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ABSTRACT The increasing misuse of drones poses significant safety and security risks, including illegal
transportation of prohibited goods, interference with manned aircraft, and threats to public safety. This has
raised concerns about the increased use of unmanned aerial vehicles (UAVs) due to their small size. Address-
ing these concerns has sparked significant research into developing effective drone detection systems. Deep
learning, especially YOLO, is known as a lightweight model that offers real-time detection capabilities.
Attention mechanisms have proven effective in many studies for detecting objects. This research focused on
optimizing the YOLOv8n-based model by incorporating the Attention Module into the neck and improving
the detection head by adding a tiny detection head, making the model work efficiently in detecting objects of
tiny size. To obtain the most effective model, multiple training sets have been experimented with involving
different types of attention modules, such as the Convolutional Block Attention Module (CBAM), ResBlock
CBAM, Global Attention Mechanism (GAM), and Efficient Channel Attention (ECA). Therefore, based
on the results, YOLOv8n + ResCBAM + high-resolution detection head, called P2-YOLOv8n-ResCBAM
significantly improves the mean Average Accuracy (mAP) from 90.3% to 92.6%. Although the increased
model complexity reduced frames per second (fps) from 263 to 166, the detection speed remains suitable
for real-time applications. The proposed model effectively distinguishes drones from birds and recognizes
them at long distances, demonstrating its potential for enhancing aerial surveillance and security measures.

INDEX TERMS Artificial intelligence, deep learning, convolutional neural networks, small drone detection,
YOLOv8, attention mechanism, visual object detection, real-time detection, aerial surveillance, autonomous
systems.

I. INTRODUCTION
The rapid spread of drones has led to significant progress
in multiple industries, such as delivery, agriculture, and
surveillance. Nevertheless, the rise in drone utilization has
resulted in heightened apprehensions regarding security and
privacy, including the illicit conveyance of prohibited items,
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disruption of manned aircraft operations, and jeopardizing
public well-being. To tackle these challenges, efficient drone
detection systems must be used to accurately differentiate
drones from other objects in real-time.

Drones come in many sizes, from small to large, and are
often used in many industries such as monitoring, transporta-
tion, communication, and photography [1], [2], [3]. Hence,
the proliferation of drones proves the advantages of improv-
ing our daily lives [4]. Nevertheless, while drones provide
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numerous advantages to society, their misuse can pose sig-
nificant risks to safety, privacy, and security [5], [6]. Threats
include privacy invasion, target attacks, breach of the No-Fly
Zone (NFZ), and illegal transportation for smuggling, such
as explosive things or drugs [3], [5], [7], [8], [9], [10], [11],
[12]. The increase in the use of drones has sparked public
concerns, and if this trend continues unabated, we may face
a future where the sky is drowned by drones [3]. Therefore,
implementing a drone detection system is an important step
in reducing and dealing with this issue. This has increased
researchers’ awareness of the importance of developing an
effective drone detection system. Various techniques have
been introduced in the development of this system.

Compared to traditional methods, deep learning offers
superior capabilities in automatically extracting and learning
target features directly from data [13]. Deep learning is a
branch of artificial intelligence (AI), using neural networks
to process data. Through machine learning, these networks
can be trained on vast data sets, allowing them to learn and
recognize patterns autonomously. In essence, AI systems can
emulate the functioning of the human brain by predicting
outcomes based on observed patterns. Due to the advanced
technology, its increasing popularity can be attributed to the
accessibility of training data, advanced hardware, and com-
putational resources [14], which have significantly expanded
the use of deep learning techniques. As a result of these
technological advances, the use of deep learning is increas-
ing in various industries, especially in object detection [15].
Various techniques are available within the realm of Convo-
lutional Neural Networks (CNNs). Object detection stands
out as a superior choice over conventional radar and infrared
in developing drone detection system [6], [16]. In general,
object detection involves two main tasks: localization and
classification. This task aims to determine the exact location
of a target object in an image or video and identify the
category of the object.

Object detection has two main approaches: one-stage and
two-stage detectors. One-stage detectors, such as You Only
Look Once (YOLO) [17] and Single Shot MultiBox Detec-
tor (SSD) [18], directly predict bounding boxes and class
labels at the same stage. In contrast, two-stage detectors, such
as Region-based Convolutional Neural Networks (R-CNN)
[19], Fast R-CNN [20] and Faster R-CNN [21], involves two
stages to identify the potential area and classify the targeted
objects within this area. A study conducted by [22] aimed to
determine the optimal model between Faster R-CNN, YOLO,
and SSD to detect drones in various environments, focusing
speed and accuracy. The results demonstrates that although
SSD better in detection ability, Faster R-CNN and YOLO
exhibit superior recognition abilities. However, according
to [23], among various algorithms under object detection,
YOLO offers a balanced combination of speed and accuracy,
making it as a fast and reliable detection model. YOLO was
designed expressly to overcome problems involving speed of
inference while conserving competitive accuracy [6]. This is

achieved by simultaneously performing bounding box deter-
mination and classification in the same stage. Researchers
have continued to improve YOLO since its launch in 2015,
leading to multiple versions. Figure 1 shows a timeline for
the many variants of YOLO. Figure 2 gives an overview of
its general functionality.

When choosing an efficient model to create a real-time
drone detection system, YOLO-based models have per-
formed well in many studies. As evidence, many studies
have proven its effectiveness by demonstrating good results
in terms of accuracy and speed. The YOLOv4 model was
chosen for developing a drone detection system in a study
by [9]. Using the transfer learning method, this model has
outperformed Faster R-CNN in terms of mean Average Pre-
cision (mAP) after tuning the model. A study by [24] that has
trained a fine-tunedYOLOv5model, has achieved the highest
precision, 97.4 % and at the same time surpassed YOLOv3,
YOLOv4 and Mask R-CNN. In addition, this model also
demonstrated a good performance in detecting small drones.
To detect small objects and balance between accuracy and
speed, [25] has modified the YOLOv8m-based model by
adding a P2 Layer and Multi-Scale Image Fusion (MSIF).
The highest frame per second (fps), 45.7 fps, shows that this
method can detect drones very fast, even if they are small
objects.

The capability of the attention mechanism to improve the
model performance during training is proven by many stud-
ies, such as [6], [26], [27], [28], [29], [30], [31], and [32].
Selective hearing refers to the cognitive process in which
individuals prioritize and concentrate on significant auditory
stimuli amidst a distracting or noisy environment, rather than
attempting to process all auditory information simultane-
ously. The attention module in deep learning operates on
the same principle, enabling the model to concentrate on
significant elements while disregarding irrelevant informa-
tion selectively. Due to various elements like edges, textures,
and background in the input image, the model faces chal-
lenges in accurately identifying the specific object in the
image. By incorporating an attention module into the original
architecture, the model can effectively concentrate on cap-
turing the specific details of the targeted object, resulting in
improved performance. Despite technological progress, the
task of detecting small drones remains difficult because of
their compact size and the intricate process of differentiating
them from similar entities such as birds. The objective of this
study is to improve the performance of the YOLOv8 model
by integrating different attention modules, thereby increasing
its precision in detecting small drones.

This paper proposes an effective method to develop drone
detection that can distinguish between birds and drones and
detect them even at long distances. Theworks done, including
modifying the YOLOv8n model, are as follows:

1. Builds a new dataset by gathering drones and birds of a
small size from numerous available datasets.
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FIGURE 1. The evolution of the YOLO family.

FIGURE 2. A simplified diagram of the YOLO mechanism.

2. Employs four different attention mechanisms to the neck
part of the YOLOv8n model where it involves Con-
volutional Block Attention Module (CBAM), Global
Attention Mechanism (GAM), Efficient Channel Atten-
tion (ECA), and ResBlock CBAM (ResCBAM) during
training.

3. Adds high-resolution head to the head part, where it
increases the model capability in detecting small targets.

4. Tunes the hyperparameters during training.
5. Ablation tests are carried out for every attention mod-

ule, with and without a high-resolution head, utilizing
different hyperparameter sets. The goal of these exper-
iments is to find the best model, and ResCBAM +

high-resolution head + tune hyperparameters achieve
the best mAP.

This paper is organized as follows: Section II presents
and explains the original architecture of YOLOv8 and the
proposed version. Section III displays the training platform,
including the software and hardware requirements and the
training setup. This section also describes the dataset used
and how the model is trained. Several experiments were
conducted to compare each of the models with other YOLO
versions. Next, section IV analyses the results based on the
experiments. Section V presents the detection result based
on the P2-YOLOv8n-ResCBAM model, and the last section
concludes the overall work.

II. VISUAL DRONE DETECTION SYSTEM
Visual Drone Detection System is a system designed to
identify and categorize objects of interest, including drones,
by visual means. The presence of the drones is then recog-
nized by extracting their characteristics from the captured

image. The optimized drone detection model will be built on
the foundation of the YOLOv8 model.

A. YOLOv8 MODEL
YOLOv8 offers five sizes, and in this research, the small-
est model, YOLOv8n, is selected. Three main parts can be
divided to represent YOLOv8 architecture: backbone, neck,
and head. The backbone is responsible for extracting mean-
ingful features from input images at various scales, the neck
is known as multi-feature fusion, where all extracted features
from different layers will be combined to get meaningful
information, and the head works to make predictions. In the
development of YOLOv8, three important elements can be
highlighted based on [33]:

1. New convolution, C2f module is replaced C3 block as
main building block in YOLOv8. To build C2f, the con-
cept of ELAN (Efficient Layer Aggregation Network)
[34] is used to improve resonance speed [35]. Unlike C3,
which only uses the last bottleneck output, all bottleneck
outputs in C2f will be combined. The idea is comparable
to the ResNet Block [36].

2. Anchor-free detection is utilized instead of predicting
using an offset bounding box known as an anchor box
like other models. This means it will predict directly
from the center of an object. This innovation has reduced
the number of overlapped prediction boxes, which can
accelerate the Non-Maximum Suppression (NMS).

3. Closing the mosaic augmentation for the last 10 epochs
during training. During training, by applying mosaic
augmentation, the model can learn objects in differ-
ent locations as four images will be gathered in one
image together. However, this augmentation can some-
how decrease performance, and it is believed that turning
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off this augmentation for the last 10 epochs can prevent
the deterioration.

Several innovations in the development of YOLOv8 have
contributed to an increase in accuracy and beat YOLOv5 and
YOLOv7 when tested using dataset Microsoft COCO and
Roboflow 100.

B. IMPROVED YOLOv8 MODEL
Two methods are proposed to improve the YOLOv8 model,
and they involve the neck and head in the architecture. The
architecture of the proposed model is displayed in Fig. 5.

1) IMPROVEMENT OF THE FEATURE FUSION MODULE
Since the dataset used has a lot of small objects with just
a few pixels representing them, the chance of losing the
feature information is high. This might result in false or
miss detection. Therefore, this work proposed to improve
the feature fusion, which will operate on the neck of the
algorithm. The attention mechanism offers an effective way
to improve the feature fusion model where it can improve
object detection [37]. Then, many studies have produced
good results when they integrate attention mechanism [26],
[27], [30], [32], [38].

This research proposes to combine the ResBlock and
Convolutional Block Attention Model (CBAM), which is
called ResCBAM. Unlike the Squeeze-and-Excitation mod-
ule (SENet) [39] that only uses Global Average Pooling
(GAP) for channel-wise attention, CBAM is a lightweight
model that involved the combination of operation channel
attention (what to focus) and spatial attentionmodules (where
to focus) [32]. Not only Global Average Pooling (GAP),
Global Max Pooling (GMP) that is missing in SENet is also
employed in CBAM towork together on the featuremaps. Eq.
(1) and (2) represents a mechanism of Channel Attention and
Spatial Attention, as attached in Fig. 3(a) and 3(b), respec-
tively, and an overview of CBAM is illustrated in Fig. 3(c).

F ′
= MC (F) ⊗ F (1)

F
′′

= MS
(
F ′

)
⊗ F ′ (2)

Residual Block [36] or ResBlock is a main block in Resid-
ual Networks (ResNet) where it is one of the components in
deep neural network architecture. ResBlock is designed to
tackle vanishing gradient problemswhile training deep neural
networks. Eq. (3) represents the mechanism of ResBlock as
illustrated in Fig. 4(a).

F (x) + x = Output (3)

Eq. (4) represents how ResCBAM works in Fig. 4(b).
An overview of the ResCBAM mechanism is portrayed in
Fig. 4(c).

Foutput = F + F ′′ (4)

TABLE 1. Python library specifications.

2) IMPROVEMENT OF THE DETECTION HEAD
Anew detection head is added at the head part of theYOLOv8
architecture to achieve a tiny target. Initially, there were three
detection heads, and this proposed model has four detection
heads and is known as the p2-YOLOv8 model. P2 there
means the prediction will use p2 layers. The addition of the
detection head has a resolution of 160×160 pixels, making it
suitable to work with low-level features and high-resolution
feature maps. Low-level features encompass edges, corners,
colors, and textures of objects. High-resolution feature maps
are packed with abundant information that can show the
image at a very fine level and make it more sensitive to
small targets. Having multiple detection heads can combine
low-level spatial features and high-level semantic features to
improve the feature information of each layer where this helps
identify small items and increases feature information [40].
Fig. 5 shows how the additional head (light green box) is
added to the proposed architecture.

III. EXPERIMENT SETUP AND DATA ANALYSIS
The experimental environment, training setup, and dataset
used have been explained in this section.

A. TRAINING PLATFORM
1) HARDWARE AND SOFTWARE REQUIREMENTS
This research has been trained using Intel i9-14900K with
64GB memory. It allows multitasking and efficient handling
of big and complex data. A large storage device, a 1.8 TB
SSD drive, and a high-powered GPU, NVIDIAGeForce RTX
4090, are used to accelerate the training process. Several
software specifications are required to perform this research,
and the details are displayed in Table 1.

2) TRAINING SETUP
The training setup includes hyperparameters for model train-
ing are listed in Table 2.

B. DATASET CONSTRUCTION
This research aims to develop a drone detective system
that is able to differentiate between drones and drone-like
objects, such as birds, and track them even at long distances.
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FIGURE 3. Overview of CBAM.

TABLE 2. Hyperparameters setup.

Regardless of the actual distance of the object from the
source, its small size in the frame, resulting in small pixels,
can represent how far the drone or bird is from the camera.

Therefore, it is crucial to provide a dataset that meets those
criteria to allow the model to learn effectively. Hence, a new
dataset, BirDrone [41] was prepared by collecting images of
small drones, includingmultirotor types, such as quadcopters,
hexacopters, and octocopters, as well as birds from different
datasets [42], [43], [44], [45], [46], [47]. We have included
images with multiple drones or birds in one image for model
training. The YOLO framework itself is designed to detect
multiple objects in one frame. The proof of detection will be
shown in Section V. This dataset also includes different types
of backgrounds and lighting. Fig. 6 and 7 show examples of
raw images in our dataset. Before proceeding to training, the
dataset needed to be annotated first, and it was done manu-
ally using Roboflow. The smallest annotation bounding box,
which represents the size of the targeted object, is 7×14 pix-
els, and the largest one is 65 × 182 pixels. Then, the dataset
went through several pre-processing methods, such as auto-
orient, which can standardize overall orientation, improve
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FIGURE 4. Overview of ResCBAM.

overall analysis, and be suitable for real-time applications.
Lastly, auto-adjust contrast makes the details about birds and
drones easier to see. Next, a data augmentation approach is
used for the model to identify drones and birds in various
scenarios. For each image, geometric transformations such
as rotation and exposure are used. By displaying multiple
perspectives, rotation can increase model robustness and help
avoid overfitting. Applying exposure to the images gives
more variability to the dataset regarding lighting and envi-
ronment. After that, the total of images 2970 was divided into
80% for training and 20% for validation.

C. MODEL TRAINING AND RESULTS
1) ABLATION EXPERIMENTS
Several training sessions were carried out in this section
using a designated dataset to verify various aspects of the
proposed model. Initially, the effectiveness of the supplemen-
tary detection head and the P2-YOLOv8n model, specifically
developed for identifying minuscule entities, was evaluated.
Furthermore, an assessment was conducted to determine the
effect of incorporating attention modules into the YOLOv8-
based model. Furthermore, an analysis was conducted to
evaluate the efficacy of optimizing hyperparameters. The
comparison was evaluated based on precision, recall, and

TABLE 3. List of metrics used for evaluation.

mAP, and the formula is shown in Table 3 with reference to
Fig. 8.
Fig. 9 depicts a training sample utilized in these experi-

ments, demonstrating the model’s ability to manage diverse
training scenarios and configurations effectively. Table 4
has demonstrated the training results of several YOLOv8n-
basedmodels with several attentionmodules but using default
hyperparameters. Table 5 presents the training results of the
YOLOv8n-based model but with a tuning hyperparameter
for the optimizer, which SGD [48] is used, and the value
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FIGURE 5. Architecture of the proposed model.

of weight decay was set to 0.00015 as a recommendation
from Ultralytics [49]. Table 6 shows the training results when
using 0.73375 for momentum value as a recommendation
from Ultralytics [49], 0.00015 for weight decay and SGD for
the optimizer. Table 7 displays the training results of several
YOLOv8n-based models when tuning the hyperparameters,
with the momentum value set to 0.94, a slight increment
from the previous table. Also, weight decay was set lower

than before, at 0.00012. Table 8 and Table 9 showcase the
training result with tuning hyperparameters. The momentum
value was set to 0.942, a slight increase from Table 5 and
Table 6, which used 0.0005 for weight decay, and the rest
of the hyperparameters were the same as Table 5. Finally,
Table 10 shows the training results for the proposed model
for all classes, including both drone and bird, drone only, and
bird only.
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TABLE 4. experimental results using different attention modules, different detection head with default hyperparameters, optimizer = auto, momentum =

0.937, weight decay = 0.0005.

TABLE 5. Experimental results using hyperparameters, optimizer = SGD, momentum = 0.937, weight decay = 0.00015.

TABLE 6. Experimental results using hyperparameters, optimizer = SGD, momentum = 0.73375, weight decay = 0.00015.

TABLE 7. Experimental results using hyperparameters, optimizer = SGD, momentum = 0.94, weight decay = 0.00012.

TABLE 8. Experimental results using hyperparameters, optimizer = SGD, momentum = 0.942, weight decay = 0.00012.

2) MODEL COMPARISON
Proposed model, P2-YOLOv8n-ResCBAM was compared
with different models which include, YOLOv5n, YOLOv6,
YOLOv7, YOLOv8n and YOLO-Drone [6]The compari-
son results are displayed in Table 11, which shows the
trend of the model comparison results. To make it fair,
all models were trained from scratch, which means no

transfer learning was used, and the results are shown in
Table 11.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. ABLATION EXPERIMENTS
Assessing the impact of different factors on the model’s per-
formance is essential in drone detection. The
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TABLE 9. Experimental results using hyperparameters, optimizer = SGD, momentum = 0.94, weight decay = 0.0005.

FIGURE 6. Small bird.

FIGURE 7. Tiny drone.

FIGURE 8. Confusion matrix.

YOLOv8n-based model was utilized to conduct multiple
training sessions and evaluate them based on various atten-
tion modules, detection head configurations, and sets of
hyperparameters. The results of the models using default
hyperparameters are shown in Table 4. Among these models,
the P2-YOLOv8n model achieved the highest mean Average

TABLE 10. Training result for the proposed model.

Precision (mAP), indicating the effectiveness of the addi-
tional detection head. Nevertheless, the inclusion of attention
modules in the models did not enhance mean average pre-
cision (mAP) when compared to the base model using the
default settings.

Table 5 presents the outcomes obtained using a fresh set
of hyperparameters. Among the models mentioned, only the
P2-YOLOv8n-ResCBAMmodel demonstrated an increase in
mAP (mean average precision). In contrast, the other models
did not exhibit noteworthy enhancements compared to the
results in Table 4. This implies that the choice of momentum
and weight decay values is of utmost importance, especially
when utilizing the SGD optimizer, as these parameters sub-
stantially influence the outcome of the optimization process.

The data in Table 6 shows that performance did not
improve when using momentum values lower than the
default, indicating that these values are incompatible with
other hyperparameter values. By subsequently increasing the
momentum value to 0.94 and setting the weight decay slightly
lower than the default at 0.00012, a significant improvement
in mean average precision (mAP) was observed for the P2-
YOLOv8n-ResCBAM model, as indicated in Table 7. The
mean average precision (mAP) experienced a boost of around
2.3% compared to the base model using its default configura-
tion. The combination of increased momentum and reduced
weight decay was effective, as supported by Tables 8 and 9.
Despite achieving the highest mean Average Precision (mAP)
among various hyperparameter sets, the P2-YOLOv8n-ECA
module did not surpass the highest mAP achieved by the P2-
YOLOv8n-ResCBAM model in Table 7.
In summary, the findings suggest that employing the SGD

optimizer can improve the model’s performance during train-
ing. However, it is crucial to carefully choose the values of
momentum and weight decay to achieve the best possible
outcomes.

For the attention module, a combination of P2-YOLOv8n
with GAM did not perform well, whereas the map obtained
in Table 4 was the lowest among other models. This indicates

VOLUME 12, 2024 90637



F. N. M. Zamri et al.: Enhanced Small Drone Detection Using Optimized YOLOv8 With Attention Mechanisms

FIGURE 9. Training samples.

TABLE 11. Training result for model comparison.

that the GAM may not be well-suited for combining with
p2-YOLOv8 when training on the dataset with fine-tuned
hyperparameters. As mentioned in [26], GAM has aban-
doned pooling to extract features for each channel. Therefore,
it is believed that such a decision has influenced the results
obtained. The paper [26] has also shown that GAM can
outperform CBAM. However, due to the limited size of the
data set used in this research, which is not as wide as they
are, the results achieved cannot follow the proposed theory.

From Table 4, CBAM produced similar or lower mAP
than ResCBAM. Only in Table 4, P2-YOLOv8n-CBAM
outperformed P2-YOLOv8n-ResCBAM. However, the result
was not the best mAP as P2-YOLOv8n can achieve higher
mAP than both models. After we tuned the hyperparame-
ters and the results shown in Table 7, P2-YOLOv8n-CBAM

and P2-YOLOv8n-ResCBAM surpassed the mAP of P2-
YOLOv8n and in these hyperparameter settings as well,
P2-YOLOv8n-ResCBAM achieved the highest mAP com-
pared to other models in Table 4 -IX. This shows that with the
value chosen, the model can efficiently detect small objects
with an extra detection head.

Overall, it can be seen that the combination of ResCBAM
with an extra detection head showed improvements in Table 5,
7, and 8. This is believed to be due to the mechanisms applied
in ResBlock, where shortcut connections are involved. The
output of spatial attention is combined with the input fea-
ture map using element-wise addition, a method known as
‘‘identity mapping.’’ Therefore, this residual connection can
help in the gradient flow during training and can help prevent
vanishing gradient problems, which leads to better detection
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results. Lastly, Table 10 shows the proposedmodel’s accuracy
for each class. The overall bird detection result is lower than
the overall model detection result in both classes. This is
because BirDrone dataset contains significantly fewer bird
images than drones.

B. MODEL COMPARISON
Several metrics can be used to evaluate the model’s per-
formance throughout the training and validation phases
to determine its quality. As described in Table 11, three
measurable metrics—precision, recall, and mean average
precision—were utilized to assess trained models.

For precision, P2-YOLOv8n, YOLOv9c, and the proposed
model, P2-YOLOv8n-ResCBAM, are the top three models
that obtained high precision. High precision indicates the
models’ effectiveness in detecting objects and reducing false
alarms, particularly when drones and bird-like objects are
easily confused. Therefore, this suggests that these models
are consistently accurate in predicting objects, especially in
distinguishing between actual drones and birds and minimiz-
ing incorrect classifications.

None of the models achieved recall values as high as their
precision values. However, the proposed model, YOLOv9c
and P2-YOLOv8n, ranked highest in the recall, with val-
ues of 87.9%, 89.2%, and 86.8%, respectively. These three
models captured the majority of positive samples in the
dataset, demonstrating their high ability to identify the tar-
geted objects correctly. This sensitivity in object detection is
important for applications, as missing the targets can have
serious consequences.

YOLOv9c and P2-YOLOv8n obtained 90.6% and 90.9%
mean Average Precision (mAP), respectively, while the pro-
posed model obtained the greatest mAP, at 92.6%. This
suggests that the proposed model, which strikes a great bal-
ance between precision and recall, can detect objects while
minimizing false positives and false negatives. The highest
mAP demonstrates superior performance during training and
validation, showing its robustness and consistency in predic-
tions across various object detection scenarios. Therefore,
it proves its suitability for real-world applications where
accuracy is crucial.

Apart from those factors, the training time for the proposed
model was not significantly longer compared to YOLOv9c.
Since YOLOv9c has more parameters than the proposed
model, the substantial difference in training time is believed
to be due to the complexity of the YOLOv9c model. When
comparing the proposed model with P2-YOLOv8n, despite
the proposed model having more parameters due to the
addition of attention modules, its training time was slightly
increased compared to P2-YOLOv8n. For the same reason,
it’s possible due to the complexity of the proposed model that
contributed to longer training time. However, the proposed
model is well-optimized during training, as indicated by the
small difference in training time despite the large gap in
the number of parameters between these two models. This

highlights the efficiency and effectiveness of the proposed
model during the learning process.

Based on Table 11, the recall value of YOLO-Drone
is among the lowest when compared to other models.
This indicates that YOLO-Drone still struggles to identify
and locate the targeted objects accurately. Consequently,
it contributes to a notable difference in mAP, with a 2.3%
difference from the base model, YOLOv8n, and a 4.6% dif-
ference from the proposed model, P2-YOLOv8n-ResCBAM.
While YOLO-Drone showed promising results in a previous
study [6], these favorable outcomes were not replicated in this
study, possibly due to the use of different datasets. YOLO-
Drone is trained using TIB-Net, which only has one class
that consists of different types of UAVs. However, there are
two classes in the dataset used for this research. So, the per-
formance of each class affects the whole performance. Other
than that, different training setups between this research and
the YOLO-Drone papermay also contribute to the differences
in model behavior.

V. MODEL VALIDATION AND DEPLOYMENT RESULT
A. MODEL VALIDATION
To address the overfitting issue, the dataset was partitioned
into training and validation sets, with a ratio of 80:20. This
division guarantees that the model is trained on a significant
portion of the data while being validated on a distinct sub-
set, facilitating improved generalization to unfamiliar data.
In addition, the dataset underwent various data augmentation
techniques to introduce variability and improve the model’s
robustness. The model was exposed to a diverse range of
scenarios using techniques such as rotation, scaling, and color
adjustments to reduce overfitting.

The validation process was performed using the specified
validation set, which offered insights into the model’s capac-
ity to generalize. Figure 10 depicts a validation outcome that
showcases the ability of the proposed model, P2-YOLOv8n-
ResCBAM, to accurately distinguish between drones and
birds, even when they are of small dimensions. Accurately
distinguishing between similar objects is vital for the model’s
effectiveness in real-world situations.

B. MODEL DEPLOYMENT
To ensure successful implementation, it is imperative to
thoroughly evaluate the model by subjecting it to real-life
scenarios that accuratelymimic the actual conditions. A video
was obtained from YouTube with a resolution of 406×720 to
evaluate the model’s performance. Fig. 11 depicts a specific
moment captured in the video footage that showcases the
implementation of the P2-YOLOv8n-ResCBAM model. The
model attained a frame rate of 166 frames per second, effec-
tively differentiating between diminutive unmanned aerial
vehicles and avian creatures. Nevertheless, it is crucial to
acknowledge that the base YOLOv8n model surpassed the
proposed model’s inference speed, achieving an impressive
263 frames per second. The difference can be ascribed to
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FIGURE 10. P2-YOLOv8n-ResCBAM model validation.

FIGURE 11. Scene from model deployment footage.

the heightened intricacy of the suggested model, which might
necessitate additional processing time for each frame.

Fig. 12 illustrates a scenario where the bird, indicated by a
red box, remains undetected when its body is hidden by tree
branches. The bird’s diminutive stature and the overlapping

FIGURE 12. Scene of bird detection failure.

of tree branches pose a challenge for detection, as the bird’s
body seamlessly merges with the background. This situation
emphasizes a possible constraint of the model in identifying
minuscule entities in crowded surroundings.

Data augmentation techniques, such as geometric trans-
formations and exposure adjustments, enhance the model’s
robustness by simulating various real-world conditions, help-
ing the model generalize better to unseen data. The validation
results indicate that the model can accurately distinguish
between drones and birds, which is essential for practical
uses. While the P2-YOLOv8n-ResCBAM model achieved a
frame rate of 166 fps, the base YOLOv8n model’s higher
frame rate of 263 fps indicates a trade-off between model
complexity and processing speed. The proposed model’s
additional attentionmechanisms and detection heads enhance
accuracy but increase computational demand. The deploy-
ment of the model in real-world video footage demonstrates
its practical applicability, although it faces challenges when
dealing with objects occluded by other elements. This
indicates the necessity for additional improvements and fine-
tuning. The analysis highlights the significance of achieving
a balance between the complexity of the model and its
performance, emphasizing the necessity of optimization to
uphold high accuracy while minimizing computational bur-
den. Future work should optimize the model for real-time
applications, develop sophisticated data augmentation strate-
gies, and validate the model on diverse datasets to ensure
generalizability across different environments and scenarios.
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VI. CONCLUSION AND FUTURE WORKS
Detecting a drone with dynamic movements, small size, and
even a shape similar to a bird is indeed challenging. There-
fore, building an accurate model that can detect in real-time is
crucial. However, speed and accuracy always have a trade-off
between them.

By using YOLOv8n as a base model, this research pro-
posed integrating an attention module and adding an extra
high-resolution detection head. To support this proposed
model to reduce false detection, the new dataset has been
created to provide effective learning for the model to learn
how to differentiate between drones and birds as well as
recognize them even at long distances. Powerful hardware is
utilized to ensure the inference speed is alignedwith real-time
detection. Fine-tuning the hyperparameters is also one of the
methods used to optimize training performance, which can
lead to better detection.

Based on training results, the P2-YOLOv8n-ResCBAM
model has demonstrated improvement in mAP, which is from
90.3% to 92.6%, showing a 2.3% increment. However, due
to the noticeable increment in model parameters, it can be
noticed that the fps is decreased from base model during
deployment, which is from 263 fps to 166 fps, but the fps
achieved remains suitable in real-time detection. The addition
of the attention module and detection head has certainly led
to an increase in both the number of parameters and the
complexity of the model. It is also believed to be why the
inference speed in fps decreased. Apart from that, the model
deployment result also portrayed a good result, where the
model was able to differentiate between drones and birds
even at long distances by using video and images as input.
However, the model struggles to detect objects when they
overlap with other objects in the same frame.

While the proposed model shows promising results, this
research needs to highlight several aspects. Firstly, consider-
ing the model’s complexity, the inference speed is fast due to
the powerful hardware used during training and deployment.
Therefore, the performance may differ depending on the type
of hardware used, especially if low-end hardware is used.
While the model may not be ideal for implementation on
low-end hardware, the complexity of the model could be
justified by its capability to detect a wide range of targets,
especially tiny ones, and differentiate between drones and
birds. These capabilities offer significant benefits regarding
accuracy, reliability, and applicability in various real-world
scenarios. Therefore, the decision to use the proposed model
should be based on weighing these potential benefits against
the hardware requirements. Next, they have built advanced
drone technology that mimics birds’ looks and behavior, such
as the eagles. Although the proposed model is being trained
to differentiate between drones and birds, the model may not
detect this type of technology as the detection is only based
on visuals. Therefore, this research could further explore the
application as there is room for further improvement, such
as model size reduction, and optimize this method to make it
suitable for industry needs.
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