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ABSTRACT Generating dance movements from music has been considered a highly challenging task,
as it requires the model to comprehend concepts from two different modalities: audio and video. However,
recently, research on dance generation based on deep learning has been actively conducted. Existing dance
generation researches tend to focus on generating dances in limited genres or for single dancer, so when
K-pop music that mixes multiple genres was applied to existing methods, they failed to generate dances
of various genres or group dances. In this paper, we propose the K-pop dance generation model in an
autoregressivemanner, a system designed to generate two-person synchronous dances based onK-popmusic.
To achieve this, we created a dataset by collecting videos of multiple dancers simultaneously dancing to
K-pop music and dancing in various genres. Generating synchronous dances has two meanings: one is
to generate a dance that goes well with the input music and dance when both are given, and the other
is to simultaneously generate multiple dances that match the given music. We call them secondary dance
generation and group dance generation, respectively, and designed the proposed model, which can perform
both two generation methods. In addition, we would like to propose additional learning methods to make
a model that better generates synchronous dances. To assess the performance of the proposed model,
both qualitative and quantitative evaluations are conducted, proving the effectiveness and suitability of the
proposed model when generating synchronous dances for K-pop music.

INDEX TERMS Synchronous dance generation, K-pop group dance generation, autoregressive model,
multi-step learning.

I. INTRODUCTION
Dance has been used in various human rituals, social
communication, and entertainment from ancient times to
the present. Additionally, music has always been closely
associated with dance for all purposes. In modern times,
dance is used for various reasons, but music is still one
of the most important elements of dance. The rhythm,
beat, and melody of music are important elements in dance
because they are suitable for expressing dance, and one of
the reasons why dance genres have become more diverse
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is because the genres of music have become more diverse.
In particular, there are cases where a music genre becomes
a dance genre, examples of which include techno, disco, and
house. However, in some cases, dance does not necessarily
correspond to a specific traditional music genre, as seen in
geographical dance genres such as K-pop. K-pop includes
rather a variety of dance genres and it’s hard to define K-pop
with a few combination of classical genres. Also, K-pop tends
to prioritize diversity performed by several people rather than
solo dance. When multiple people dance at the same time,
some sectionsmay show the same dance and others may show
different dance, depending on the choreographer’s choice.
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The early models generating dance were rule-based. These
methods had the drawback of not presenting creative and
entirely new dances, instead, they demonstrated research
success in suggesting similar dances within the existing
database [7], [9]. Subsequently, methods using deep learning
began to emerge and switched the paradigm of the dance
generation. Due to the use of deep learning, research on gen-
erating natural dance movements that match given music has
increased more than before. However, some of the existing
studies have the disadvantage that only certain dance genres
can be performed, or that it is difficult to generate dance when
the composition of the music becomes complicated. In this
paper, we aim to generate various dance movements using
the characteristics of K-pop music. Existing dance generation
research had limitations in not being able to respond well to
the K-pop genre, and it was even more difficult to generate
K-pop group dances. The proposed model can generate group
dances that match K-pop music by considering the musical
and choreographical characteristics of K-pop.

The proposedmodel can perform two types of synchronous
dance generation: One is to generate a dance that goes well
with the given music and dance when a pair of music and
dance is given, and the other is to simultaneously generate
multiple dances that go well with the given music. We call
them secondary dance generation (SDG) and group dance
generation (GDG), respectively. The model architecture was
designed so that both SDG and GDG methods can be
performed within one proposed model, and the desired
generation method can be selected by changing model
inputs as needed. In addition, we would like to propose
additional learning methods such as postnet and multi-step
learning to learn a model that generates better synchronous
dance.

To evaluate the performance of the proposed model,
quantitative and qualitative evaluations were performed. For
quantitative evaluation, metrics such as Fréchet Inception
Distance (FID), diversity (DIV), and beat alignment score
(BAS) were utilized to assess the quality and diversity
of the dance and the synchronization with the music.
Through this, it was confirmed that the proposed model
generates dance more suitable for K-pop music compared
to baseline models. Qualitative evaluation was conducted
through user evaluation, verifying the coherence between
generated dances and the effectiveness of the proposed
training methods.

The main contributions of this study can be summarized
as follows. First, we built a K-pop dataset with a total
length of 15.8 hours consisting of various dances and musics.
Second, the proposed model, which generates synchronous
dances, reflects the dance characteristics of K-pop based
group dances. Third, we designed the dance generation
model in an autoregressive manner, considering temporal
and unique characteristics of K-pop music. Last but not
least, we increased the diversity of dance movements to
generate dance motions harmonious with each other but not
identical.

II. RELATED WORK
This section describes related work, with subsections orga-
nized around cross-modality generation, dance generation,
and dance datasets.

A. CROSS-MODALITY GENERATION
Recently, the role of deep learning is gradually expanding
in the process of creating something new. In early stage,
deep learning based research focused on tasks dealing with
a single modality, such as upscaling image quality from
low to high or enhancing the sound quality. However, the
world often requires handling much more complex tasks
and most tasks in reality often involve multiple modalities
in a complex manner. Similarly, a human brain integrates
and infers information, utilizing the multiple senses and
intelligence to make judgments. Thus, in the recent deep
learning researches, there has been continuous research on
cross-modality models that learn networks using interactions
between various modalities, much like human senses. In par-
ticular, many recent studies deal with models from a variety
of fields whose inputs and outputs are in different domains.
For example, the model proposed in Vinyals et al. [61]
generates text for images, Cheng et al. [64] suggests a method
that simultaneously considers video and audio for scene
recognition, and Radford et al. [44] focuses on learning text
and images together on a large-scale dataset, creating a model
that enables interaction between modalities. In this way, the
field of cross-modality generation emphasizes interactions
between different modality. Recently, in this trend of
research, there has been growing interest in generating dance
by leveraging the relationship between music and dance data.
The studies related to the dance generation are introduced in
the next section.

B. DANCE GENERATION
The first dance generation studies began in the late 20th
century, and at this time, rather than research on generating
creative dance, research was conducted on how to find the
dance chunk that best matches music among various dance
chunks stored in a database. Therefore, to find a dance chunk
sequence that matches the music sequence, they adopted a
rule-based method such as the Viterbi algorithm, and tried
to obtain a more natural result by using a post-processing
method to smooth out connections between discontinuous
dance chunks. However, as mentioned above, not only can
creative results not be obtained, but it is difficult to provide
results in variation [7], [62], [68], [69].

With the surge in cross-modality research within the
realm of deep learning, there has been a significant shift in
dance generation research. Rather than relying on heuristic
algorithms, recent research aims to create a model that can
continuously generate a wider variety of dance movements
beyond those that exist in the database. These studies are
similar to motion generation studies, but aim to generate a
series of sequential movements that look like dance based
on a given music. Music input is a key feature of dance
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FIGURE 1. The overview of entire model architecture. The model is based on an autoregressive seq2seq model, containing a music encoder and
two motion decoders. To consider the characteristics of K-pop, chorus detection is preceded before the encoding processes. Two motion decoders
each generate the lead dance and the secondary dance.

generation models, and most dance generation models except
for Wu et al. [52] that bidirectionally generate music and
dance using cross-modal transformer or Okamura et al. [36]
that generate dance using onomatopoeic input, use audio
as input. In previous research, various deep learning mod-
els, including CNNs [10], [11], [12], RNNs [13], [14],
LSTMs [17], [18], [19], [20], [21], [22], GNNs [16], [42],
GANs [25], [26], [27], Transformers [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [59], Diffusion [39], [40],
[41], and GPT [43], have been proposed to generate dance
based on music input. LSTM and Transformer models have
been particularly popular, as they excel in handling sequential
data, which is essential for choreographing movements over
time [19], [28]. In particular, recent studies using transformer
or diffusion-based models have raised the possibility that the
generated motion images may contain a variety of natural
dance movements [37], [40].

C. DANCE DATASET
In the early stages of dance generation research, there were no
commonly used datasets, and techniques for estimating poses
from videos were not developed to a usable level. Therefore,
motion capture modules were often used to collect data.
Wallace et al. [13] attached 43 markers to the human body,
generating data for 22 joints. Ye et al. [23] created a motion
capture dataset by recording 41 joint positions to collect
dance genres such as waltz, tango, cha-cha, and rumba, and
segmented dances based on temporal annotations to serve
as dance unit data. However, the number of dance videos
uploaded to Internet platforms such as YouTube, TikTok, and
Bilibili is increasing exponentially, and as pose estimation
technology develops, the number of papers that collect pose
data directly from videos is increasing [12], [25], [26], [32].
Meanwhile, the AIST dataset, which provides 10 genres of
dance that includes music, became most commonly used in
dance generation research after its release. This led to the

creation of the AIST++ dataset, a 3D dataset based on AIST,
which is widely used in both 2D and 3D forms, including
papers such as [28], [37], [51], and [52]. Although these
datasets have the advantage of offering clear high-quality
dance footage, they suffer from the drawback of having
limited data for each category. Additionally, some studies
have categorized dance genres based on singers. For example,
there is a study in which data on Michael Jackson was
collected as a single dance genre [42].

III. DATASET
We had difficulty leveraging existing datasets to assess the
connection between music and dance. This is because if
the model learns only a specific dance or music genre, the
composition of the movements appears simple or repetitive,
and it becomes difficult to create movements in music that
falls outside the scope of the genre. Therefore, the existing
datasets were not suitable for generating K-pop dances
containing various dance genres.

To collect K-pop data, we collected videos combining
music and dance from easily accessible online video plat-
forms such as YouTube and TikTok. By using the keyword
‘K-pop dance’ for searches, we gathered videos that captured
in-the-wild dance images paired with audio. After retrieval,
each dance was acquired sequentially using a multi-person
trackingmethod [66]. Additionally, each dancewas examined
empirically to ensure that it had consistent joint values that
did not change with other movements over time. We then
performed two-dimensional pose estimation on the video
using OpenPose [56] to obtain the human pose. In the case
of OpenPose, it proved to be a suitable pose extraction
method, especially in situations where frames were blurry or
movements overlapped, as it effectively identified poses in
such conditions. The coordinates were extracted separately
for the body, face, hands, and feet, but we specifically
used only 15 coordinates corresponding to key body parts
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FIGURE 2. This figure depicts the data preprocessing process.
We obtained audios and images from the in-the-wild videos. We adopted
both multi-person tracking algorithm and pose extraction algorithm to
extract motion information from the group dance videos. After, extracted
information is refined to cope with false detections. The time interval
extracting music features is adjusted to match that of the pose data and
saved them as individual paired data.

from the 25 coordinates of two-dimensional torso values.
This simplification was done with the purpose of reducing
the complexity of the model while preserving the motion
information of the data we are trying to learn as much as
possible.

However, as OpenPose alone generates incomplete and
inaccurate data, we employed several refining methods.
Firstly, we performed corrections for the core coordinates
extracted by OpenPose. If a coordinate had an inaccurate
value, we compared it with the frames before and after, filling
in empty frames and interpolating for values to ensure the
smooth connection of dance sequences through coordinate
values. Secondly, frames with incorrect values are refined in
the audio sequence and dance sequence. For various reasons,
extracted audio feature frames or dance frames may contain
empty or incorrect values. For example, there are cases where
two dancers overlap in the video and pose estimation was not
performed correctly, or there is music but the corresponding
dance video is lost for editing reasons. In the former case,
an interpolate value is found that naturally connects the values
in the previous and subsequent frames, while maintaining
the distance between each joint to prevent an unrealistic
human form. In the latter case, since there is absolutely no
information about one modality, the corresponding frame
with a value in another modality is also removed from
the data. Lastly, in videos uploaded by individuals, the
aspect ratio of the dancers included in the video is often
adjusted for various reasons, so a process of normalizing is
necessary. To do this, we calculate the average aspect ratio
of dancers across all videos included in the dataset. Then, the
proportions of people in all images are corrected to match the
calculated aspect ratio.

In terms of audio data, we extracted it from videos
using Librosa [55] and ffmpeg. The videos were provided
by various uploaders on YouTube and TikTok, leading to
variations in both video quality and audio recording methods.
In particular, regarding audio recording, recorders embedded
in different camera models show different characteristics,
the quality and the volume of recordings are not consistent.
Therefore, normalization methods are required to adjust
and standardize these variations. We used ffmpeg to ensure

FIGURE 3. This figure presents two types of proposed synchronous dance
generation methods. The group dance generation generates lead and
secondary dances simultaneously corresponding to the input music,
whereas the secondary dance generation generates only secondary dance
from music and lead dance inputs.

consistency by adjusting basic parameters including the
sampling rate, bitrate and so on, and then used Librosa to
various extract audio features. The sampling rate was set
at 15,360Hz, bitrate at 192kbps, and hop-size at 1024 to
align the audio and video frames. The extracted audio fea-
tures included mel-frequency cepstral coefficients (MFCC),
MFCC delta, constant-Q chromagram, tempogram, onset
strength. We concatenated all these features into a single
vector, associating it with the dance features.

As a result, 320 videos were collected, and all videos were
divided into 1-minute long videos for learning. All video
chunks less than 1 minute in length were excluded from
the dataset. Finally, 950 one-minute videos containing audio
and dance images were obtained, equivalent to a total of
15.8 hours. For comparison, the AIST++ dataset contains
a total of 5.2 hours of data [37]. To maintain consistent
quality, we scaled the resolution to 720p and set the frame
rate to 30 FPS. We divided the dataset into training and
testing, and randomly selected 900 video clips for training
and 50 video clips for testing.

IV. METHOD
The seq2seqmodels can be broadly classified into two types.
One is to perform sequence generation in an autoregressive
manner, and the other is to perform in a non-autoregressive
manner. In this paper, we propose an autoregressive method
that can take into account the temporal characteristics and
correlation between dance and input music when generating
dance movements. The proposed model is designed to be
able to perform both of the following two tasks: (a) ‘GDG’
that creates multiple dances simultaneously from music, (b)
‘SDG’ that creates partner dances that match the music and
the lead dancer’s dance. To this end, this chapter covers not
only the structural aspects of the proposed model, but also the
learning and inference methods.
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A. OBJECTIVE
Listed music features are extracted from the raw audio signal.
The dance motion sequences used for training are uniformly
sampled at a frame rate of Nf frames per second. The length
of the music chunk is determined at the same interval as
the motion frames, and during audio feature extraction, the
hop length is set to be the same as the frame length. If the
sampling rate of the music is denoted as sr , then there are
sr/Nf samples included in each hop length. Based on this hop
length, all audio features can be extracted as follows:

Mi = {mi(1),mi(2), . . . ,mi(T )}, i = {0, . . . ,Nfeat} (1)

Nfeat represents the number of types of extracted audio
features, T is the number of music chunks determined by the
hop length, therefore the audio feature extraction interval has
the same value as the time between frames of motion.

The objective of this study is to find an autoregressive
model g(·) that, given the audio feature sequence M as
described above, predicts the dance motion sequences for
the lead dance (d1 = {d1(1), d1(2), . . . , d1(T )}) and the
secondary dance (d2 = {d2(1), d2(2), . . . , d2(T )}). In other
words, we seek to find the model derivingD fromM , in other
words, g(M ) = D = {d1, d2}.
The proposed model g is composed of three modules:

a music feature encoder that encodes the music feature
sequences M into music feature encodings, a dance encoder
that encodes the dance motion at the previous timestep, and a
dance decoder that utilizes the results from both modules to
predict the dance motion at each timestep. We designed the
details of each module taking into account the fact that the
music feature sequence is considerably longer than a typical
sequence, that there are two pairs of motion sequences to be
predicted, and that it must reflect the characteristics of K-pop.

B. MODEL ARCHITECTURE
1) MUSIC FEATURE ENCODER
We first turn the raw music signal into music feature
sequences M as described above. To facilitate convergence
during the training phase and enhance generalization, this
feature vector is first passed through a prenet. The prenet
plays a role in improving generalization through non-
linear transformations, dropout. In this model, the prenet is
composed of a combination of linear transformations, ReLU
activation functions, and dropout [50].

Self-attention mechanisms are known for being suitable
structures to extract encodings by considering context in
long sequences. They are particularly effective in encod-
ing multi-scale hierarchical structures, such as music fea-
tures [72], making them well-suited as the fundamental
structure of an encoder. However, due to the nature of
the self-attention mechanism, in order to perform encoding,
attentionmust be calculated between every element and every
other element in the sequence, resulting in a computational
complexity of O(n2) [54]. It means, there is a significant
challenge in terms of computational complexity for the music

feature sequence due to its notably longer length compared to
a typical sequence [30]. Various studies have been conducted
to enable transformer to operate on long sequences, and
several solutions have been proposed.

In the Longformer [24], several attention patterns are
suggested, and the proposed model utilizes a combination
of sliding window and global window attention patterns.
Firstly, the sliding window effectively enables the encoding
of local characteristics in music features. K-nearest neighbor
elements are exploited to calculate the attention, rather than
using the entire sequence. As a result, while the context range
is limited, we can encode the continuous, temporal character-
istics of the music using low computational complexity.

However, K-pop music, compared to other genres, is sig-
nificantly influenced by the impact of the chorus, and the
dance in K-pop music is also greatly influenced by the
music’s chorus. During the chorus, all dancers tend to
perform similar dance, and the overall style of the dance is
heavily influenced by the musical features of the chorus in
the music. In the process of encoding the musical feature
sequence using only a sliding window, it is not possible
to fully capture the unique characteristics of the music,
especially its prominent features in the chorus. To address
this, it is necessary to estimate the chorus region in the
music and ensure that the musical features from the estimated
region are consistently included in the calculation of attention
for all music samples. This idea can be implemented by
introducing the concept of a global window. Then, musical
feature encodings can be extracted that consider both the
temporal characteristics of the music and the unique features
of K-pop by using a kernel that combines sliding window and
global window concepts.

To extract the chorus region from the music signal,
we employ a self-attention convolution(SA-conv) based
automatic chorus detection algorithm [67]. One of the
representative methods for chorus detection involves using
the self-similarity matrix (SSM). The SSM visualizes the
similarity between a specific music chunk and chunks at
different times in a two-dimensional matrix, allowing us to
identify how similar segments are repeated across the entire
music [71], [76]. However, this method relies on handcrafted
rules to determine the chorus region ultimately, making it less
robust in terms of its reliance on rule-based judgments of
where the chorus region is. The SA-conv approach performs
encoding through a multi-scale network that considers the
hierarchical structure of music and passes the encoding
through SA-conv to derive probability curves representing the
presence of the chorus. Ultimately, the chorus region C is
determined by applying adaptive thresholding to the curve.
As explained above, the music chunks included in C are
then utilized for the global window, and concurrently applied
with the sliding window for attention calculation. In other
words, this means that the amount of attention calculation
varies depending on the length of the section determined as a
chorus, and it is essential to adjust the length of this section
to a computable level. By setting the adaptive threshold
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FIGURE 4. This figure is a sample skeleton resulting from the proposed
model and shows the roles of the two decoders. Since the intermediate
outputs of decoder #1 is used during the operation of decoder #2, it can
be seen that the secondary dance is synchronized with the lead dance.
On the other hand, the lead dance generated from decoder #1 generates
dance motions that matches the music without any other restrictions.

to an appropriate level, it does not simply ensure that the
entire chorus section is well detected, but only the minimum
essential section is set as the chorus section, so that all
essential information is included when calculating attention,
but the amount of calculation is minimized.

2) DANCE MOTION ENCODER AND DECODER
We aimed to base our model on an autoregressive structure,
encoding dance motions at each timestamp and predicting the
next dance motion at the next timestamp. To achieve this,
we propose a structure that efficiently predicts the next dance
motion from previous dance motions while maintaining
temporal context. Like the music encoder, it has the effect of
improving generalization during training by passing through
Prenet first.

Subsequently, a recurrent model is employed to encode the
joint coordinates of the input motion. The recurrent module
well expresses the concept of an autoregressive process and
has a chain structure that can work properly. All human
movements are very closely related to previous temporal
movements, and are similar to the operation method of the
recurrent model in that they move with a large context
[30, 84]. Therefore, for encoding and decoding human
motion, we utilize a recurrent model, specifically employing
theGRU structure, which is simple yet capable ofmaintaining
long-term memory [63]. The encoded motion information,
concatenated with the musical feature encoding mt at the
corresponding timestamp, can be used to predict the next
motion through the motion decoder. In equation form, it is
expressed as follows:

henc,1(t) = GRU
(
prenet(d1(t − 1)), henc,1(t − 1)

)
(2)

hdec,1(t) = GRU
(
henc,1(t) ⊕ mt , hdec,1(t − 1)

)
(3)

ˆd1(t) = hdec,1(t) ·W1 + h1 (4)

henc represents the hidden state of the motion encoder, hdec
represents the hidden state of the motion decoder, W and h
denote the weight and bias of the linear layer, respectively.
The symbol ⊕ represents the concatenation operation. Here,
henc(t) itself represents the predicted motion at timestamp t ,
and the linear layer serves the role of further refining it.
The number 1 indicates that these are all encoding/decoding
modules for the lead dance. Likewise, the next number 2

represents the module associated with the secondary dance.
Subsequently, in section c.1, the postnet elaborates on this in
detail.

The motion encoders of the lead dance and secondary
dance share the same structure, but there are some differences
in the motion decoder. This is because when predicting the
movements of a secondary dance, the movement information
of the lead dance must be incorporated. For the secondary
dance’s motion decoder, in addition to music feature encod-
ing, we also concatenate the hidden state hdec(t) of the lead
dance’s motion decoder. Then, it is done to integrate the lead
dance’s motion information during decoding. The formula is
as follows:

henc,2(t) = GRU
(
prenet(d2(t − 1)), henc,2(t − 1)

)
(5)

hdec,2(t) = GRU
(
henc,2(t) ⊕ mt ⊕ hdec,1(t), hdec,2(t − 1)

)
(6)

ˆd2(t) = hdec,2(t) ·W2 + h2 (7)

C. CONVERGENCE ENHANCING TRAINING METHODS
The model is fundamentally trained to infer the dance motion
sequences d1 for the lead dance and d2 for the secondary
dance simultaneously from the music feature encoding. The
proposed model performs as both a model predicting group
dance motion sequences that harmonize with the music and
a model predicting the dance sequence for the secondary
dance that complements the dance of the lead dance when
given both the dance and the music. To better accomplish
the objectives of the proposed model during the training and
inference of the dance generation model, several mechanisms
have been incorporated.

1) POST-PROCESSING NETWORK
We predict joint coordinate values through the dance decoder
of our model and then induce refinement of the decoding
results by adding a simple post-processing network(postnet).
In the proposed model, a straightforward linear layer is
employed as the postnet. To ensure the postnet has an effect
on refining the results, both the decoding results before and
after the postnet are utilized in the loss function. Therefore,
during training, the loss for a specific dance is represented as
follows:

Lrecon = L(dgt , ˆddec) + L(dgt , ˆdpostnet ) (8)

The term ˆddec represents the decoding result, and ˆdpostnet
is the result obtained by passing ˆddec through the postnet.
By using a loss that simultaneously compares both predicted
values with the ground truth, we encourage the decoder to
calculate values closer to the ground truth. At the same time,
this setup guides the postnet to further refine the results,
processing them to values closer to the ground truth.

2) MULTI-STEP LEARNING FOR SDG
As the dance encoder and decoder operate based on recurrent
units, teacher forcing is inherently employed during training
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FIGURE 5. This figure shows example of dance sequences of GDG, SDG with MSL, and SDG without MSL, respectively, from top to bottom.

to prevent convergence problems caused by error propagation
in the recurrent module. In other words, during training, the
ground truth value of dance motion at each timestep t is used
as input to predict the dance motion at the next timestep
(t + 1). In this training setup, the model is well-suited for
learning objectives that involve predicting two dance motion
sequences that harmonize with the music feature sequence.
However, there is a tendency for the model not to align well
with the objective of predicting the dance motion sequence
for the secondary dancer that complements both the music
feature sequence and the reference dance motion sequence
input.

To address this, a multi-step teacher forcing approach is
introduced. During training, up to a specific iteration niter,
teacher forcing is applied to both the lead and secondary
dance’s dance motion learning. Beyond niter in the training
phase, teacher forcing is applied only to the lead dance’s
dance motion learning, and for the secondary dance, the
prediction from the previous timestep is used as input to
predict the motion for the next timestep. Up to a certain iter-
ation, both the lead and secondary dance’s encoder/decoder
are trained with teacher forcing to generate natural and
music-harmonious dance movements. After determining that
the model has reached a certain level of learning, starting
from the niter iteration, the training is adapted to enable the
model to generate partner movements that harmonize with the
reference dance without explicit ground truth during actual
inference. This training strategy allows the proposed model
to be utilized for both objectives effectively.

V. EXPERIMENTS
A. SETTINGS
In the music feature encoder, the self-attention based encoder
consists of a self-attention layer with 8 attention heads,

and the hidden dimension is 1024. Three self-attention based
encoding layers are stacked, denoted as Nfft = 3. The
dimension of query, key and value in self-attention are all
set to 64. In prenet, the dimension of the linear layer is
256 and the dropout ratio is 0.1. For the sliding window, the
receptive field length was set to 100 samples. The prenet in
the motion encoder is similar to the prenet in the encoder and
has 256 dimensions. Additionally, the dropout rate is 0.1 and
every GRU in the motion encoder and decoder has 512 cells.
For training, we adopted the Adam optimizer with a batch
size of 16 and a learning rate of 10−4. The L2 loss is used as
the reconstruction loss and is adopted for both before-postnet
output and after-postnet output as mentioned in subsection
postnet. When training the model, multi-step learning(MSL)
is adopted to increase the performance of the SDG, as detailed
in subsectionMulti-step learning for SDG.

B. QUANTITATIVE EVALUATION
This study aims to confirm the motion diversity and
motion quality of the generated dance and the dance-music
relationship through evaluation. Thirty music clips were
randomly selected from the K-pop test dataset. Single dance
generation models such as ‘Dance Revolution’, ‘Bailando’,
‘FACT’ and ‘EDGE’ were used as baselines, and inference
was performed using pre-trainedmodels [30], [37], [59], [75].
At this time, in order to compare the baseline and the
proposed model in same human form, the pose results of
‘Bailando’, ‘FACT’ and ‘EDGE’ were projected from three
dimensions to two dimensions and the results of the proposed
model were separated into single dance sequence.

1) FRÉCHET INCEPTION DISTANCE
Fréchet Inception Distance(FID) is used to evaluate the
quality of a generated dance by measuring how close
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TABLE 1. The quantitative evaluation comparing the proposed model
with conventional single dance generation models in perspective of FID,
DIV, and BAS. In order to compare equally with the baseline, the lead
dance and the secondary dance in GDG, SDG, SDG without MSL are
considered as individual dances. TF indicates performances of
Transformer-based proposed model, presented in ablation study section.
The results are better when FID is smaller, and DIV and BAS are larger.

the distribution of dance results produced by a dance
generation model is to the distribution of the actual original
dance [70]. Following the approach of previous studies,
we converted the results generated by the synchronous
dance generation model into single dance sequences and
compared their quality as single dances. We classified
the separated single dance sequences into the lead dance
(GDG-lead) and secondary dance(GDG-sec) of the GDG,
the secondary dance(SDG-sec) of the SDG with MSL, and
the secondary dance(SDGw/oMSL-sec) of the SDG without
MSL according to the model’s name and whether the dance
was lead or secondary. The SDG without MSL is only used
in evaluations to see the effectiveness of MSL. The FID was
then calculated by comparing it to the ground truth of the pose
data used.

Table 1 shows the results of quantative evaluations.
Quantitative evaluation of the proposed methods, including
GDG, SDG, and SDGwithoutMSL, shows better results than
the baseline methods. This proves that the dance generated
by the proposed methods has statistically more similar
characteristics to the actual K-pop dance than the dance
generated by the baseline methods and produces high-quality
dances. In addition, as mentioned earlier, K-pop group dances
sometimes perform similar dances or different dances. GDG
usually produces pair dances that harmonize with the input
music, and dancers often dance similar to each other.

However, the pair dances of GDG differs from the
characteristics of actual K-pop dances, which can act
as a relative disadvantage in quantitative evaluation. The
distribution of SDG without MSL dances was similar to the
distribution of actual K-pop dances than GDG, but not better
than SDG. This is because the secondary dance generated
by SDG without MSL is very similar to the lead dance of
SDG without MSL. On the other hand, SDG-sec generates a
dance that matches the presented lead dance, but it does not
always perform a dance similar to the lead dance. Therefore,
SDG tend to be closer to K-pop dances on average than
GDG and SDG without MSL. Furthermore, SDG generates
more life-like dances because the lead dance cue enters the
dance generation process. Due to these complex factors,

FIGURE 6. This figure visually depicts dance motion beats and music
beats. Each green line represents the motion beat corresponding to the
dance motion, and the orange line represents the music beat. The closer
the positions of two beats are to each other, the higher the BAS result.

SDG shows significantly better scores than other proposed
methods. GDG-lead and GDG-sec showed similar results,
which suggests that, as mentioned earlier, the two dances are
composed of similar dances.

2) DIVERSITY
To assess how diverse the dance results produced by this
model are in terms of motion, we decided to calculate motion
diversity using themethodology used in previous studies [37].
Similar to FID, we wanted to see the motion diversity of
isolated single dance sequences in the model results. This
was done by calculating the average Euclidean distance in the
feature space for all pairs of tasks tested. In terms of diversity,
as shown in Table 1, the proposed methods show higher
diversity than the baseline methods. This means that the pro-
posed model learned with various K-pop dance datasets can
generate more diverse K-pop dance sets compared to baseline
models. In particular, SDG can generate dances based on
more information than GDG because it receives an additional
cue for lead dance, and it also performs higher than GDG in
terms of the diversity of the generated dances. Furthermore,
the reason why SDG shows better results than SDG without
MSL is because the similarity between the lead dances of
SDGw/oMSL and the SDGw/oMSL-sec is greater than the
similarity between the lead dances of SDG and the SDG-sec.

3) BEAT ALIGN SCORE
Beat Align Score(BAS) evaluates how well the beats
extracted from the music match the beats of the dance
movements [59]. For this purpose, onset strength, a music
feature representing the beat, was extracted using librosa
and used as the music beat. First, the number of frames
was adjusted so that the dance beat and the music beat
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TABLE 2. The qualitative evaluation results. Three proposed models are compared: GDG, SDG, and SDG without MSL. 25 evaluators assessed 9 videos on
the Likert scale in perspectives of harmony of dance and music, harmony between dances, naturalness of dance, similarity between dances, and
dance-like movements or not. Since the proposed scheme generates both lead and secondary dances, the questionnaire was designed to evaluate
individual dance and group dance performance separately in some questions.

could be compared equally in time, and then the motion beat
was created using a method of measuring changes in the
joint direction and speed of the dance movement sequence.
Then, the BAS for the entire sequence was calculated by
comparing the motion beats with the beats extracted from
the music. As shown in Table 1, the BAS of the proposed
methods is mostly better than that of the baseline methods.
As an exception, the BAS of EDGE is greater than that of
GDG-lead, but is lower than the results of the remaining
proposed models. This means that most of the proposed
model generates dance with the motion beat more suitable for
K-pop music. The motion beat is a part where the tendency
of the kinetic velocity changes and the dance movement
changes rapidly, and is considered the starting point of the
detailed motion. This means that the motion beat of dance
generated by the proposed model is distributed at a similar
time to the beat position of K-pop music, and it means that a
dance that is more coherent with K-pop music in time can be
generated. Additionally, in the BAS index, it can be seen that
the difference in scores between the proposed methods is not
significant, which means that proposed methods sufficiently
generate dances suitable for K-pop music compared to the
baseline methods.

C. QUALITATIVE EVALUATION
In order to evaluate the aspect of group dance and the artistic
aspect of dance, a survey was conducted on 25 evaluators
who had no prior knowledge of the dance routine of K-pop
music. Participants watched a video featuring two dancers
and then rated the video on several items. Videos were
randomly selected from a pool of generated dance sequences.
Nine 10-second videos were evaluated on the Likert scale
for the following items: ‘harmony with music’, ‘harmony
between dances’, ‘similarity between dances’, ‘naturalness’,
and ‘dance-like movements’. In the case of the ‘harmony
with music’ and ‘dance-like movements’, the evaluation may
differ between when the dance is presented as a group dance
andwhen it is presented as an individual dance. Therefore, for
the above two items, the individual sections that showed and
evaluated only the generated dance and the group sections
that showed and evaluated the generated secondary dance
and lead dance simultaneously were presented separately.
Additionally, to confirm the effectiveness of MSL applied to
SDG, evaluators looked at the results of SDG without MSL
along with GDG and SDG. All videos used for evaluation
were randomly sampled from the 1-minute dance sequences
generated using the K-pop test set.

The evaluators gave answers to the five items presented
above, and the results are as follows. In the items of harmony
with music and dance-like movements, The group tends to
show good scores on average. This is presumed to be because
the secondary dance generated by the proposed methods
harmonizes well with the lead dance and shows a higher level
of completion when presented together. In addition, GDG and
SDGwithout MSL tend to generally have high scores in most
items. This is because the secondary dance generated by the
two proposal methods generally produces a dance similar to
the lead dance, and people are generally considered to feel
more dance-like and harmonious when watching a unified
group dance. When evaluating the similarity between dances,
the evaluators gave high scores to GDG and SDG without
MSL, indicating that the second dance generated by the two
proposed methods performed a similar dance to the lead
dance. The item that evaluates the degree to which a pair of
dances match is similarity between dances, and the item that
asks how coherent the two dances are is harmony between
dances. Nevertheless, the evaluators gave similar scores for
similarity between dances and harmony between dances. This
proves that the more similar the dances are, the more people
consider them to be harmonious. The evaluators evaluated the
naturalness and smoothness of the generated dance through
the ‘naturalness’ item. All three proposed methods showed
high naturalness. However, SDG without MSL received a
particularly higher evaluation, because the evaluation reflects
the advantage of SDG in generating the dance using more
information, i.e. the lead dance cue, and also because the
secondary dance generated without MSL is more similar to
lead dance.

D. ABLATION STUDY
1) EFFECTIVENESS OF THE CHORUS SECTION AS A GLOBAL
WINDOW
In this section, we evaluate the effectiveness of a method
for calculating attention using the chorus section in music
as a global window. For assessment, an ablation study was
conducted comparing the results obtained when applying
sliding window with global attention and when not applying
global attention to sliding window. Evaluators look at
choreography created using two parts within one piece of
music and evaluate the consistency of the two choreography.
Among the two music chunks, the first is selected as the part
corresponding to the chorus, and the second is selected as
the non-chorus part after the previously presented chorus.
Choreography that matches the two music chunks is created
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in two ways: when attention is calculated using only a
sliding window, and when attention is calculated up to global
attention. Two pairs of choreography are presented to the
evaluator and asked which of the two is more consistent.
The results showed a preference rating of 0.72 when both
sliding window and global attention were used, compared to
0.28 when only sliding window was used. This shows that
using the samples of the chorus part as a global window for
music encoding rather than using only a sliding window is a
better way to encode the style of the entire song in K-pop.
No matter which part of the song is used to generate the
choreography, it can be seen that when global attention is
used, it shows a high correlation with the choreography
generated in other parts.

2) PERFORMANCE COMPARISON ACCORDING TO
DECODING MODULE CHANGES
The purpose of this section is to analyze the effects of
replacing a GRU-based decoder with a Transformer-based
decoder in the proposed model. This section will detail
both the benefits and drawbacks of this architectural change,
examining aspects such as model performance, computa-
tional efficiency, and handling of long-term dependencies.

For comparison, we adopted a Transformer-based decoder
composed of masked multi-head self attention, multi-head
attention and position-wise feed-forward neural network. For
secondary dance generation, one more decoder with the same
structure was designed, and the normalized value of the
multi-head attention output of the first decoder was applied
as the key and value of the multi-head attention of the second
decoder. As a result, a double decoder structure like the
proposed technique was implemented using a transformer-
based decoder. Transformer-based decoder is composed of a
stack of 6 identical layers and all dimensions are set to 512.

One of the most significant advantages of using a Trans-
former decoder is its superior ability to capture long-term
dependencies. As shown in Table 1, the Transformer-based
model outperforms the GRU-based model in perspective
of FID and BAS. This means that the Transformer-based
model can generate a dance with a motion velocity similar
to the beat of music, which means that the temporal,
hierarchical structure of the created dance is closer to a
real-world dance. In other words, when a dance motion
frame is generated autoregressively, it has a close relation
with previously created frames, which means that the
Transformer-based model has higher long-term dependency.
This is achieved through the self-attention mechanism, which
allows the model to consider all positions in the input
sequence simultaneously, as opposed to GRU’s sequential
processing. On the other word, GRU loses a lot of long-term
context because it considers only the latest prediction, but the
Transformer-based decoder shows better long-term depen-
dency because it uses all past predictions for calculation. This
capability translates to smoother and more coherent dance
motion estimation that better alignwith the temporal structure
of the whole dance.

GRU-based proposed model takes about 23 minutes
per epoch while Transformer-based model takes about
35 minutes per epoch. Given a similar computational environ-
ment and dataset, the training time for a Transformer decoder
can be significantly higher than a GRU due to the deeper
architecture and more operations. For the inference process,
it takes approximately 17 seconds to generate 10 seconds
dance sequences while the Transformer-based model takes
28 seconds to generate the same length of dance sequence.
It is required to perform as many decoding steps as the
number of frames to generate, and this autoregressive nature
slows down the inference time of both models.

Transformers generally perform better with larger datasets
due to the extensive parameterization. For optimal perfor-
mance, Transformers require comprehensive and extensive
datasets, making data collection and preprocessing more
critical. This reliance on larger datasets can be a limitation
in scenarios where data is scarce. GRUs can often perform
adequately with smaller datasets, benefiting from their
simpler structure and fewer trainable parameters.

In the case of the K-pop dance dataset, the consistency
between the data is low and various genres are included,
so a relatively larger amount of data is required for
training. When the size of the dataset is not large enough,
a GRU-based architecture is more suitable considering
training time and resources. But when the size of the dataset
is sufficiently large, a Transformer-based architecture can
produce better results. The amount of data used for training
in this paper is not a large amount considering the nature
of K-pop, so it can be seen that the performance indicators
between the two models are not significantly different.
If additional data is collected or a large open dataset is created
in the future, the Transformer-based model is expected to
show much higher performance.

Replacing a GRU-based decoder with a Transformer-based
decoder in an autoregressive seq2seq dance generation
model offers significant advantages in capturing long-term
dependencies, improving training efficiency, and generating
contextually coherent sequences. However, these benefits
come at the cost of increased computational complexity,
memory requirements, and dependency on larger datasets.
Therefore, the choice between GRU and Transformer
decoders should be informed by the specific requirements and
limitations of the use case, balancing performance gains with
computational practicality.

VI. CONCLUSION
In this paper, we propose the K-pop dance generation model
in an autoregressive manner. We aimed to design a system
designed to generate two-person synchronous dances based
on K-pop music. To accomplish this, we collected various
K-pop genre dance videos from online video platforms
for training models. With collected videos, We trained a
model that can perform both synchronous dance generation
methodologies: SDG and GDG.
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Additionally, we proposed learning tricks, postnet and
MSL, tomake themodel better generates synchronous dances.
Both quantitative and qualitative evaluations were conducted
to evaluate the performance of the proposed model. From
the quantitative evaluation,it was confirmed that the proposed
method generates dance more suitable for K-pop music
compared to conventional methods. A qualitative evaluation
was conducted through user evaluation of various items to
verify the coherence between the generated dances and the
effectiveness of the proposed training method.

We still believe that there is room for improvement in this
study. Because the purpose of the paper was different from
other studies, it was difficult to use a 3D open dataset such
as AIST++, so the research was conducted based on a 2D
dataset. However, the method presented in this paper can be
applied as is even when using 3D datasets. Therefore, if it
is possible to secure a large number of 3D K-pop group
choreography datasets or 2D to 3D conversion algorithm
based on the sophisticated depth estimation scheme, the
proposed technique can be expanded to generate 3D dances.
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