s. a7,) := maxQ*(s. 1)},
a as.x

af = argmax [0K (s, af . ax) = 0"(s, ar)].
ag

15)

Thus, an optimal action A* can be obtained in O(K|Z|)
computations by applying these functions in a cascading
manner.

Each QF* function is parameterized by a multi-layer
perceptron (MLP) in this work:

. . . 1T
0% = afo (Wi[slifll -+ I 1] " +) . V&, (16)

where o is the sigmoid activation function, s is the state
embedding obtained via Eq.(9), i;.k(l <j<k—1)isthe API
embedding obtained via Eq.(7) corresponding to the optimal
atomic action a}k, and iy is the embedding of the candidate
APLi; € T; W), € Rénxdstdixb) q, ¢ R and by € R% are
the set ® of parameters, and d,,, d; and d; are the dimension
of the MLP hidden layer, of the state embedding and of the
API embedding, respectively. We denote the set of all the
parameters of the cascading Q-networks model as ®¢ (i.e.,
BOg ={01,..., k).

2) MODEL TRAINING

With the proposed framework, we can train the parameters of
the model through trial-and-error process. During the inter-
active recommendation process, at round ¢, the recommender
agent (i.e., the cascading Q-functions) gets the current state
s; from the observations O, (i.e., the feedbacks: P; U N;)
of the mashup developer, and recommends the next list A;
of K APIs via an e-greedy policy (i.e., with probability &

90212

choosing a random subset A; of size K, and with probability
1 — & choosing the optimal action A obtained by the
cascading Q-functions). Then the agent receives the reward
ry from the developer’s selection and stores the experience
(O, As, 11, Or41) in the replay buffer D. From D, we sample
mini-batch of experiences to update the parameters ®g of
state representation and the parameters of the cascading Q-
functions ®g = {®y, ..., O}

However, the set of QX* functions need to satisfy a large set
of constraints which it is not easy to strictly enforce. At the
optimal point, the value of Q%* is the same as Q* for all k,
ie.,

0" (s, af, ..., a}) = 0%, af, ..

These constraints are taken into account in a soft and
approximate way in this work. That is, we use the same final
target to train all the Q** functions. For Q**, we define its
corresponding mean-square loss function as:

LOW) = Eo, A, r.0)~Dl0r — O (51, dl)1, V&,
(18)

Lad), Yk, (17)

where a’] are the first k APIs in A;. y; is the target value
based on the optimal Q* and defined as:

v =rGsn A) +y Qs a1 100, (19)
(t+1)* . . .
where a.g are the optimal atomic actions at round ¢ +
1 estimated by the K neural network functions according to
the new state representation s;41. Then, all the Qk networks
are fitting against the same target y; outputted ultimately
by the last network QK. To alleviate the overestimation
problem in original Q-networks, we also adopt the double
DQN architecture [39], i.e., each online Q-network Qk is
attached with a target Q-network Qk/. The online network
back-propagates and updates its weights at each training step.
The target network is a duplicate of the online network and
updates its parameters with training delay. The target value
for each online network QX to update is then changed to

/ +1)*
yi =G, A)+ v Q¥ (i1, dl XV 10)), (20)
where a(lt}l) " are the optimal atomic actions estimated by the
online cascading networks, and ®) denotes the parameter of
the last target Q-network QK ' The parameters of target Q-
networks @’Q = {0©], ..., O} are updated according to soft
assign as:

@’Q =809 +(1 —S)G’Q, 2n

where 6 € (0, 1) is the update frequency. Based on the
loss function defined in Eq.(18), the parameters Og =
{®1, ..., Ok} of the recommender agent besides the parame-
ters ®g of state representation can be updated by performing
gradient steps over the above loss.

To summarize, the training procedure of our RLISR
is presented in Algorithm 1. For each mashup m in the
training set, we apply e-exploration technique and employ

VOLUME 12, 2024

M. Zhang et al.: Deep Reinforcement Learning Based Interactive Service Recommendation Model

IEEE Access

the cascading Q-functions to search the optimal action
A = {a(lt:)K*} to recommend. The system’s experiences
at each time-step are stored in the replay buffer D and
then a mini-batch of data is sampled from D to update the
parameters of RLISR.

Algorithm 1 Parameters Training for RLISR

Input: The pre-trained content embeddings of APIs
{iC}; SRKG G; replay buffer D; discount
factor y; probability &; update frequency §.

Output: Parameters Os, ©¢.

repeat

for m € M do

t < 0,0, <~ @

while P, # @ do

forall {i1, i, ..., iy} € O; do

Get {ij, i, ..., i,} via Eq.(6) and
L Eq.(7);
Get s; via Eq.(8) and Eq.(9);
With probability € select a random action
A; of size K, otherwise A; < {a(lt:)K*};
Recommend .4; to the developer of
mashup m, observe her/his selections and
update O; 41 and P, 1;

Calculate reward r; via Eq.(10);

Store (O, A;, 11, O141) in D;

t<—t+1;
Sample mini-batch of transitions
(O, Aty 1, Org1) “3. D;

Get s;, 8¢+ from Oy, Oy via Eq.(7) and
Eq.(9);

Calculate target values y; via Eq.(20);

Update ®s, ®¢ via SGD over the loss
Eq.(18);

Update @’Q via Eq.(21);

until converged;

V. EXPERIMENTS

In this section, we first introduce the dataset used to verify the
effectiveness of RLISR, then present the evaluation metrics,
baselines and experimental settings. Afterwards, we report
and analyze the experimental results.

A. EXPERIMENTAL SETTINGS

1) DATASET DESCRIPTION

Owing to the interactive paradigm of ISR, a straight forward
way to train and test it is to conduct online experiments.
However, applying a trial-and-error strategy in online sce-
narios would hurt the users’ experience. Therefore, following
the experimental protocol of the interactive recommendation
research community [25], [26], we use an offline real-world
dataset to conduct experiments to obtain solid experimental

VOLUME 12, 2024

results. The dataset is crawled from ProgrammableWeb and
released publicly' [40].

The original dataset consists of 7884 mashups and
23581 APIs. To adapt to multi-round service recommen-
dation evaluation, the mashups with fewer than two APIs
were removed. At the same time, APIs that have never
been used were removed in the evaluation. The dataset after
preprocessing contains 2906 mashups and 1322 APIs. More
detailed information is provided in Table 2.

TABLE 2. Statistic information of the experimental dataset.

Parameters Values
Number of mashups 2906
Number of APIs 1322
Number of interactions 9739
Number of categories 400
Average number of APIs per Mashup 3.35

For the sake of simulating the service recommendation for
mashup creation in the real scene, similar to work [41], [42],
we sorted the mashups by when they were created. The data
before a certain time was selected as the training set, and the
part of the data after that time was used as the test set. To be
specific, the time is set to Apr. 10th, 2012, the training set
includes the previous 2325 mashups and the test set includes
the remaining 581 mashups.

2) EVALUATION METRICS

We adopt five widely used metrics for performance eval-
uation on top-K recommendation results: Precision@K,
Recall @K, F1@K, mean average precision (MAP@K) and
Normalized Discounted Cumulative Gain (NDCG @K). Given
a list of top K predicted APIs for mashup m, denoted as A™,
and its actual component API set, denoted as Pm The first
three metrics are computed by:

1 " pm
Precision@K = W MKA,
| | meM
I < 40P
Recall @K = —— _
IM| Z [P

meM
LAPOPT] AP
1 K P
F1@K = — 2 X — —.
M) 2 2% e e
meM K P

(22)

Intuitively, Precision@K indicates what percentage of rec-
ommended top K APIs (i.e., A™) are really used by mashup
m, Recall@K indicates what percentage of m’s actual
component APIs can emerge in 4™, and F 1 @K is a harmonic
average, used to solve the problem of precision and recall

1 https://github.com/HIT-ICES/Correted-ProgrammableWeb-dataset

90213

IEEE Access

M. Zhang et al.: Deep Reinforcement Learning Based Interactive Service Recommendation Model

imbalance. The MAP@K is defined as:
K m m
1 Z 21 precy" - rel;

MAP@K = — '
| |meM min(|O™|, K)

. (23

where prec”" is the precision at cut-off j in A™, rel is an
indicator equaling 1 if the API at rank j is used by m, zero
otherwise. NDCG @K is defined as:

NDCG@K = |/\1/l| Z(relH/Zl g’“)’ (24)

which is similar to the ID-based reward function—Eq.(11),
however averaged by the number of mashups in the test set.

3) BASELINES

To evaluate the performance of the proposed model,
we compare it with four state-of-the-art single-round service
recommendation baselines and two representative next-round
service recommendation models, i.e., [7] and [5].

o NAFM [1] is a hybrid factorization machine model
which integrates a deep neural network to capture the
non-linear and complex feature interactions for service
recommendation.

o coACN [42] is a deep learning-based service recom-
mendation framework which can effectively learn the
bilateral information toward service recommendation.

o PAREI [43] is a hybrid service model that optimizes
recommendation results by combining explicit and
implicit information.

o SRMG [44] is a graph-based service recommendation
approach that makes recommendations based on service
characteristics and historical usage.

« iSRec [7] is a service recommendation approach which
integrates diverse information of mashups and their
component APIs and can be adapt to make single-round
and next round service recommendation.

« HISR [5] is a service recommendation framework
which aims to make next round recommendation by
capturing the interactions among the target mashup,
selected services, and the next service to recommend.

4) EXPERIMENT SETUP

For RLISR, we use 300-dim glove pre-trained word vectors to
learn the content embeddings of APIs. We then use the LDA
model with topic number set to 100 to extract the topics of
descriptions for both mashups and APIs, and build the SRKG.
We set the embedding sizes of SRKG representation and final
state representation to 512. We adopt 2-layer MLP for each
Q-network, where the embedding size of its hidder layer is
1024 and its final softmax layer is 1322. We also test the graph
convolutional embedding layer K in the range of 1 to 5, and
finally choose 3. To learn the whole RL model, we employ
the Adam optimizer, and use the default learning rate as
0.001, the discount factor to 0.9 and the greedy probability to
0.1. We investigate the top-K recommendation performance
with K = {5, 10, 15, 20, 25}. We implement RLISR based

90214

TABLE 3. Overall performance comparison. The best results are starred,
and the second-best results are listed in bold.

Top-K | Method | Precision| Recall F1 NDCG | MAP
NAFM | 0.1614 | 0.2460 | 0.1835 | 0.4561 | 0.1919
coACN | 0.1687 | 0.2603 | 0.1930 | 0.4560 | 0.1925

Top-5 SRMG | 0.1487 | 0.2319 | 0.1713 | 0.3536 | 0.1637
PAREI | 0.1553 | 0.2554 | 0.1835 | 0.4055 | 0.1688
iSRec 0.2589 | 0.4127 | 0.3005 | 0.5621 | 0.2960
HISR 0.2520 | 0.4225 | 0.2993 | 0.6607 | 0.2672
RLISR | 0.2899* | 0.4320%| 0.3294*| 0.7780*| 0.3479*
NAFM | 0.0960 | 0.2855 | 0.1359 | 0.4671 | 0.1918
coACN | 0.1170 | 0.3512 | 0.1666 | 0.4784 | 0.2063

Top-10 SRMG | 0.1164 | 0.3501 | 0.1665 | 0.3946 | 0.1858
PAREI | 0.1211 | 0.3591 | 0.1729 | 0.4451 | 0.1883
iSRec 0.1380 | 0.4315 | 0.1986 | 0.5587 | 0.2894
HISR 0.1547 | 0.4557 | 0.2217 | 0.6592 | 0.2681
RLISR | 0.1990% | 0.4808%| 0.2625*%| 0.7764* 0.3513*
NAFM | 0.0699 | 0.3075 | 0.1083 | 0.4705 | 0.1941
coACN | 0.0912 | 0.4144 | 0.1432 | 0.4848 | 0.2156

Top-15 SRMG | 0.1023 | 0.4247 | 0.1581 | 0.4052 | 0.1996
PAREI | 0.1120 | 0.4022 | 0.1675 | 0.4548 | 0.1952
iSRec 0.0940 | 0.4358 | 0.1476 | 0.5584 | 0.2896
HISR 0.1199 | 0.4725 | 0.1831 | 0.6574 | 0.2701
RLISR | 0.1600* | 0.4832*| 0.2186*| 0.7759*| 0.3505*
NAFM | 0.0574 | 0.3343 | 0.0937 | 04711 | 0.1967
coACN | 0.0749 | 04512 | 0.1236 | 0.4850 | 0.2196

Top-20 SRMG | 0.0963 | 0.4572 | 0.1529 | 0.4102 | 0.2038
PAREI | 0.1088 | 0.4132 | 0.1647 | 0.4570 | 0.1968
iSRec 0.0713 | 0.4374 | 0.1176 | 0.5584 | 0.2899
HISR 0.1020 | 0.4835 | 0.1603 | 0.6561 | 0.2713
RLISR | 0.1429% | 0.4974*| 0.1973*| 0.7729%| 0.3522*
NAFM | 0.0494 | 0.3569 | 0.0832 | 0.4716 | 0.1986
coACN | 0.0650 | 0.4892 | 0.1110 | 0.4816 | 0.2232

Top-25 SRMG | 0.0940 | 0.4648 | 0.1502 | 0.4103 | 0.2047
PAREI | 0.1081 | 0.4154 | 0.1640 | 0.4571 | 0.1971
iSRec 0.0576 | 0.4383 | 0.0978 | 0.5583 | 0.2901
HISR 0.0914 | 0.4889 | 0.1454 | 0.6547 | 0.2718
RLISR | 0.1316* | 0.5011%*| 0.1815%| 0.7704*| 0.3525*

on Tensorflow, a widely used open source machine learning
framework.

B. OVERALL PERFORMANCE COMPARISON AND
ANALYSIS

We compare the performance of the proposed RLISR
approach against the six aforementioned methods. As RLISR,
iSRec and HISR make service recommendation in a multi-
round manner, we provide their results for top-K evaluation
in the condition of K-round top-1 recommendation. Table 3
summarizes the experimental results of different algorithms
with different number K of recommended APIs.

We have the following observations from Table 3 that:
(1) RLISR consistently yields the best performance on all
the metrics and K values. In detail, RLISR improves much
more over the strongest baselines on the metrics NDCG and
MAP than the other 3 metrics. (2) HISR achieves better
performance than the other baselines in most cases, and
sometimes, iSRec achieves the best results against the other
baselines. As mentioned above, HISR and iSRec are the two
representative next round service recommendation models.
Thus, from the above 2 observations, we can conclude that
introducing multi-round recommendation mode can boost the

VOLUME 12, 2024

M. Zhang et al.: Deep Reinforcement Learning Based Interactive Service Recommendation Model

IEEE Access

effectiveness of service recommendation, and introducing RL
into multi-round service recommendation can significantly
improve the performance of service recommendation.

C. ABLATION STUDY

RLISR unifies several components that contribute to its
effectiveness in IRS. In this section, we provide insights
on KG-based mashup and API encoding component, GRU-
based historical interaction encoding component, negative
feedback incorporating component and RL-based interactive
service recommendation component and how they are
indispensable to ISR by performing an ablation study on
various design choices of RLISR. We designed the following
variants of RLISR for comparison:

o RLISR-Cont: a variant of RLISR, which uses only
pre-trained content vectors of mashups and APIs during
the state representation phase.

o« RLISR-KG: a variant of RLISR, which uses SRKG-
based vectors of mashups and APIs (i.e., the API
representation isn’t enhanced by content pre-training)
during the state representation phase.

o RLISR-Avg: a variant of RLISR, which uses the global
mean layer instead of the GRU for historical interaction
encoding to obtain the state representation.

e RLISR-Pos: a variant of RLISR, which does not
take the unselected APIs (i.e., negative feedbacks) into
account.

o« RLISR-Sim: a variant of RLISR, which uses cosine
similarity instead of an reinforcement learning model to
make service recommendation.

TABLE 4. Performance comparison of different variants of RLISR.

variants Precision Recall F1 NDCG MAP
RLISR-Cont 0.0593 0.3422 0.0961 0.4549 0.1737
RLISR-KG 0.0740 04569 0.1226 0.6224 0.2617
RLISR-Avg 0.0718 04496 0.1190 0.6195 0.2573
RLISR-Pos 0.0772 04658 0.1275 0.6210 0.2642
RLISR-Sim 0.0560 0.3317 0.0915 0.4003 0.1500

RLISR 0.0782 0.5030 0.1303 0.6477 0.2657

We summarize the experimental results in Table 4 and have
the following findings:

o Comparing with content-based mashup and API encod-
ing (i.e., RLISR-Cont), using SRKG (i.e., RLISR-
KG) can achieve significant performance improvement.
Moreover, if API representation is further enhanced by
content pre-training (i.e., RLISR), our model can still
achieve slight improvement.

« Replacing GRU model with Average Pooling operation
for historical interaction encoding degrades the model’s
performance. Thus, considering the sequential nature of
feedbacks is necessary.

o The viriant RLISR-Pos underperform RLISR slightly,
suggesting that considering the negative feedbacks can
improve the recommendation performance of our model.

VOLUME 12, 2024

Precision@5 Recall@5
0.1600 03000
g-ggg 02500
044600 B M - - 0.2000 -
00800 i 01500 | "™ B s
0.0600 0.1000
0.0400
Pty 0.0500
0.0000 0.0000
T=80 T=90 T=100 T=110 T=120 T=80 T=90 T=100 T=110 T=120
dim128 0.0892 0.1167 0.1191 0.1043 0.1050 dim128 01343 01753 0.1806 0.1576 0.1587
dim256 0.1250 0.1067 0.0864 0.0733 0.1050 dim256 0.1905 0.1651 0.1355 0.1117 0.1568
dim512 0.1208 0.1236 0.1552 0.0985 0.0771 dim512 01868 01957 0.2512 0.1528 0.1226
(a) (b)
F1@5 NDCG@5
0.2000 0.4500
0.1800 0.4000
giggg 0.3500 m
- 1 03000 »
0.1200 TR ETET 0.2500 18
0.1000 1 02000 B
0.0800 .
0.0600 0.1500
0.0400 0.1000
0.0200 0.0500
0.0000 0.0000
T=80 T=90 T=100T=110 T=120 T=80 T=90 T=100 T=110 T=120
mdim128 01005 0.1318 01347 0.1177 0.1186 dim128 0.2362 0.3113 0.3518 02919 0.2754
dim256 01418 0.1219 00994 0.0836 0.1181 dim256 0.3487 0.3197 0.2501 02129 0.2976
dim512| 0.1383 0.1433 01809 0.1131 0.0895 dim512 0.3477 0.3504 0.4356 02788 0.2345
(c) [C)
MAP@5
0.2000
0.1800
0.1600
0.1400
0.1200 B B =
0.1000 el

T=80 T=90 T=100 T=110 T=120

mdim128 0.0880 0.1207 0.1305 0.1159 0.1082
dim256 0.1324 0.1150 0.0898 0.0713 0.1106
dim512 0.1368 0.1348 0.1756 0.1042 0.0820

(e)

FIGURE 5. Influence of topic number and embedding size on the RLISR
effect.

« Removing the RL-based recommendation component
(i.e., RLISR-Sim) degrades the model’s performance
significantly. It verifies the effectiveness of the adopted
RL model for ISR.

D. HYPERPARAMETER ANALYSIS

As analyzed in ablation study, SRKG plays an critical role
for the performance of our model. The number of topics in
SRKG and the embedding size of SRKG representation are
two core hyperparameters for our model. To get deep insights
on RLISR, we explored its sensitivity on these 2 hyperparam-
eters. Fig. 5 shows the recommendation performance under
different combinations of the 2 hyperparameters.

We set the topic number 7 = {80, 90, 100, 110, 120}
and the dimensionality dim = {128, 256, 512} in turn.
As shown in Fig 35, it can be found that (1) under the same
embedding size, the recommendation effect does not improve
obviously with the increase of the topic number; (2) under
the same topic number, the performance improvement does
not show regularity with the increase of dimensionality;
(3) our model generally achieves the best performance when
the topic number is 100 and the embedding size is set to 512.
Thus, we keep these 2 values in other experiments.

90215

IEEE Access

M. Zhang et al.: Deep Reinforcement Learning Based Interactive Service Recommendation Model

TABLE 5. Performance comparison of different ISR mode. The best
results are listed in bold.

Top-K | Round | Precision| Recall F1 NDCG | MAP
Top-5 5 0.2899 | 0.4320 | 0.3294 | 0.7780 | 0.3479
1 0.1552 | 0.2512 | 0.1809 | 0.4356 | 0.1756

10 0.1990 | 0.4808 | 0.2625 | 0.7764 | 0.3513

Top-10 5 0.1500 | 0.3938 | 0.2040 | 0.7001 | 0.3038
2 0.1227 | 0.3860 | 0.1779 | 0.6437 | 0.2508

1 0.1072 | 0.3404 | 0.1549 | 0.4724 | 0.1864

15 0.1600 | 0.4832 | 0.2186 | 0.7759 | 0.3505

Top-15 5 0.1255 | 0.4441 | 0.1844 | 0.7133 | 0.3194
3 0.1009 | 0.4435 | 0.1580 | 0.6502 | 0.2591

0.0836 | 0.3960 | 0.1323 | 0.4801 | 0.1932

20 0.1429 | 0.4974 | 0.1973 | 0.7729 | 0.3522

Top-20 5 0.1097 | 0.4839 | 0.1694 | 0.7120 | 0.3251
0.0879 | 0.4815 | 0.1433 | 0.6514 | 0.2637

1 0.0709 | 0.4464 | 0.1179 | 0.4895 | 0.1982

25 0.1316 | 0.5011 | 0.1815 | 0.7704 | 0.3525

Top-25 5 0.0782 | 0.5030 | 0.1303 | 0.6477 | 0.2657
0.0599 | 0.4687 | 0.1028 | 0.4915 | 0.2001

E. ISR MODE ANALYSIS

Our model recommends APIs for a target mashup in a
multi-round interactive manner. So, to recommend a given
number of APIs in a whole recommendation process, our
model can work in different mode. Taking the top-10
recommendation as an example, RLISR can make
10-round-top-1, 5-round-top-2, 2-round-top-5 or 1-round-
top-10 recommendation. We further investigate the impact
of round numbers with constraint of the same number of total
recommended APIs. The results are listed in the Table 5.

We study the performance of top-K recommendation with
different K values {5, 10, 15, 20, 25}. From Table 5,
we can see that (1) no matter which value K is, our model
achieves the best performance when it recommends one API
each round and makes K round recommendation; (2) the
performance of our model improves gradually along with
the increase of the round number on whatever K values and
metrics. It verifies that RLISR can capture and exploit devel-
oper’s feedbacks effectively and increase recommendation
efficiency significantly for mashup developers.

VI. CONCLUSION

In this paper, we introduce a new service recommendation
setting—multi-round interactive service recommendation,
which can support mashup developers to express her/his
dynamic requirements and aims at obtaining the optimal
long-term recommendation performance over the whole
rounds and improving the efficiency of service selection.
To fit the new setting, we propose a deep RL-based interactive
service recommendation model—RLISR. It constructs a KG
and utilizes both positive and negtive feedbacks to enhance
state representation; it is guided by an informative reward
function to improve recommendation accuracy and reduce
number of rounds; and its optimal policy is learned by
adopting a cascading Q networks model from enormous
action space. Extensive experiments on a real-world dataset

90216

demonstrate that our method gains a significant improvement
compared with the state-of-the-art baselines.

In the future, we plan to incorporate more information,
such as mashup developers, API providers and social con-
nection between APIs into RLISR to promote the accuracy
of recommendations. We also plan to investigate more
reinforcement learning models such as DDPG to further boost
the performance.

REFERENCES

[11 G. Kang, J. Liu, Y. Xiao, B. Cao, Y. Xu, and M. Cao, “Neural and

attentional factorization machine-based web API recommendation for

mashup development,” IEEE Trans. Netw. Service Manage., vol. 18, no. 4,

pp. 4183-4196, Dec. 2021.

M. Boulakbech, N. Messai, Y. Sam, and T. Devogele, “Deep learning

model for personalized web service recommendations using attention

mechanism,” in Proc. ICSOC (Lecture Notes in Computer Science),

vol. 14419. Cham, Switzerland: Springer, 2023, pp. 19-33.

M. Liu, Z. Tu, H. Xu, X. Xu, and Z. Wang, “DySR: A dynamic graph

neural network based service bundle recommendation model for mashup

creation,” IEEE Trans. Services Comput., vol. 16, no. 4, pp. 2592-2605,

Jul./Aug. 2023.

X. Wang, M. Xi, and J. Yin, “Functional and structural fusion based web

API recommendations in heterogeneous networks,” in Proc. IEEE Int.

Conf. Web Services (ICWS), Jul. 2023, pp. 91-96.

[5] Y. Ma, X. Geng, J. Wang, K. He, and D. Athanasopoulos, ‘“Deep

learning framework for multi-round service bundle recommendation in

iterative mashup development,” CAAI Trans. Intell. Technol., vol. 8, no. 3,

pp. 914-930, Sep. 2023.

Y. Xiao,J. Liu, R. Hu, B. Cao, and Y. Cao, “DINRec: Deep interest network

based API recommendation approach for mashup creation,” in Proc. WISE

(Lecture Notes in Computer Science), vol. 11881. Cham, Switzerland:

Springer, 2019, pp. 179-193.

[7] F. Xie, J. Wang, R. Xiong, N. Zhang, Y. Ma, and K. He, “An
integrated service recommendation approach for service-based system
development,” Expert Syst. Appl., vol. 123, pp. 178-194, Jun. 2019.

[8] C. Fellbaum, “WordNet,” in Theory and Applications of Ontology:

Computer Applications. Berlin, Germany: Springer, 2010, pp. 231-243.

C. Platzer and S. Dustdar, A vector space search engine for web services,”

in Proc. 3rd Eur. Conf. Web Services, Nov. 2005, p. 9.

[10] C. Li, R. Zhang, J. Huai, and H. Sun, “A novel approach for API
recommendation in mashup development,” in Proc. IEEE Int. Conf. Web
Services, Jun. 2014, pp. 289-296.

[11] Y. Zhong, Y. Fan, W. Tan, and J. Zhang, “Web service recommendation
with reconstructed profile from mashup descriptions,” IEEE Trans. Autom.
Sci. Eng., vol. 15, no. 2, pp. 468-478, Apr. 2018.

[12] M. Shi and J. Liu, “Functional and contextual attention-based LSTM
for service recommendation in mashup creation,” IEEE Trans. Parallel
Distrib. Syst., vol. 30, no. 5, pp. 1077-1090, May 2019.

[13] X. Wu, B. Cheng, and J. Chen, “Collaborative filtering service recom-
mendation based on a novel similarity computation method,” IEEE Trans.
Services Comput., vol. 10, no. 3, pp. 352-365, May 2017.

[14] G. Zou, M. Jiang, S. Niu, H. Wu, S. Pang, and Y. Gan, “QoS-aware
web service recommendation with reinforced collaborative filtering,”
in Proc. ICSOC (Lecture Notes in Computer Science), vol. 11236. Cham,
Switzerland: Springer, 2018, pp. 430-445.

[15] B. Cao, X. F. Liu, M. M. Rahman, B. Li, J. Liu, and M. Tang,
“Integrated content and network-based service clustering and web
APIs recommendation for mashup development,” IEEE Trans. Services
Comput., vol. 13, no. 1, pp. 99-113, Jan. 2020.

[16] L. Yao, Q. Z. Sheng, Anne. H. H. Ngu, J. Yu, and A. Segev, “Unified
collaborative and content-based web service recommendation,” IEEE
Trans. Services Comput., vol. 8, no. 3, pp. 453—466, May 2015.

[17] R. Xiong, J. Wang, N. Zhang, and Y. Ma, “Deep hybrid collaborative
filtering for web service recommendation,” Expert Syst. Appl., vol. 110,
pp- 191-205, Nov. 2018.

[18] K. A. Botangen, J. Yu, S. Yongchareon, L. H. Yang, and Q. Z. Sheng,
“Integrating geographical and functional relevance to implicit data for web
service recommendation,” in Proc. ICSOC (Lecture Notes in Computer
Science), vol. 11895. Cham, Switzerland: Springer, 2019, pp. 53-57.

2

—

3

[t

[4

=

[6

—

[9

—

VOLUME 12, 2024

M. Zhang et al.: Deep Reinforcement Learning Based Interactive Service Recommendation Model

IEEE Access

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

M. Nguyen, J. Yu, Q. Bai, S. Yongchareon, and Y. Han, “Attentional
matrix factorization with document-context awareness and implicit API
relationship for service recommendation,” in Proc. ACSW, 2020, p. 17.

T. Silva, N. Silva, H. Werneck, C. Mito, A. C. M. Pereira, and L. Rocha,
“iRec: An interactive recommendation framework,” in Proc. SIGIR, 2022,
pp. 3165-3175.

Y. Liu, Y. Xiao, Q. Wu, C. Miao, J. Zhang, B. Zhao, and H. Tang,
“Diversified interactive recommendation with implicit feedback,” in Proc.
AAAI 2020, pp. 4932-4939.

S. M. T. Zaidi, P. Chadalavada, H. Ullah, A. Munir, and A. Dutta,
“Cascaded deep reinforcement learning-based multi-revolution low-thrust
spacecraft orbit-transfer,” IEEE Access, vol. 11, pp. 82894-82911, 2023.
Y. Zhang, R. Li, Y. Zhao, R. Li, Y. Wang, and Z. Zhou, ‘“Multi-agent deep
reinforcement learning for online request scheduling in edge cooperation
networks,” Future Gener. Comput. Syst., vol. 141, pp. 258-268, Apr. 2023.
X. Chen, S. Li, H. Li, S. Jiang, Y. Qi, and L. Song, “Generative adversarial
user model for reinforcement learning based recommendation system,” in
Proc. ICML, vol. 97, 2019, pp. 1052-1061.

H. Chen, C. Zhu, R. Tang, W. Zhang, X. He, and Y. Yu, “Large-scale
interactive recommendation with tree-structured reinforcement learning,”
IEEE Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 4018-4032, Apr. 2023.
S. Zhou, X. Dai, H. Chen, W. Zhang, K. Ren, R. Tang, X. He, and
Y. Yu, “Interactive recommender system via knowledge graph-enhanced
reinforcement learning,” in Proc. SIGIR, 2020, pp. 179-188.

J. Wu, Z. Xie, T. Yu, H. Zhao, R. Zhang, and S. Li, “Dynamics-aware
adaptation for reinforcement learning based cross-domain interactive
recommendation,” in Proc. SIGIR, 2022, pp. 290-300.

Y. Lei and W. Li, “Interactive recommendation with user-specific deep
reinforcement learning,” ACM Trans. Knowl. Discovery Data, vol. 13,
no. 6, p. 61, 2019.

L. Zou, L. Xia, P. Du, Z. Zhang, T. Bai, W. Liu, J. Nie, and D. Yin,
“Pseudo dyna-Q: A reinforcement learning framework for interactive
recommendation,” in Proc. WSDM, 2020, pp. 816-824.

L. Ren and W. Wang, “A granular SVM-based method for top-N web
services recommendation,” IEEE Trans. Services Comput., vol. 15, no. 1,
pp. 457-469, Jan. 2022.

D. Zhao, Z. Zhou, W. Zhang, S. Deng, X. Xue, and W. Gaaloul,
“CSTL: Compositional signal temporal logic for adaptive edge service
monitoring,” IEEE Trans. Services Comput., vol. 17, no. 2, pp. 482-496,
Mar./Apr. 2024.

D. Zhao, Z. Zhou, Z. Cai, S. Yangui, and X. Xue, “ASTL: Accumulative
STL with a novel robustness metric for IoT service monitoring,” IEEE
Trans. Mobile Comput., vol. 22, no. 10, pp. 5751-5768, Oct. 2023.

X. Wang, X. Liu, J. Liu, X. Chen, and H. Wu, “A novel knowledge graph
embedding based API recommendation method for mashup development,”
World Wide Web, vol. 24, no. 3, pp. 869-894, May 2021.

X. Wang, H. Wu, and C.-H. Hsu, “Mashup-oriented APl recommen-
dation via random walk on knowledge graph,” IEEE Access, vol. 7,
pp. 7651-7662, 2019.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. ICLR, 2017, pp. 1-14.

X. Wang, X. He, Y. Cao, M. Liu, and T. Chua, “KGAT: Knowledge
graph attention network for recommendation,” in Proc. SIGKDD, 2019,
pp. 950-958.

Q. V. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proc. ICML, vol. 32,2014, pp. 1188-1196.

K. Cho, B. van Merrienboer, C. Giilgehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘“Learning phrase representations using RNN
encoder—decoder for statistical machine translation,” in Proc. EMNLP,
2014, pp. 1724-1734.

H. van Hasselt, A. Guez, and D. Silver, “‘Deep reinforcement learning with
double Q-learning,” in Proc. AAAI 2016, pp. 2094-2100.

M. Liu, Z. Tu, Y. Zhu, X. Xu, Z. Wang, and Q. Z. Sheng, “‘Data correction
and evolution analysis of the ProgrammableWeb service ecosystem,”
J. Syst. Softw., vol. 182, Dec. 2021, Art. no. 111066.

B. Bai, Y. Fan, K. Huang, W. Tan, B. Xia, and S. Chen, “Service
recommendation for mashup creation based on time-aware collaborative
domain regression,” in Proc. IEEE Int. Conf. Web Services, Jun. 2015,
pp. 209-216.

R. Yan, Y. Fan, J. Zhang, J. Zhang, and H. Lin, “Service recommendation
for composition creation based on collaborative attention convolutional
network,” in Proc. IEEE Int. Conf. Web Services (ICWS), Sep. 2021,
pp- 397-405.

VOLUME 12, 2024

(43]

[44]

Y. Wang, A. Zhou, Q. Huang, X. Wang, and B. Jiang, “PAREIL: A
progressive approach for web API recommendation by combining explicit
and implicit information,” Inf. Softw. Technol., vol. 162, Oct. 2023,
Art. no. 107269.

T. Yu, D. Yu, D. Wang, and X. Hu, “Web service recommendation for
mashup creation based on graph network,” J. Supercomput., vol. 79, no. 8,
pp. 8993-9020, May 2023.

MINGWEI ZHANG was born in Tsingtao, Shan-
dong, China, in 1979. He received the B.E., M.E.,
and Ph.D. degrees in computing science and tech-
nology from Northeastern University, Shenyang,
China, in 2002, 2005, and 2011, respectively.
From 2019 to 2020, he was a Visiting Scholar
with the Royal Melbourne Institute of Technology,
Australia. He has been a Teacher, since 2005, and
an Associate Professor with the Software College,
Northeastern University, since 2016. His research

interests include recommender systems, graph representation, and service
computing.

YINGIJIE QU was born in Tangshan, Hebei, China,
in 1998. She received the bachelor’s degree in soft-
ware engineering from Northeast Normal Univer-
sity, Jilin, China, in 2021. She is currently pursuing
the master’s degree in software engineering with
the Software College, Northeastern University,
Shenyang, China. Her research interests include
service computing and recommender systems.

YAGE LI was born in Changde, Hunan, China,
in 1998. He received the bachelor’s degree in
metallurgical engineering from Northeastern Uni-
versity, Shenyang, China, in 2021, where he is
currently pursuing the master’s degree in soft-
ware engineering with the Software College. His
research interests include reinforcement learning
and recommender systems.

XINGYU WEN was born in Liaoyang, Liaon-
ing, China, in 1998. He received the bachelor’s
degree in software engineering from Northeastern
University, Shenyang, China, in 2021, where
he is currently pursuing the master’s degree in
software engineering with the Software College.
His research interests include deep learning and
itinerary recommendation.

Yl ZHOU was born in Bengbu, Anhui, China,
in 2000. He received the bachelor’s degree in
IoT engineering from Anhui University, Hefei,
China, in 2021. He is currently pursuing the
master’s degree in software engineering with
the Software College, Northeastern University,
Shenyang, China. His research interests include
service computing and recommender systems.

90217

