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ABSTRACT This work contributes to the comprehension of Bayes’ theorem inclusive Bayesian probabilities
and Bayesian inferencing within the framework of STEM (Science, Technology, Engineering, Arts, and
Mathematics) and cognitive learning w.r.t Bloom’s taxonomy (BT). Bayes’ theorem is taken as a crucial
statistical instrument employed in the development of intelligent systems and the management of risks,
commonly utilized by engineers for tasks in machine learning and managerial decision-making. The
fundamental concept behind Bayes’ theorem revolves around comprehending the degree of truth within the
confines of an explicit perspective. This involves partitioning the entire sample space of possible evidence
and utilizing the subset containing the relevant perspective to estimate the uncertainty of an event or the
reliability of a model. However, it is often found difficult for students to understand Bayes’ theorem to
the level of applying it to real-world problems. Considering this, the proposed learning method in this paper
elucidated the acquisition of Bayes’ mathematical formulation by leveraging computational thinking, leading
to the development of a computational model. The proposed model is named the Bayesian Computational
Learning Model (BCLM). Subsequently, we have probed the utility of BCLM in the design and plan of
learning activities, coherent to the STEM paradigm and BT cognitive learning hierarchy.

INDEX TERMS Bloom’s taxonomy, Bayes’ theorem, computational thinking, computer simulations,
decision making, engineering education, frequentist, intelligent systems design, machine learning, project
management, risk analysis, STEM.

I. INTRODUCTION
Bayes’ theorem is a fundamental principle applied in prob-
ability and statistics to determine the likelihood of an event
happening, given that another event has already occurred.
This theorem enables the assessment of the influence of one
event on another, highlighting the interdependence between
them. This interdependence can also be on a series of events
that have occurred independently already, also called naive
Bayes’. Mathematically if a and b are two dependent events
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such that b has occurred already and then the occurrence of a
is to be observed, then the subsequent occurrence of a, i.e. a|b,
can be ascertained by using Bayes’ theorem as introduced in
Eq. (1).

P(a|b) =
P (a)P (b|a)

P (b)
(1)

This is the famous Bayes’ equation, credited to Thomas
Bayes but published posthumously in 1763 [1]. In Eq. (1)
the components making up the Bayes’ theorem recipe are as
follows:
P(a) is the prior probability of the event a.
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P(b|a) is the likelihood.
P(b) is the total marginal probability of the event b or

evidence.
P(a|b) is the posterior probability of a given b has occurred.
Prior probability refers to the initial belief of the variable

under consideration before incorporating any evidence. Fol-
lowing the receipt and utilization of the evidence’s likelihood,
the prior probability undergoes an update, and amodified ver-
sion of this probability is obtained as posterior. Both posterior
and marginal likelihood represent conditional probabilities.
Marginal likelihood in Eq. (1), does not alter the config-
uration of the posterior probability but merely adjusts its
scale.

The concept of prior is synonymous with the idea of per-
spective. Therefore, any alteration in the prior or perspective
will consequently impact the posterior. It is imperative to
acknowledge this aspect when addressing problems involv-
ing Bayes’ theorem. To comprehend the impact of prior
on posterior and then properly apply (1), different learning
techniques can be used. However, when conveying infor-
mation to engineering students, it is beneficial if they can
grasp the subject through a computational approach. Com-
putational thinking (CT) enhances problem-solving abilities
and develops technology-driven solutions [2]. This capacity
to comprehend information and think in a manner that aligns
with technological procedures is not only vital for an engi-
neering student’s professional preparedness but also helps in
achieving the learning goals of solving complex engineering
problems (CEP) and problem-based learning (PBL) in a more
strategic way as required by STEM learning architype and
Washington Accord which globally acknowledges tertiary
level engineering qualification [3].
Computational thinking (CT) requires the identification of

a precise, well-defined, step-by-step resolution to a problem.
It involves breaking down the problem into smaller parts, rec-
ognizing patterns, and eliminating extraneous details to allow
the solution to be replicated by humans, machines, and com-
puters. The computational thinking process can be divided
into four components or stages, namely 1) decomposition,
2) pattern recognition, 3) abstraction, and 4) algorithmic
thinking. Decomposition is meant to divide the problem into
smaller and easily understandable segments. In pattern recog-
nition connections are found between different segments of
the problem. They help to identify similar trends among the
decomposed segments. Abstracting involves extracting the
key information from each broken-down problem, helping to
generalize what needs to be done precisely to solve the entire
problem. This phase of computational thinking assists stu-
dents in recognizing how these crucial details can be applied
to resolve other aspects of the same problem. The ultimate
element or zenith of computational thinking is algorithmic
thinking. This involves establishing a systematic solution to
the problem, ensuring it can be reproduced for a consistent
and dependable result. In the context of an engineer’s contem-
porary understanding of computational thinking this solution

comprises a sequence of steps that can be executed either by
computers or humans partially or fully [4], [5], [6].
By applying the four components of computational think-

ing (CT), a student can readily attain the six hierarchical
stages of cognitive learning outlined in Bloom’s Taxonomy.
This approach also meets the criteria for STEM-based edu-
cation. STEM education, BT, and CT intersect to promote
a holistic approach to transforming engineering education,
emphasizing critical thinking, problem-solving, and creativ-
ity in the discipline [7], [8], [9], [10].

Researchers in [11] conducted a systematic review of
CT in math education, examining studies from 2006 to
2021 found in the Web of Science database. They selected
24 articles for detailed analysis based on education lev-
els, contexts, programming tools, and learning outcomes.
Their findings highlighted that geometrized programming
and student-centered approaches enhance learning in both CT
and math, emphasizing the interactive process of reasoning
mathematically and computationally.

In [12], researchers highlighted the simultaneous develop-
ment of mathematical and CT-related concepts and practices
across four math domains. They identified two key interac-
tions: using mathematical knowledge to create CT artifacts
and generating new mathematical knowledge through CT
practice. The study offered three new insights: (1) Mathe-
matical problem solutions should not be immediately obvious
to enhance learning; (2) Dynamic representations and imme-
diate visual feedback from programming tools aid student
learning; (3) Customization options in both problems and
tools enhance educational outcomes.

In [13], computational thinking (CT) is viewed as a bound-
ary object that bridges mathematics and computer science
in a school problem-solving context. The authors investi-
gated middle school students’ engagement in mathematical
problem-solving within the block-based programming envi-
ronment, Scratch, treating CT as an embedded boundary
object. By analyzing the boundary-crossing features of CT in
students’ Scratch artifacts related to symmetry and arithmetic
sequences, the study uncovered new avenues for exploring
CT as a boundary object in integrated STEM pedagogy.

Recent research has increasingly focused on integrating
computational thinking (CT) into mathematics education.
Despite many studies, there remains a lack of clear explana-
tions on how CT supports mathematics learning. Addressing
this research gap, the primary focus of this research is
to explore the integration of Bayesian theory within the
framework of computational thinking (CT) to enhance under-
standing and application in probabilistic scenarios. The
motivation for this research stems from the need to bridge the
gap between abstract statistical concepts and practical com-
putational skills, thereby fostering a more intuitive and robust
approach to data analysis and decision-making processes.
The main contributions of this work are aimed at providing
a comprehensive understanding of how Bayesian theory can
be revisited and applied through the lens of computational
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thinking. The research is motivated by the following key
objectives:

• Revisiting Bayes’ Theorem and Its Probabilities:
The research begins with a detailed examination of
Bayes’ theorem, emphasizing its application as a CT
problem. This revisitation is crucial for demystifying the
theorem and making it accessible to learners and prac-
titioners who may find traditional statistical approaches
challenging.

• Integration of CT Components:
The study investigates how the four core components of
computational thinking—decomposition, pattern recog-
nition, abstraction, and algorithmic thinking—can be
utilized to learn and comprehend probabilistic scenarios.
By decomposing complex problems into manageable
parts, recognizing patterns in data, abstracting key con-
cepts, and developing algorithmic solutions, the research
aims to create a structured approach to Bayesian
analysis.

• Bayesian Computational Thinking:
The research explores various probabilistic situations
where Bayesian computational thinking can be effec-
tively applied. It delineates the steps necessary to
achieve a comprehensive understanding and application
of Bayesian methods, providing a clear pathway for
learners to follow.

• Bayesian CT Learning Model:
A significant contribution of this work is the develop-
ment of Bayes’ CT learning model, which is designed to
enhance both descriptive and inferential statistical learn-
ing. This model serves as a practical guide for imple-
menting Bayesian methods within a CT framework,
thereby making statistical learning more interactive and
engaging.

• Correlation with Bloom’s Cognitive Learning
Paradigm:
The research examines the dynamics of applying
Bayesian CT in relation to Bloom’s cognitive learning
paradigm. By aligning Bayesian CT with the different
cognitive levels of Bloom’s taxonomy, the study aims
to enhance the educational impact of Bayesian learning,
ensuring that it caters to various stages of cognitive
development.

• Alignment with STEM Learning Paradigm:
Lastly, the research aligns the Bayesian CT learning
model with the STEM (Science, Technology, Engi-
neering, and Mathematics) learning paradigm. This
alignment underscores the interdisciplinary nature of
the research, highlighting its relevance and applicability
across different STEM fields. By integrating Bayesian
methods into STEM education, the research seeks to
foster a more holistic and practical approach to learning
and problem-solving.

This research is driven by the need to make Bayesian the-
ory more accessible and applicable through computational

FIGURE 1. Investigating Y after X .

thinking. By revisiting fundamental probabilistic concepts,
integrating core CT components, and aligning the learning
model with established educational paradigms, the study aims
to enhance both the teaching and application of Bayesian
methods. This work not only contributes to the academic
understanding of Bayesian computational thinking but also
provides practical tools and models for educators and practi-
tioners in various fields.

II. COMPUTATIONAL THINKING LEARNING MODEL
DEVELOPMENT OF BAYES’ THEOREM
A. DECOMPOSITION
To remember and understand (1), instead of memorizing it,
a simple decomposition of the problem can be made by
considering two distinct scenarios.

Cogitate two progressive and statistically dependent ran-
dom experiments ‘‘X ’’ and ‘‘Y ’’. Random experiment ‘‘X ’’
can result in either outcome ‘‘X ’’ or compliment ‘‘X ’’. Like-
wise random experiment ‘‘Y ’’ can yield ‘‘Y ’’ or compliment
‘‘Y ’’. The probabilities of all potential events can be illus-
trated through a tree diagram in Fig. 1. Likewise, initial
execution is made for random experiment ‘‘Y’’ followed by
the execution of ‘‘X’’. Fig.2 presents the methodology of X
investigation after Y .
Using basic set theory and rules for the probability of the

intersection of statistically dependent events, Fig. 1 and Fig. 2
can be related, and the following cases can be obtained.
Case 1:

Branch 1(Fig. 1.) = Branch 1(Fig. 2.)

P (X ∩ Y ) = P(Y ∩ X )

P (X)P (Y |X) = P (Y )P(X |Y )

P (Y |X) =
P (Y )P(X |Y )

P (X)
(2)

Here P (X) = P (Y )P (X |Y ) + P
(
Y

)
P

(
X |Y

)
(3)

Similarly,

P (X |Y ) =
P (X)P (Y |X)

P(Y )
(4)
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FIGURE 2. Investigating X after Y .

Here P (Y ) = P (X)P (Y |X) + P
(
X

)
P

(
Y |X

)
(5)

Case 2:

Branch 2 (Fig. 1.) = Branch 3(Fig. 2.)

P
(
X ∩ Y

)
= P(Y ∩ X )

P (X)P
(
Ȳ |X

)
= P

(
Y

)
P(X |Y )

P
(
Y |X

)
=
P

(
Y

)
P(X |Y )

P (X)
(6)

Here P (X) = P (Y )P (X |Y ) + P
(
Y

)
P

(
X |Y

)
(7)

Similarly,

P
(
X |Y

)
=
P (X)P

(
Y |X

)
P(Y )

(8)

Here P
(
Y

)
= P (X)P

(
Y |X

)
+ P

(
X

)
P

(
Y |X

)
(9)

Case 3:

Branch 3 (Fig. 1.) = Branch 2(Fig. 2.)

P
(
X ∩ Y

)
= P(Y ∩ X )

P
(
X

)
P

(
Y |X

)
= P (Y )P(X |Y )

P
(
Y |X

)
=
P (Y )P(X |Y )

P
(
X

) (10)

Here P
(
X

)
= P (Y )P

(
X |Y

)
+ P

(
Y

)
P

(
X |Y

)
(11)

Similarly,

P
(
X |Y

)
=
P

(
X

)
P

(
Y |X

)
P (Y )

(12)

Here P (Y ) = P (X)P (Y |X) + P
(
X

)
P

(
Y |X

)
(13)

Case 4:

Branch 4 (Fig. 1.) = Branch 4(Fig. 2.)

P
(
X ∩ Y

)
= P(Y ∩ X )

P
(
X

)
P

(
Y |X

)
= P

(
Y

)
P(X |Y )

P
(
Y |X

)
=
P

(
Y

)
P(X |Y )

P
(
X

) (14)

Here P
(
X

)
= P (Y )P

(
X |Y

)
+ P

(
Y

)
P

(
X |Y

)
(15)

Similarly,

P
(
X |Y

)
=
P

(
X

)
P

(
Y |X

)
P

(
Y

) (16)

Here P
(
Y

)
= P (X)P

(
Y |X

)
+ P

(
X

)
P

(
Y |X

)
(17)

Observing the aforementioned instances, it is noteworthy
that (2), (4), (6), (8), (10), (12), (14) and (16) represent
different expressions derived from the Bayes’ theorem. The
analysis above is focused on a straightforward scenario
with only two outcomes in the execution of each random
experiment. However, this can be expanded similarly to
accommodate a higher level of complexity with more than
two mutually exclusive outcomes.

B. PATTERN RECOGNITION AND PROBLEM ABSTRACTION
In all the Bayes theorem instances obtained from (2)
to (16), many recurring patterns can be identified showing
a common abstraction possible to various Bayes’ probabil-
ity problems. These common patterns are acknowledged as
follows.
1) Bayes’ probabilities are consistently identified within

categorical variables encompassing at least two
categories.

2) Within any Bayes’ problem, the unknown probability
invariably takes the form of a conditional probability.
Moreover, the question or problem in hand will consis-
tently furnish a counterpart in the reverse form of the
unknown conditional probability.

3) The problem can always be decomposed into two prob-
ability trees. One tree will contain all the probabilities
derived directly from the provided information, acting
as an input or data tree. This tree will also contain the
prior event. The unknown probability, as specified in
the question, becomes a branch in this second tree and
represents a conditional probability in it. This tree can
be termed an unknown tree or an output tree. Repre-
senting and abstracting the problems through probability
trees simplifies the numerical problem-solving process.
After making these probability trees, it is now only
required to identify the two intersections between known
and unknown trees which are equal to each other.
Subsequently, by applying algebraic manipulations, the
probability of the unknown branch can be determined as
outlined in (2) to (16).

4) Since the whole purpose of Bayes’ theorem is to find
how the prior probability of an event is updated in terms
of posterior probability after seeing the data. Hence the
final probability would always be determined such that
it will change the prior in any direction. Any alteration
in the prior results in the corresponding change in the
posterior. This aspect/ pattern is crucial to consider when
addressing Bayes’ theorem problems. Prior is equivalent
to the idea of perspective. In this context, different priors
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or perspectives can also be tested to evaluate their impact
on the posterior.

C. ALGORITHMIC THINKING
To streamline the process of solving Bayes’ theorem proba-
bilities, a methodical step-by-step approach reflecting algo-
rithmic thinking can be devised.

The following steps are employed when the question pro-
vides probabilities instead of explicit datasets, which would
otherwise provide counts for different categories of categori-
cal variables.

i. Start with the given provided conditional probability.
This conditional probability elucidates the initial random
experiment and would help develop the known or input
probability tree. For example, P(X |Y ) is interpreted first
random experiment and has mutually exclusive events
as Y or Ȳ and these are then followed by the random
experiment having mutually exclusive outcomes as X
or X̄ .

ii. Now create a probability tree diagram based on the
given conditional probability, such as P(X | Y ).
All the other probability values mentioned in the
question will be incorporated into this probability
tree.

iii. In a similar way create an output probability tree. The
output tree is the opposite of the probability tree made in
(ii). I.e., the subsequent random experiment in the input
probability tree would be the initial random experiment
in the output tree, and the initial random experiment of
the input tree would be the subsequent random experi-
ment of the output tree.

iv. Identify the branch in the output probability tree that
contains the unknown or required probability.

v. Now, establish the relationship between the intersecting
branches of the trees depicted in (ii) and (iii) that encom-
pass our unidentified conditional event. Accordingly, the
required Bayes’ probability can now be found using
procedures outlined in (2) to (16).

In the case of explicit datasets containing counts of the cate-
gories, we make use of cross-tabulation tables and clustered
bar charts for solving Bayes’ theorem probabilities. This solu-
tion provides all the probabilities to complete the branches of
unknown and unknown trees, hence solving Bayes’ theorem
probabilities.

D. WORKING EXAMPLE
Reference: Sedlmeir, [14].
‘‘The probability that a woman who undergoes a mammog-

raphy will have breast cancer is 1%. If a woman undergoing
a mammography has breast cancer, the probability that she
will test positive is 80%. If a woman undergoing mammog-
raphy does not have cancer, the probability that she will test
positive is 10%. What is the probability that a woman who
has undergone a mammography actually has breast cancer if
she tests positive?’’

FIGURE 3. Probability tree for the given information.

Solution Steps:
Consider the information provided in the above scenario as

follows:
C = Cancer is present
C = Cancer is not present
T+

= Cancer is tested positive
T−

= Cancer is tested is negative
i. Following the given problem, we need to determine P(C

|T+), which is the inverse of the provided information,
P(T+

| C). Thus, the task at hand involves solving this
problem using Bayes’ theorem.

ii. The given data shows that random experiments having
mutually exclusive outcomes as C or C occurred ear-
lier which is then subsequently followed by the random
experiment then the event of T+ or T−. This leads us to
the following probability tree diagram in Fig. 3. This is
the known tree.

iii. The tree diagram, including the entailed conditional
probability probabilities, is as in Fig. 4.

iv. Unknown probability is P(C|T+), whihx is in the second
branch of Fig. 6 after the event T+.

v. Relating two trees as stated in Section II,

P
(
C ∩ T+

)
= P

(
T+

∩ C
)

P (C)P
(
T+

|C
)

= P(T+)P(C|T+)

P(C|T+) =
P (C)P

(
T+

|C
)

P
(
T+

) (18)

Here,

P
(
T+

)
= P (C)P

(
T+

|C
)
+ P

(
C

)
P

(
T+

|C
)

(19)

Utilizing Fig. 3. in (18) and (19),

P
(
C |T+

)
= 0.0747 (20)

As can be seen from (20), there has been an increase in
P(C), i.e., chances of occurrence of cancer from 1% (given)
to 7.47% when the test result is positive.

It is evident from Bayes’(1) and the discourse spanning
from (2) to (20) that the numerical value of the posterior
probability is closely linked to the prior. The notion of prior
aligns seamlessly with the concept of perspective. Specifi-
cally in (2) and in all the subsequent instances fromBayes’(2)
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FIGURE 4. The unknown tree for given problem.

FIGURE 5. The known tree for the given problem.

FIGURE 6. The unknown tree for the given problem.

to (20), the posterior is directly proportional and consequently
equivalent to the product of the prior and an updating factor,
as articulated in (21).

posterior = prior × updating factor (21)

From (21), the updating factor can be written as (22)

updating factor =
likelihood
evidence

(22)

Hence (21) becomes (23) as in,

posterior = prior ×
likelihood
evidence

(23)

It is evident from (23) that within the entire evidence curve,
an increase in the area under the curve of likelihood cor-
responds to a higher updating factor for altering the prior.
To grasp this concept, let us revisit the illustrated example.
In it the determined posterior probability was as follows.

P
(
C |T+

)
=
P (C)P

(
T+

|C
)

P
(
T+

)
Rewriting it to separate the prior and updating factor as
in (23), gives (24),

P
(
C |T+

)
= P (C) ×

P
(
T+

|C
)

P
(
T+

) (24)

Substituting P
(
T+

)
from (19) gives (25) as in,

P
(
C |T+

)
= P (C) ×

P
(
T+

|C
)

P (C)P
(
T+ |C

)
+ P

(
C

)
P

(
T+ |C

)
(25)

Concentrating on the fraction indicating the updating factor
in (25), it is apparent that the event of T+ can occur either
after C or C events. Its intersection is present in both of
them. Furthermore, evidence supporting the outcome C will
also increase the product of P (C) and P

(
T+

|C
)
. Hence,

the fraction indicating the updating factor will increase.
On the contrary, evidence supporting the outcome C will
increase the product of P

(
C

)
and P

(
T+

|C
)
. This will

decrease the value of the updating factor. Therefore, the effect
of increasing and decreasing the updating factor alters the
prior respectively. This change in prior in the presence of
evidence is depicted in the form of posterior probability.

III. POSTERIOR AS A DISTRIBUTION
It is to be noted that the known or input tree in Fig. 1. has
a parameter in the first execution and then the data in the
second execution. On the contrary, in Fig. 2. i.e., the unknown
or output tree has data in the first execution and parameters
in the second execution. The parameter is a quantity from the
population that we are always interested in finding from the
given data that we collect. Since it is unknown, hence it is
estimated statistically and this estimation process is called
statistical inference. It is interesting to note that although
Bayes (1) to (17) can be mathematically manipulated in any
way to find any conditional probability, the most obvious
usage is to find a conditional probability that lies on one of
the branches of an unknown tree. Explicitly using Bayes’
theorem in this way reflects the idea of posterior proba-
bility as an estimated value of the parameter. The notion
of Bayesian thinking is, that we cannot estimate its value
from just nothing. There should be a perspective or prior
available to have an estimation about the parameter. This
estimated parameter value, in actuality, is called the posterior.
In this regard, the known tree provides the prior information.
It also provides us with evidence of a total marginal effect.
Therefore, the known tree can also be called the prior tree.
It is understandable that an unknown parameter cannot fully
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depend on prior information. However, there will be a degree
of dependency reflecting its uncertainty. Hence a prior must
be defined by a probability distribution.

The data fitting within the population defined by the
parameter has a certain likelihood. Likelihood is a conditional
probability of finding data or test statistics given the parame-
ter in the prior tree. It tells how well the data or test statistics
fit in the population defined by the parameter and is obtained
from the likelihood function of the parameter. However, it’s
not a probability distribution function or PDF because its
total area under the curve does not equal one. Multiplying
the prior with the likelihood transforms the latter into a PDF.
It peaks on the maximum likelihood value, which defines the
median of the likelihood function. Using this median as a
central value an interval can be defined on the PDF to contain
the required population parameter. This interval is called the
credible interval or CI.

The more informative the prior, the more posterior dis-
tribution for parameter estimation will follow the prior. The
more uninformative the prior, the more posterior distribution
will follow the likelihood of the data. An informative prior
means we have a good idea of the parameter of interest.
Hence posterior depends on the prior makes in a logical
way.

In Bayesian statistics, there isn’t typically a focus on find-
ing a single true value for a parameter. Instead, Bayesian
analysis provides a framework for quantifying uncertainty
about parameters by representing them as probability distri-
butions. Based on observed data through Bayes ’ theorem,
these distributions incorporate prior beliefs and update them.
The result is a posterior distribution representing the updated
uncertainty about the parameter after considering the data.
This approach acknowledges and quantifies uncertainty
rather than aiming for a single true value. [15].

In frequentist statistics, parameters are fixed quantities,
whereas in Bayesian statistics, the true value of a parameter
can be thought of as being a random variable to which a
probability distribution is assigned. Hence, giving the final
answer as a point value is not coherent with the idea of
Bayesian statistics. According to Bayesian statistics, an inter-
val showing some percentage of occurrence of the posterior
outcomew.r.t to prior follows the Bayesian thinking, and only
then can predictions and decision-making be made. In this
context of statistical inference, a parameter has a certain
degree of association between both the testing population
and the alternative population. Updating factor containing the
likelihood information in (22), besides updating the prior also
defines the fitness of data in the population of interest w.r.t to
the other (alternative) population.

IV. POSTERIOR ESTIMATION COMPUTATION MODEL
The ideas discussed in the previous section will now be
simulated to understand how change in priors can affect the
posterior and, more importantly, how Bayesian inferencing
works to accomplish this task. The working example dis-
cussed previously in (II) can be taken again for this purpose.

Our objective is to estimate a range of values of P (C) . This
is the unknown parameter of the population. To estimate its
values, we need to have observable data. Afterward, an appro-
priate statistical model can be used to relate the observable
data to the unknown population parameter. The statistical
model must be probabilistic. In this example, we used diag-
nostic tests to check the change in the probability of the
event of detecting cancer, i.e., equation sits complement C̄ .
Therefore, diagnostic tests are observable data. It can be
either obtaining positive tests, i.e. T+

∣∣C,T+
∣∣ C̄ or negative

tests, i.e. T−
|C,T−

|C̄ . Out of this, for illustration purposes,
we consider only one observable data, i.e. T+

|C .
We want to see how the number of obtaining T+

|C change
the P(C) in the population. A mathematical model that can be
used to relate the unknown parameter P(C) w.r.t no. of T+

|C
can be a Binomial distribution model from a Bernoulli pro-
cess. The assumptions satisfying the Bernoulli process for
this scenario are 1) Event of obtaining C is independent
2) Either we can have C or C̄ as success or failure and
3) P(C) and P(C̄) (either of which can be success or failure)
have a constant probability. Since we are interested in no.
of successes of (T+

|C) out of a given no. trials from an
experiment that follows a Bernoulli process, hence Binomial
distribution model can be used to relate the observed data
(T+

|C) with the unknown parameter value (C). The objective
is to estimate a range of values of P(C) using the observed
data follows a model comparison process using Bayesian
inferencing. The BCLM we made for Bay’s theorem in the
previous section (II) for performing estimations as a statistical
inference problem can be obtained as follows.

A. PROBLEM DECOMPOSITION
1. We start with the initial hypotheses, the null hypothesis

(H0) and alternate hypothesis (H1)
2. Using Bayes’ theorem (1 to 17), We can find P(H0|data)

and P(H1|data). This would mean making known and
unknown probability trees as done previously in Fig. 5.
and Fig. 6.

3. The Bayes’ theorem (1) can be generalized for any hypoth-
esis using appropriate intersections from Fig.5. and Fig. 6.
as in (26)

P (H |data) = P (H) ×
P (data|H)

P (data)
(26)

Here,
P (H |data) = posterior → degree of belief in H after
observing the data.
P (H) = prior → degree of belief in H before observing
the data.
P (data|H) = likelihood → the degree to which observed
data is likely under H .
P (data) = prior predictive → weighted average of
probabilities of observing data under all models being
considered.
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4. We start by writing Bayes’ theorem for two models, H0
and H1 as in (27) and (28)

P (H0|data) = P (H0) ×
P (data|H0)

P (data)
(27)

P (H1|data) = P (H1) ×
P (data|H1)

P (data)
(28)

5. In order to compare the model in (27) and (28), posterior
odd is formulated as in (29) and (30).

P (H0|data)
P (H1|data)

=
P (H0)

P (H1)
×
P (data|H0)

P (data|H1)
(29)

In (29),
P(data|H0)
P(data|H1)

→ is called updating factor or Bayes Factor
(BF01)
P(H0)
P(H1)

→ is called prior odds

Hence (29) can also be written as in (30)

P (H0|data)
P (H1|data)

=
P (H0)

P (H1)
× BF01 (30)

i.e.

Posterior odds01 = prior odds01 × Bayes Factor01

Posterior odds defined in (29) are for H0 compared to H1,
i.e. how likely H0 is true compared to H1 with the given data
or test statistics. To formulate posterior odds H1 compared to
H0, i.e. how likely H1 is true compared to H0 with the given
data or test statistics.

P (H1|data)
P (H0|data)

=
P (H1)

P (H0)
×
P (data|H1)

P (data|H0)
(31)

Or,

P (H1|data)
P (H0|data)

=
P (H1)

P (H0)
× BF10 (32)

i.e.

Posterior odds10 = prior odds10 × Bayes Factor10

Equations (30) and (32) are strictly comparisons between
two models defined by null hypothesis and alternate hypoth-
esis. These modeling give two conceptual definitions for the
Bayes factor: 1) the factor by which the observed data is more
likely under one model/ hypothesis compared to the other,
and 2) the factor by which the prior odds between models are
updated after observing data. Odds are ratios of probabilities.
The prior odds can be conceptualized such that e.g. for odds
to 1 : 1 →

P(H0)
P(H1)

= 1. This means both models are equally

likely. Similarly, if the odds are 3 : 1 →
P(H0)
P(H1)

= 3. This
means H0 is 3 times more likely than H1. These are a priori
knowledge. Required posterior probability can now be easily
determined as the subsequent CT steps explain.

B. PATTERN RECOGNITION AND ABSTRACTION
After obtaining posterior odds, posterior probability can be
abstracted and estimated using the pattern obtained from
model comparison, (30) and (32). A simple derivation can be
illustrated from (33) to (37) as,

Using axioms of probability theory.

P (H0/data) + P (H1/data) = 1 (33)

Therefore,

P (H1/data) = 1 − P (H0/data) (34)

This gives,

Posterior odds01 =
P (H0/data)

1 − P (H0/data)
(35)

A little algebraic manipulation gives (36)

P (H0/data) =
Posterior odds01

1 + Posterior odds01
(36)

Likewise,

P (H1/data) =
Posterior odds10

1 + Posterior odds10
(37)

In general,

Posterior probability =
Posterior odds

1 + Posterior odds
(38)

C. ALGORITHMIC THINKING
Abstraction of the problem suggests that the Bayes Factor or
BF is the key idea in Bayesian inferencing. Using this, both
posterior odds and posterior probability can be determined
easily. Bayes Factor can be found for both BF01 and BF10
case. Algorithmic intuition can be developed using the fol-
lowing steps.

1. Decide upon prior odds or prior. General practice is to
start with a uniform prior, i.e., 1:1. Hence, both models
are equally probable.

2. For a particular Bayes Factor (i.e. either for BF01 and
BF10), start by plotting prior and posterior on the same
plot.

3. Find the value on the vertical axis forP(H ), which isP(H0)
on both the prior and posterior curves for BF01 and P(H1)
on both the prior and posterior curves for BF10. Bayes
Factor can be found by finding the magnitude of change
from before posterior values of P(H ). The values of prior
and posterior can be read directly from their corresponding
curves in this plot.

4. For example, forBF01 case, depending onwhether prior or
posterior has a higher value for the testing value of P(H0),
will suggest if given data has increased or decreased our
belief in the testing model/ hypothesis (P(H0) in this case).

5. After finding the Bayes Factor, apply (36) or (37) to
find posterior probability and its distribution in a certain
credible interval (CI).
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D. WORKING EXAMPLE
‘‘The probability that a woman who undergoes a mammog-
raphy will have breast cancer is 1%. If a woman undergoing
a mammography has breast cancer, the probability that she
will test positive is 80%. If a woman undergoing mammog-
raphy does not have cancer, the probability that she will test
positive is 10%. What is the probability that a woman who
has undergone a mammography actually has breast cancer if
she tests positive?’’

Solution Steps:
Consider the information provided in the above scenario as

follows:
C = Cancer is present
C = Cancer is not present
T+

= Cancer is tested positive
T−

= Cancer is tested is negative
It is required to find the probability of detecting cancer

provided memmpgraphy is obtained positive, i.e. P(C|T+).
Earlier, we solved this problem using Bayes’theorem. This

time, we will apply Bayesian inferencing methods. P(C)
is the parameter we want to obtain using the data which
is having a postitive mammography test, i.e. P(C|T+) is
required. Previously there was just P(T+

|C) available. How-
ever, we now want to solve this as an inferential problem by
estimating the unknown parameter P(C) using prior informa-
tion about it as provided in the question and mammography
test results as data. For this, we need a sample of data con-
taining a no. of (T+

|C) in the total sample size. Hence from
the given data, we can then infer P(C) which is the same as
finding P(C/T+). The ultimate goal is to find how data or
evidence is going to change the chance of occurance of the
event. As discussed in developing the BCLM, we proceed
using the following steps.
1. We start by conducting a model comparison using (29),

i.e. finding P(H0/data)
P(H1/data)

→ Posterior odds
We need two ingredients to complete the recipe of finding

posterior odds: 1) prior odds and 2) Bayes Factor. For prior
odds, we make the following hypotheses;

P(H0) = P (C) = 0.01

P (H1) = P
(
C̄

)
̸= 0.01

These hypotheses are developed using the information pro-
vided in the given working problem. We aim to compare
H0 against H1, hence we will use P(H0)

P(H1)
as our prior odds

and BF01 as Bayes Factor. To perform this we computer
simulations on JASP®.

2. In order to apply Bayes inferencing to find the uncer-
tainty in P(C) using the positive test results, we need to
have a probability distribution to model this uncertainty.
As explained earlier, getting a cancer patient in the trial can
be taken as Bernoulli trials, hence our unknown population
parameter P(C) can be taken as the following Binomial PDF.
Wemake a few hypothetical assumptions to simulate this idea
and also perform the algorithmic thinking specified in (B and
C). These are given as case 1, case 2, and case 3. Alterations

FIGURE 7. Bayesian binomial test with uniform prior.

FIGURE 8. Bayesian binomial test with non-uniform prior (2:1).

FIGURE 9. Bayesian binomial test with non-uniform prior (3:1).

in the cases are made by trying three different priors. In all
cases, simulations were made considering there were in total
158 subjects and 8 were successes, i.e. having (T+

|C).
In all the simulated three cases, BF01 is changed by chang-

ing prior. This shows prior effects significantly on posterior
probability. Progression from cases 1, 2 to 3, shows howBF01
changes our belief in H0 from low to high value. Alongside
Fig. 7, Fig. 8 and Fig. 9 also indicated the estimated posterior
probability values at 95% CI. Posterior distribution follows
the likelihood shape of Binomial distribution for this particu-
lar example, with a peak at P(H0) = P(C) = .01or1%.

Case 1:Uniform Prior (1:1)
Case 2:Non Uniform Prior 2:1
Case 3:Non Uniform Prior (3:1)
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V. DISCUSSION
The study presented in this paper investigates the integra-
tion of Bayes’ theorem within the framework of computa-
tional thinking (CT) to enhance probabilistic reasoning. This
approach aims to bridge the gap between abstract statis-
tical concepts and practical computational skills, fostering
a more intuitive and robust method for data analysis and
decision-making processes. The research highlights several
key contributions. First, it revisits Bayes’ theorem, empha-
sizing its application as a computational thinking problem,
which helps demystify the theorem and make it more acces-
sible to learners. Second, it explores how the four components
of CT—decomposition, pattern recognition, abstraction, and
algorithmic thinking—can be utilized to understand and solve
probabilistic scenarios. By decomposing complex problems
into manageable parts, recognizing patterns, abstracting key
concepts, and developing algorithmic solutions, the study
provides a structured approach to Bayesian analysis.

Furthermore, the research develops a Bayesian CT learning
model that enhances both descriptive and inferential statis-
tical learning. This model serves as a practical guide for
implementing Bayesian methods within a CT framework,
making statistical learning more interactive and engaging.
The study also examines the alignment of Bayesian CT with
Bloom’s cognitive learning paradigm and the STEM learning
paradigm, ensuring that the educational impact of Bayesian
learning is maximized across different cognitive levels and
STEM fields.

STEM education incorporates computational thinking as a
fundamental skill, especially in technology and engineering
fields [16], [17]. The BCLM model proposed in this work
encourages students to approach problems systematically and
analyze the data using algorithmic working steps, which
are essential skills in STEM disciplines. STEM paradigm
also aligns with the cognitive levels of BT. Researchers
believe that the top four levels of cognitive BT (apply-
ing, analyzing, evaluating, and creating) are best reflected
in STEM-based lessons and classes. The proposed BCLM
allows students to apply Bayes’ formula (1) to any relevant
scenario if it can be mapped and fit with the requirements
and conditions for BCLM. This provides students with a
drill to analyze, apply, and evaluate which problem is actu-
ally a Bayesian question and which is not. These working
methodologies alleviate students beyond remembering and
understanding to higher degrees of the cognitive learning
ladder. The significant focus of STEM is also critical thinking
and being able to evaluate multiple solutions to a prob-
lem and finally find the best fit for the problem.Hence, STEM
and cognitive levels of BT are well groomed in the proposed
BCLM. Hence, by using BCLM, instructors can enterprise
STEM-based lessons, CEPs, and PBL activities that incorpo-
rate computational thinking stratagems aligned and progress-
ing with Bloom’s Taxonomy for cognitive learning.

In essence, this research offers a comprehensive under-
standing of how Bayesian theory can be revisited and applied
through computational thinking, providing practical tools

and models for educators and practitioners in various fields.
This work not only contributes to the academic understand-
ing of Bayesian computational thinking but also promotes
a more holistic and practical approach to learning and
problem-solving in probabilistic contexts.

Algorithmic thinking outlined in Section II summarizing
the proposed BCLM as descriptive statistics, is presented in
the pseudocode as follows:
BEGIN

// Start with the given conditional probability
INPUT conditionalProbability

// Interpret the initial random experiment
initialExperiment < − INTERPRET conditionalProbability

// Create input probability tree based on the given conditional
probability
inputProbabilityTree <

−CREATE_PROBABILITY_TREE(conditionalProbability)

// Incorporate all given probability values into the input prob-
ability tree
INCORPORATE_VALUES(inputProbabilityTree, given-
Probabilities)

// Create output probability tree (reverse of input tree)
outputProbabilityTree <

− CREATE_OUTPUT_PROBABILITY_TREE(
inputProbabilityTree)

// Identify the branch in the output probability tree that con-
tains the unknown or required probability
unknownProbabilityBranch <-
IDENTIFY_BRANCH(outputProbabilityTree, unknown-
Probability)

// Establish the relationship between intersecting branches of
the input and output trees
relationship <- ESTABLISH_RELATIONSHIP
(inputProbabilityTree, outputProbabilityTree, unknownProb-
abilityBranch)

// Calculate the required Bayes’ probability using established
relationships
requiredBayesProbability <-
CALCULATE_BAYES_PROBABILITY(relationship, pro-
cedures)
// Output the required Bayes’ probability
OUTPUT requiredBayesProbability

END
Algorithmic thinking outlined in Section IV summarizing

the proposed BCLM as inferential statistics, is presented in
the pseudocode as follows:
BEGIN

// Step 1: Decide upon prior odds or prior
priorOdds <- 1:1 // Uniform prior
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// Step 2: Plot prior and posterior for Bayes Factor (BF_01
and BF_10)
PLOT priorCurve, posteriorCurve

// Step 3: Find the value on the vertical axis for P(H) for both
prior and posterior curves
priorP_H0 <- FIND_VALUE(priorCurve, P(H_0))
posteriorP_H0 <- FIND_VALUE(posteriorCurve, P(H_0))
priorP_H1 <- FIND_VALUE(priorCurve, P(H_1))
posteriorP_H1 <- FIND_VALUE(posteriorCurve, P(H_1))

// Step 4: Calculate Bayes Factor by finding the magnitude of
change from prior to posterior values
IF PLOT_TYPE == ‘‘BF_01’’ THEN
bayesFactor < −

CALCULATE_MAGNITUDE_CHANGE(priorP_H0, pos-
teriorP_H0)
ELSE

bayesFactor < −

CALCULATE_MAGNITUDE_CHANGE(priorP_H1, pos-
teriorP_H1)
END IF

// Step 5: Analyze whether belief in the hypothesis has
increased or decreased
IF priorP_H0 < posteriorP_H0 THEN

beliefChange <- ‘‘increased’’
ELSE

beliefChange <- ‘‘decreased’’
END IF

// Step 6: Apply formulas (36) or (37) to find posterior prob-
ability and its distribution
posteriorProbability <- APPLY_FORMULA(bayesFactor,
formula_36_or_37)
credibleInterval < −

FIND_CREDIBLE_INTERVAL(posteriorProbability)

// Output the results
OUTPUT bayesFactor, posteriorProbability, credibleInter-
val, beliefChange

END

VI. CONCLUSION
In this work, we proposed a Bayesian Computational Learn-
ing Model as an auxiliary tool to learn better and understand
Bayesian statistics. We have produced a STEM-based learn-
ing paradigm in BCLM, simultaneously satisfying the needs
of BT for cognitive learning inclusive of remembering,
understanding, applying, analyzing, evaluating, and creating.
The STEM and BT accomplishment is made possible using
computational thinking (CT). STEM education, Bloom’s
Taxonomy, and computational thinking are interconnected
through their shared focus on fostering critical thinking,
problem-solving skills, and analytical abilities. Computa-
tional thinking aligns with various levels of BT. For instance,
remembering and understanding involve recognizing patterns

and understanding algorithmic concepts, while applying and
analyzing in BCLM require students to use computational
thinking to solve the problem at hand and evaluate solu-
tions. Furthermore, creating involves designing innovative
solutions in any domain of study using BCLM.

We anticipate that the proposed BCLM for learning
Bayesian statistics will have a significant impact on Engineer-
ing Education in the paradigm of data sciences and analysis.
However, at present there are limitations leading to future
directions of the research.

The Bayesian Computational Learning Model (BCLM)
may be challenging for students with limited prior knowledge
of Bayesian statistics or computational thinking. The com-
plexity of integrating multiple disciplines (STEM, Bloom’s
Taxonomy, and computational thinking) might overwhelm
beginners. Effective implementation of BCLM in diverse
educational settings requires significant resources, including
trained educators, appropriate technological infrastructure,
and curriculum adjustments. Schools with limited resources
may find it difficult to adopt and sustain thismodel. Assessing
students’ performance in such an integrated learning model
can be complex. Traditional assessment methods might not
fully capture the development of skills in computational
thinking and the application of Bayesian statistics. The
model’s effectiveness may vary across different fields of
study and educational levels. While it shows promise in engi-
neering and data sciences, its adaptability and impact in other
domains need further investigation. The process of mastering
both Bayesian statistics and computational thinking within
this integrated framework can be time-consuming, potentially
leading to slower progress in the initial stages of learning.

Future research should focus on developing comprehen-
sive curricula that gradually introduce Bayesian statistics and
computational thinking concepts, tailored to different edu-
cational levels and fields of study. Establishing professional
development programs to train educators in implementing
BCLM effectively will be crucial. These programs should
cover both the theoretical aspects and practical applications
of the model. Focus must be made to investigate scalable
strategies for implementing BCLM in diverse educational set-
tings, particularly in resource-constrained environments. This
could involve developing low-cost technological solutions
and creating adaptable teaching materials. Concentration is
required to develop innovative assessment tools that can
accurately measure the development of students’ skills in
computational thinking and Bayesian statistics within the
BCLM framework. These tools should be able to capture
both the cognitive and practical aspects of learning. Research
should be initiated to conduct longitudinal studies to eval-
uate the long-term impact of BCLM on students’ learning
outcomes and career trajectories. This will provide valuable
insights into the model’s effectiveness and areas for improve-
ment. It is entailed to explore the application of BCLM in
other interdisciplinary fields beyond engineering and data
sciences. Understanding how this model can be adapted and
applied in various contexts will enhance its utility and impact.
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Leverage can be initiated in advancements in educational
technology, such as artificial intelligence and virtual reality,
to create immersive learning environments that support the
BCLM framework. These technologies can provide personal-
ized learning experiences and enhance students’ engagement.

By addressing these limitations and pursuing these future
directions, the potential of the Bayesian Computational
Learning Model to transform education, particularly in the
context of data sciences and engineering, can be fully
realized.
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