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ABSTRACT Sign language is a common way of communication for people with hearing and/or speaking
impairments. Al-based automatic systems for sign language recognition are very desirable since they
can reduce barriers between people and improve Human-Computer Interaction (HCI) for the impaired
community. Automatically recognizing sign language is still an open challenge since the sign language itself
has a complex structure to convey messages. The key role is played by the isolated signs that refer to single
gestures carried out by hand movements. In the last decade, research has improved the automatic recognition
of isolated sign language from videos using machine learning approaches. Starting from a comprehensive
analysis of existing recognition techniques, with an in-depth focus on existing public datasets, the study
proposes an advanced convolution-based hybrid Inception architecture to improve the recognition accuracy
of isolated signs. The main contributions are to enhance InceptionV4 with optimized backpropagation
through uniform connections. Besides, an ensemble learning framework with different Convolution Neural
Networks has been also introduced and exploited to further increase the recognition accuracy and robustness
of isolated sign language recognition systems. The effectiveness of the proposed learning approaches has
been proved on a benchmark dataset of isolated sign language gestures. The experimental results demonstrate
that the proposed ensemble model outperforms sign identification, yielding higher recognition accuracy
(98.46%) and improved robustness.

INDEX TERMS Sign language recognition, gesture recognition, isolated sign, deep learning, computer
vision.

I. INTRODUCTION

In this world where communication knows no bounds, sign
language bridges the gap between the hearing impaired,
enabling the exchange of ideas and emotions in a visually
captivating manner [1]. However, in this era of advanced
technology, the recognition of signs can reduce the com-
munication gap for impaired communities and the rest of
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the world [2]. Sign language is a gesture-based medium of
communication and can be divided into two basic categories:
static and dynamic. Static sign language mainly consists
of digits, an alphabet, and some common words, while
dynamic sign language is a complete foam of sign language
to communicate proper meaning. The input modality of
static signs is an image, while dynamic signs have videos.
Dynamic signs are also divided into two categories: isolated
and continuous signs. Isolated sign gestures are used
to express words, whereas continuous sign gesture is a
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combination of isolated signs to express syntax meaning-
fully. So, isolated sign gestures are the backbone of sign
language [3].

The sign language recognition system is an essential
Al-driven system to connect the impaired community to
the rest of the world. Sign language recognition systems
not only reduce communication barriers but also improve
Human-Computer Interaction (HCI) systems for the impaired
community [4]. The recognition of isolated sign language
improves communication with the rest of the community
and the usability of automation systems. The isolated sign
language recognition system represents a remarkable fusion
of cutting-edge artificial intelligence, computer vision, and
machine learning technologies [5]. It is designed with a
singular purpose to comprehend and interpret the intricate
movements and gestures of sign language users, transforming
their expressive motions into meaningful and actionable
information. Unlike traditional static recognition systems
that focus on individual signs, this revolutionary technology
possesses the ability to perceive the fluidity and context
within sign language conversations. It deciphers the dynamic
interplay of gestures, facial expressions, and body language,
enabling a deeper comprehension of the linguistic nuances
and emotional nuances embedded within each interaction [6].
Computer vision is a branch of Deep Learning (DL)
that allows systems and smart devices to retrieve useful
information from multimedia contexts like images, videos,
and other visual inputs, and then recommend actions based
on that information. Deep learning models enable computers
to think, computer vision enables them to view, evaluate,
and interpret their surroundings [7]. DL algorithms have
accelerated progress in a wide range of fields, including
speech recognition, visual object recognition, video catego-
rization, and even medicine development. A deep learning
model includes several processing layers that allow it to
learn high-level representations on its own. DL does not need
considerable feature engineering or concept knowledge [8].
Furthermore, with so many deep transformations, it can
learn extremely complex functions and deal with difficult
classification and identification problems. As a result, deep
learning has advanced in numerous areas, including isolated
sign recognition. We examine many deep learning models
and examine their distinct advantages for such assignments.
Table 1 demonstrates an analysis of different deep-learning
approaches that can be used for isolated sign-language
recognition [9].

The main contributions of the proposed research work
are: i) A comprehensive study and analysis of different
approaches have been carried out for isolated sign language
recognition; ii) Using hybrid InceptionNet architecture, this
study proposes an efficient deep learning architecture for
isolated sign language recognition; iii) Simulation of the
proposed study demonstrates comparative analysis with
SOTA deep learning models and explores the effectiveness of
different combinational studies for digitalization of isolated
sign language.
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TABLE 1. Advantage of deep learning models for sign language
recognition.

Models Description and advantages

CNN Multiple convolutional layers capture the spa-
tial connection and are frequently used as ex-
cellently targeted feature extractors.

RNN When investigating the temporal connection in
data, variations such as LSTM are frequently
used.

A neural network that is fed forward that learns
uncontrolled deep features

The combination of some deep models, based
on each model’s power, to achieve superior per-
formance

Pre-train models are again trained on a targeted
dataset, which helps to enhance feature learn-

ing.

Auto-encoder

Hybrid deep models

Transfer Learning

The rest of the paper is organized as follows: Section II
demonstrates the previous work done in the field of isolated
sign language recognition and analyzes the research gap that
can be solved by the proposed methodology. Section III
represents a detailed analysis of the proposed methodology,
and Section IV demonstrates the dataset and result analysis
of the proposed architecture with various benchmark isolated
datasets.

Il. RELATED WORK

The different approaches and methods available for sign lan-
guage recognition are summarized in this section. Effective
methods to recognize isolated signs are glove-based sign
gesture recognition [12]. They make use of gloves equipped
with sensors that detect finger movements and hand gestures
can be used to capture sign language gestures directly from
the user’s hand, in a wearable method. Data from multiple
sensors on the glove can be combined to get a comprehensive
representation of the gesture in the sensor fusion approach.
The biggest drawback of these approaches is the dependency
on gloves. The system may not work without a specific type
of gloves [13].

Recognition of sign language based on computer vision
utilized techniques such as depth sensors, color cameras,
pose estimation, and feature extraction [10]. Depth cameras
like Microsoft Kinect or Intel RealSense can capture the
depth information of the scene, which helps in capturing the
3D structure of sign gestures. Computer vision techniques
like pose estimation can be used to extract joint positions
and movements from the captured images or video frames.
Various features such as edges, corners, and texture can be
extracted from the images to represent the sign gestures.
The computer vision-based approach uses different machine
learning and deep learning approaches to improve the
performance of sign language recognition systems [11].

Pose estimation plays a significant role in sign language
recognition by capturing the positions and orientations of
key points on the signer’s body, particularly the hands
and sometimes the face. Use a pose estimation model,
such as OpenPose or PoseNet, to extract the 2D or 3D
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coordinates of relevant body parts (joints) from each frame
of the video [14]. Focus on capturing hand and arm
movements. For 3D pose estimation, depth cameras or
multiple calibrated cameras can be used to capture the 3D
positions of body joints. Pose estimation-based methods
used the identification of non-manual gesture components
to improve recognition accuracy for sign language. There
are basically two approaches used for gesture-based sign
language recognition: one should be text-based, which has a
high error rate and requires a large vocabulary. The second
method is vision-based, which uses images and video to
represent the words. In the following, the most relevant works
using computer vision for sign language recognition are listed
and discussed [15].

Fink et al. [16] created a recognition system based on sign
language. They made use of a dataset collecting frames that
display only one sign. Each video was then preprocessed by at
first reducing the frame width to 270 pixels while maintaining
its aspect ratio. The footage was then cut into 50 frames
and finally, patches of 224 x 224 pixels were cut at random
from the video and sent to networks. A hybrid architecture
consisting of VGG, LSTM and C3D was exploited for sign
language recognition. However, the proposed technique lies
on a complex architecture made of convolution and recurrent
layers to achieve a top-one accuracy not greater than 51.5%.

De Coster et al. [17] pioneered the development of
automated sign language recognition. It is made up of 36,302
samples from 226 different sign categories. From RGB video
data, Pre-processed multi-modal input is extracted. In this
approach, posture flow, an optical flow-inspired approach for
depicting body movements based on key points in posture,
is introduced. All samples are sent as individual RGB and
depth video files with 512 by 512 pixels, temporal resolution
of 30 frames per second (FPS), and spatial resolution
of 30 FPS. For every frame, the ResNet-34 network is
utilized to extract a 512-dimensional feature vector. VTN-PF,
VTN-HC, and VTN categorization systems are utilized. This
approach has 92.92% accuracy.

Hao et al. [18] proposed a continuous sign language
recognition and self-mutual distillation learning system. The
frames in both datasets are scaled to 256 256 and then
cropped to 224 224. During training, we enrich the data
using a random crop and a 50% horizontal flip. The visual
module converts short-term spatial-temporal information into
visual characteristics for each input sequence. For feature
extraction techniques, 2D CNN and 1D CNN were utilized,
which encode spatial and short-term temporal information,
respectively. CNN+LSTM+HMM, FCN, and STMC are the
classification algorithms utilized to build the SMDK system.
Even though a hybrid convolution and recurrent approach is
used, it leads to a higher WER of 20.8%.

Bohacek and Hriz [19] developed a sign language
recognition system at word-level based on transformers.
The Vision API is used for preprocessing video frames to
assess posture (head, body, and hand landmarks). There
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were 54 body landmarks, 5 head landmarks, and 21 hand
landmarks discovered. To train the model over 350 learning
cycles, an SGD optimizer with an initial learning rate of
0.0001 is utilized. Authors have extracted the picture from
the tape, identified all-important body landmarks, augmented
it, and normalized it. In this manner, the authors analyzed
each frame of the recording to determine what should be
sent into the transformer model. TK-3D ConvNet, Fusion-
3, and GCN-BERT are the classification methods employed.
Although transformer-based encoder architecture leads to
increased model parameters and can archive moderate top
1 accuracy as 63.18% (WLAZL) and 43.78% (LSA64).

Campos-Taberner et al. [20] proposed an American Sign
Language word recognition technique based on skeletal
video. The weighted least squares (WLS) algorithm is used
for preprocessing to minimize noise in 3D skeletal video
sequences; the EKF method is used to follow deep hand
motion trajectories across several video frames; MIC is used
for sturdy feature selection; features are scaled to regulate
hand motions and accommodate new signers; as well as
skeletal video frames are corrected to regulate the beginning
frame coordinates and the position of all subsequent frames.
At each video frame, to scale independent characteristics, the
Z-score transformation is applied, within a certain threshold
range. The classification algorithm utilized was Multistack
Bi-LSTM, which has a 97.98% accuracy.

Armagan et al. [21] used ensemble learning to create a
system for isolated sign language recognition. The authors
have collected several modalities of data from the original
RGB photos during the preprocessing step. For estimating
(x,y) as 2D information about the positions of joints and
significant places on the face in a specific RGB image,
the OpenPose and MMpose frameworks were utilized. The
BODY model is utilized for OpenPose, this results in
18 body joints, 21 points for each single hand, and 69 points
for the face. MMPose contains 68 facial points, 21 hand
points, and 23 body joints (DARK with HRNet backbone.
Ensemble techniques employing 13D, TimeSformer, and
SPOTER classification models were utilized for the ensemble
technique, and the accuracy was 73.84%. the complex pose
estimation-based transform architecture is still not able
to archive acceptable accuracy for isolated sign language
recognition.

Chen et al. [22] created a 3D Convolutional Network
with Multi-Scale Attention convolutional network to identify
multimodal gestures. Using the equidistant sampling with
the random jitter technique, videos were preprocessed with
16 frames per sign gesture for the proposed IsoGD and
32 frames per sign gesture for Briareo dataset. During
training, the video sample’s frames were all arbitrarily
chopped to 224. Frames had been center-cropped to the
identical 224 x 224 size during the inference phase.
The starting learning rate was set at 0.01, and it was
doubled every three epochs by 0.1. The categorization
techniques for gesture recognition are as follows: 3D
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TABLE 2. A comparative analysis of recent work on isolated sign language
using vision-based deep learning models, (WER = Word Error Rate).

Author Year | Methods Dataset Results
J. Fink et al.|2021| VGG+LSTM, |LSFB and MS-ASL |51.5%, Top 1
[16], C3D, I3D accuracy
M. De Coster|{2021| VTN, VTN-|AUTSL 92.92%
etal [17], HC, VIN-PF
A. Hao et al.|2021]|Self-Mutual PHOENIX14 ,120.8 (WER)
[18] Knowledge PHOENIX14-T
Distillation
Bohacek, M.|2022|TK-3D WLASL and LSA64 |63.18%
and Hriz, M ConvNet , | datasets (WLASL),
[19] Fusion-3 s 43.78%
GCN-BERT (LSA64),Top
1 accuracy
Campos- 2020|{Multistack Bi-|SHREC, LMDHG |97.98%
Taberner et LSTM
al. [20]
Armagan et|2022| Ensemble AUTSL and WLAN |73.84%
al. [21], using 13D, | SL300
TimeSformer ,
SPOTER
H. Chen et al.|2022|3D Chalearn LAP|68.15%
[22], Convolutional |Isolated gesture and
Network with | Briareo
Multi-Scale
Attention
H. Chen et al.|2024|SignVTCL Phoenix-2014 17.3(WER)%
[23] (Multi Model)
K. M. Hama|2024|CNN Kurdish Sign Lan-|{99.05%
Rawf et al guage (KuSL)
[24]
Al 2024|2D-CNN Arabian Sign Lan-|94.79%
Khuzayem, L guage
et al. [25]
V. Singla, et|2024|Visual Indian Sign [97.52%
al. [26] Transformers |Language
J. M. Joshi &|2024|LSTM Indian Sign [98.45%
D. U. Patel Language (Gujarati)
[27]

Convolutional Network with Multi-Scale Attention, with
68.15%
accuracy.

Table 2 shows a comparative analysis of various recent
sign language recognition models and methods. Analysis
finds that many recognition systems use ensemble approaches
with convolution followed by recurrent networks [16, 18,
20], which leads to more parameters and consequently
increases computational time. Many methodologies have
used special cameras like the MS Kinect to collect additional
information for depth and RBG values [14,19, 22]. To alter
the dependencies on special cameras, authors have proposed
a hybrid convolution-based architecture for isolated sign
language recognition with minimal data training cycles.

Ill. MATERIALS AND METHODS

The proposed study uses an ensemble learning methodology
with a vanilla CNN model and a modified Inceptionv4
network to recognize sign gestures from video. The proposed
methodology uses the stem and inception layers, which are
used to make random projections on spatial and temporal
features extracted from the convolution blocks, with an
additional weighting layer controlling the strength of the
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FIGURE 1. The architecture of the proposed InceptionNet-based model
for sign language.

input fed to the model. The stem layer was utilized to
extract complex features from the input being fed to the fully
connected layer to generate predictions with the classifier to
help our model create complicated predictions. The rest of
the layers combine with sophisticated features of recognizing
higher-level patterns from input isolated sign gestures.
Inception layers were used to apply various filter sizes
concurrently and concatenate the resultant feature maps [28].
This technique enables networks to learn both local and
global properties at various sizes, as well as capture a more
diversified range of patterns from isolated signs. The pooling
and normalization layers minimize the dimensionality of
the feature maps, which helps to increase the network’s
efficiency in terms of computation and memory usage. The
proposed methodology improves the prediction performance
and efficiency of isolated sign language recognition. Figure 1
illustrates the proposed hybrid architecture for isolated sign
language.

A. ENSEMBLE LEARNING

The ensemble learning approach is used to improve predic-
tion accuracy by associating different deep learning models.
Authors have proposed an ensemble learning architecture
for isolated sign language recognition in which vanilla CNN
within InceptionNet models are used to modify the trade-off
between reasoning complexity and accuracy at runtime. The
proposed method uses two networks of varying sizes for
learning layers at inference time. The weighted average
ensemble method has been used to cumulate features from
the Inception and Convolution networks.

The proposed study employs the Inception v4 deep learn-
ing architecture for isolated Indian sign language recognition.
Compared to a typical convolution network, the proposed
network is deeper, having six convolution layers followed
by six maximum pooling layers, followed by flattening, and
a dense layer. A dropout of 0.3 was used for the fully
connected layers to avoid overfitting the training data. The
first convolutional layer is followed by the downsampling of
the input frames in the initial input layer, which is referred to
as a pre-processing layer for input video. 64 kernels of size
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FIGURE 2. Conceptual architecture of proposed convolutional networks.

(3 x 3) were used for the remaining convolutional layers, and
32 kernels of size (3 x 3) were used for the rest of the layers.
Convolutional feature maps from the first, second, and fifth
layers are merged with 33. The classification probabilities
used in the last output classification fully connected layer,
this feature vector was assigned to soft-max activation and
fully connected layers (FC). Figure 2 illustrates the functional
architecture of the proposed InceptionNet module.

Convolutional layers are based on filters, which function
like the weights of the Completely Connected Network. The
kernel moves over frames, resulting in the output known as
a feature map. We conducted matrix multiplication at each
position on the input before integrating the result. Equation 1
[29] defines mathematical formulation for output feature
map.

NI=b—r N -1y
- 2 4+ ;N = ——= +1 1

ot gt o
where N,, Ny represents the width and height of the previous
layer’s output feature map, Ly, Lyrepresents the kernel size,
and S, Sythe number of pixels skipped by the kernel in
horizontal and vertical directions, while r is the layers.
Convolution was applied to a kernel, and the input feature
map was utilized to generate the output feature map,
as formulated in equation 2 [30].

x1(m, n) = (j * r)(m, n) (@)

where x'(m.n) is a two-dimensional output feature map
produced by convolving the L, L, dimensional kernel r.
Equation 3 [30] expresses the convolution operation.
q=+Ly/2
dlmmy= 3 jm—pn-qxrp.9 G

4=—Ly/2
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3 x 3 conv (96V)

1 x 1 conv (64)

Filter Concat

3 x 3 conv (32V)

FIGURE 3. Composition of the stem layer.

B. INCEPTION V4 AND STEM LAYERS
In the proposed architecture, the stem module is the first
component of the network and is responsible for processing
the isolated sign frames and extracting useful features.
It is designed with convolutional layers, pooling, and
normalization layers used to decrease the geographic input
dimensions of the frames. The stem module’s output is then
transmitted to Inception v4 network, which further processes
the extracted weighted matrixes and performs the feature
enhancing [31]. The proposed stem composition used in the
methodology is illustrated in figure 3.

The major modifications incorporated with Inception v4 to
optimize feature learning are 1) the use of smaller convolution
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FIGURE 4. The proposed architecture of optimized Inception v4 for isolated sign language.

factorization; ii) Spatial factorization into asymmetric convo-
lutions; iii) the use of auxiliary classifiers; and iv) Efficient
grid size reduction. Figure 4 illustrates the proposed network,
which consists of 42 layers and an optimized version of the
Inception v4.

1) INCEPTION LAYER

The Inception v4 module is an essential part of the
proposed sign recognition model. It is intended to capture
characteristics from the input frames at various scales and
resolutions. Convolutional layer extract features information
from the input by using various filter sizes (1 x 1, 3 x
3, and 5 x 5). Each filter size’s output is combined with
the channel dimension to yield a singular output tensor.
This method enables the network to record characteristics
at various spatial scales and resolutions of signs, which can
be useful for recognizing signs of various sizes and forms
in an image. Inceptionv4 also enhances network speed and
efficiency with features such as batch normalization and
factorized convolutions [32]. Overall, the inception layer
allows the network to collect a broad variety of characteristics
from input signs, which can contribute to improved sign
categorization performance [33]. The full configuration of
Inceptionv4 is summarized in Figure 5.

2) RECTIFIED LINEAR UNIT LAYER

ReLU activation function was used in the proposed
convolution layer to increase their strength by rendering them
non-linear. The main purpose of the activation function is to
provide the neural network with nonlinear expression capa-
bility, allowing it to better match the findings and enhance
accuracy. Due to its linear behavior and computational
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Filter Concat

FIGURE 5. Configuration of Inception V4 layers used in proposed model.

simplicity, we ended up feeding RELU as an activation
function to our model. The functionality of RELU activation
can be calculated as equation 4 [34].

f(x) = max(0, x) “

C. ACTIVATION AND POOLING LAYER
Following each convolution layer in the proposed architecture
was the pooling layer. The purpose of deploying the max
pooling layer is to lower the spatial size of the convolved
features and help reduce overfitting by providing an abstract
representation of them. It is defined as a process where the
kernel extracts the maximum value of the area it convolves.
The representation of features extracted by the convolution
layer and polling function is illustrated in Fig. 6.

The softmax activation function is incorporated in our
proposed architecture after the fully connected dense layer.
Softmax is applied on the top of the retrieved features. The
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FIGURE 6. Representation of features fetched by the convolution layer
and maximum pooling layer.

output of the trainable layer is supplied to the soft-max
layer for multiclass classification, which aids in determining
the classification probabilities of the input sign. The final
classification layer then uses these probabilities to categorize
the frames into distinct classes. The softmax function can be
evaluated as equation 5 [35]. All values are the elements of
the softmax function’s input vector, and they can be any real
value, positive, zero, or negative, while K is the number of
classes.
eZi

F=T ®)

0(2) =
iy €

IV. RESULTS

A. DATASET

The dataset utilized for this research effort comprises several
sorts of films that may be classified as follows: (i) Bye
(i1) Good (iii) Hello (iv) House (v) Morning (vi) Nice (vii)
No (viii) Thank You (ix) Welcome (x) Work (xi) Yes. The
dataset includes 15 videos belonging to each class. The frame
resolution of each video is 1920 x 1080, 30 frames per
second, and MPEG-4 encoding. We have divided our dataset
into train and test with 0.2 as a split ratio. Figure 7 displays
a glimpse of the Isolated Indian sign language dataset (IISL-
2020) [36].

B. SIMULATION

The proposed network has a total of 42 layers with
64 channels, which is more than pre-trained CNN, and is
made up of 6 convolutional layers followed by pooling and
activation layers with a filter size of 3 x 3. A fine-tuned CNN
model is combined with Inception v4 layers, followed by a
dense dropout and a fully connected layer in the ensemble
technique. Ensemble learning models have the benefit
of being able to generate better forecasts and improved
performance superior to any single contributing model, and
their resilience minimizes the spread of predictions and
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FIGURE 7. Samples from our dataset from 11 classes.

TABLE 3. Units for magnetic properties.

Hyperparameters Value

Dropout 0.3

Epochs 15

Activation ReLU
Regularization Batch Normalization
Optimizer Adam

Learning Rate 0.0001

model performance. Initially, the specifications and values of
Hyperparameters are listed in Table 3.

This residual Convolution neural network includes 42 lay-
ers and 64 channels. The first is a convolutional layer with a
kernel size of 7 and a stride of 2. The stemming and inception
v4 phases are followed by the convolution block with filter
sizes of 3 x 3, 3 x 3, and 1 x 1 for 64 channels. Each
block is followed by the convolution layer, which comprises
64, 64, and 256 channels. The proposed methodology was
evaluated using precision, recall, and F1-rating [37], which
are mathematically formulated as equations 6 to 8.

. P
Precision = ——— (6)
TP 4 FP
P
Recall = —— @)
TP + FN
P
F1 — Score = ®)

TP+ L(FP+FN)

C. RESULTS AND ANALYSIS

Figure 8 depicts the proposed methodology’s accuracy and
loss graph for the Indian sign language dataset, which
has achieved 98.46% accuracy. Proposed method has also
accomplished remarkable performance over other isolated
sign language datasets like AUTSL [38], DEVISIGN [39],
and GSL [40]. Table 4 exhibits the proposed methodology’s
performance analysis over different datasets.

The proposed ensemble learning model having Incep-
tionV4 finds better performance with stream and reduction
layers. Additionally, authors have simulated the proposed
architecture with different dropout (dr) and learning rates
(Ir). Comparative analysis of different isolated sign datasets
has been demonstrated in table 5. Authors have also
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FIGURE 8. Accuracy and loss graphs of the proposed methodology.

TABLE 4. Comparative analysis over different isolated sign datasets.

Dataset Precision | Recall |Fl1- Accuracy
rating

IISL 0.99 0.98 0.98 98.46%

AUTSL 0.91 0.95 0.93 94.29%

GSL 0.97 0.96 0.96 97.01%

DEVSIGN | 0.95 0.96 0.95 96.55%

TABLE 5. Comparative accuracy analysis of the proposed methodology
over different dropout and learning rates.

Dataset 1Ir=0.001 Ir = 0.0001
Dropout=0.3 | Dropout=0.2 | Dropout=0.3 | Dropout=0.2

IISL 84.22 89.29 98.46 96.31

AUTSL | 80.03 85.16 94.29 91.69

GSL 90.21 91.05 97.01 95.44

TABLE 6. Comparative analysis of proposed model with SOTA classifier of
deep learning.

Model Dataset | Accuracy | Accuracy
(20 epoch) | (25 epoch)
IISL 84.01% 85.54%
ANN AUTSL |79.84% 81.35%
GSL 77.73% 77.68%
IISL 74.39% 76.02%
RF AUTSL | 69.10% 73.87%
GSL 69.89% 71.33%
IISL 64.58% 65.09%
KNN AUTSL | 65.37% 68.91%
GSL 65.94% 65.29%
IISL 74.26% 78.31%
SVM AUTSL |76.11% 77.48%
GSL 75.39% 76.09%
IISL 86.40% 89.61%
MLP AUTSL | 84.70% 85.55%
GSL 88.61% 89.14%

experimented proposed architecture with different classifier
and simulated with different benchmark dataset to validate
efficacy of proposed architecture demonstrated in table 6.
Authors have also simulated and analyzed the performance
of other deep learning models like Xception [41], VGG16
[42], ResNet50 [43], DenseNet121 [44], and Inception [45],
[46]. Figure 9 demonstrates the ability of the proposed hybrid

90896

SOTA analysis with proposed hybrid architecture

6 |

n 1 |

| |

| |

| | |

1l ||| Ill “I i |
86 ' .

D 121 Incepti i

Xception VGG19

Accuracy
© v v V
8 8§ ®

%
»

W Precession MRecall MF1-Score M Accuracy

FIGURE 9. Comparative analysis of 11SL-2020 over different deep learning
models with proposed hybrid architecture.

Comparative analysis with SOTA individual
deep learning models

ACCURACY

86 88 90 92 94 96 98 100

Proposed Study = ResNet50 m ResNet34 InceptionV4  m InceptionV3 = CNN

FIGURE 10. Comparative analysis of proposed ensemble architecture
with individual deep learning models.

(Vanilla CNN + variants) to find the best performance for
isolated sign language recognition. The authors also compare
the vanilla inception model with InceptionV4 and the
proposed ensemble InceptionV4. Figure 10 demonstrates the
effectiveness of proposed ensemble approach by comparing
individual SOTA deep learning models for recognition of
sign language. Figure 11 illustrates a comparative analysis of
different variants of inception net with the proposed hybrid
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Comparative analysis with different Inception
Architectures
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FIGURE 11. Comparative analysis with different variants of Inception
networks.

Confusion Matrix for isolated sign language
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FIGURE 12. Comparative analysis of Proposed Architecture with
benchmark dataset of isolated sign language.

model. Simulation of proposed methodology on validation
data illustrated as confusion matrix for 11 Indian Sign
gestures in figure 12. Apart from the Indian isolated sign
dataset, proposed architecture finds remarkable performance
on other benchmark isolated datasets like AUTSL and GSL
as illustrated in figure 13 with the roc curve.

V. CONCLUSION

The proposed deep learning model helps to reduce the com-
munication barrier for impaired communities by identifying
sign gestures. The proposed novel ensemble approach is best
suitable for the identification of Indian isolated sign language,
which includes 11 distinct signs, based on classification
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FIGURE 13. Comparative analysis of Proposed Architecture with
benchmark dataset of isolated sign language.

efficiency and loss. The state-of-the-art convolutional neural
networks and Inception v4 models were standardized and
evaluated using ensemble learning techniques. Because it
had fewer trainable parameters and a lower computing cost,
training the ensemble model appeared simple. As a result,
the proposed model seems to be better suited for dynamic
sign language recognition, displaying decreased training
complexity. The proposed model has achieved a classification
accuracy of 98.46%. The proposed architecture was also
experimented with a diffident isolated sign language dataset.
Ensemble models lead to more complex modes and also
large in size. Extension of the proposed study can reduce
the size of the model to minimize computational time. This
work can be extended to use data augmentation to overcome
issues in real-time data collecting and create a multi-object
deep learning model that can predict additional sign language
classes. Furthermore, an application can be developed with
such pre-trained ensemble models.
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