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ABSTRACT In this paper, an automated and real-time anomaly detection approach for sensors of
autonomous vehicles called ARAD is presented. Automated vehicles gather environmental information
through their diverse built-in sensors thus the correctness of this data affects the system’s reliability, directly.
Accordingly, anomaly detection schemes are employed to guarantee the correctness of the sensors’ data.
Moreover, due to the necessity of real-time operation in automated vehicles, the response time of the anomaly
detection unit is important along with its precision. To this aim, in our proposed ARAD a lightweight and
hierarchical architecture to detect and classify the anomalies based on their types is employed. Moreover,
to enhance the detection capability, ARAD utilizes the data diversity property based on the sequence
prediction scheme. After anomaly detection, ARAD mitigates and removes them from the system’s input
by its rule-based engine. To meet the precision and real-time requirements of the anomaly detection unit in
autonomous vehicles, ARAD has a lightweight sequence prediction structure based on statistical and data-
drivenmethods. To evaluate the effectiveness of our proposed ARAD, several experiments are performed and
a performance measurement metric called FoC is proposed to study the contradicted effects of precision and
real-time operation in terms of computation overhead, simultaneously. Based on these experiments, ARAD is
capable of detecting anomalies efficiently with precision and recall of 84.6 % and 87%, respectively in real-
time while applying low overhead to the system. It also shows 75.6% improvement in terms of computation
cost over related methods.

INDEX TERMS Anomaly detection, autonomous vehicles, data-driven learning, fault tolerance, sensors.

I. INTRODUCTION
Along with technology advances, cyber-physical systems
play important roles in various aspects such as trans-
portation, medicine, smart homes, industrial systems and
so on [1]. Automated vehicles (AVs) are introduced with
technology progress in transportation and consider various
communication technologies in addition to some aspects of
automated control. AVs are widely used due to improving
safety and decreasing accidents, human satisfaction, and their
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time saving along with the realization of the sustainable
environment [2], [3]. Due to the extent of this concept,
multiple levels of automation are presented by the society of
automotive engineering and followed by researchers [17].
The mentioned advantages of AVs are tightly dependent on

their precision in data gathering and processing. These data
are mainly collected by various sensors that are considered
for temporal, spatial, and other required information [2], [4],
[23]. Thus AVs are controlled and connected by using this
information and any corruption and error on them leads to
unwanted catastrophic actions [5], [6]. Since these errors
challenge the normal operation of the systems, they are
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called ‘‘anomalies’’ and categorized into various classes
based on their duration effect [6], [7]. Transient anomalies
are momentary and have a temporary effect on the part of
data, while permanent anomalies remain in the system for a
long time and stop its operation. Intermittent anomalies have
a short duration but occur frequently and should be predicted
and managed to avoid extensive effects [7], [8], [23].
In addition to the anomalies, these systems are vulnerable to
malicious cyber-attacks that should be handled [26].
Due to the importance of anomalies and their effect on

operations, it is important to detect and isolate them as
soon as possible. In real-time applications, the abnormal
operation of the sensors propagates very fast and affects the
system output. Thus their early detection and mitigation are
required and affect the system performance directly [3], [8].
Traditional detection approaches are based on analyzing the
statistical behavior of sensors. Since these methods model
the system mathematically, provide high reliability but are
widely dependent on applications and incapable of handling
large data instantaneously [5], [7]. Thus statistical-based
anomaly detection approaches are not appropriate candidates
for modern real-time applications with a high volume of
data and limited built-in computational resources. Recent
research on anomaly detection is mainly based on data-
drivenmethods that mainly utilizemachine learning schemes.
These approaches extract the relations and normal behavioral
patterns of sensors’ data to detect occurred anomalies more
fast and precisely [5], [9], [21].

Deep learning-based approaches are capable and appro-
priate candidates that have been utilized recently to detect
the anomalies of cyber-physical systems that mainly rely on
sensors. Due to the unknown, heterogeneous, and diverse
natures of anomalies employing deep learning to detect
and classify them via neural networks seems thoroughly
applicable [5], [22]. The main concerns of these methods
in real-time applications such as AVs are their anomaly
explanation and appliance speed. Anomalies exhibit dif-
ferent behaviors across various applications, making their
detection and classification highly complex. Deep learning-
based approaches require application-dependent feature
extractions in a short time that should be precisely set
in various applications. Thus real-time anomaly detection
approaches are widely focused in modern applications
such as AVs. These approaches mainly rely on a static
threshold to classify the anomalies’ type based on their
duration [8], [9], [22].

In this paper, an automated data-driven and real-time
anomaly detection (ARAD) is proposed that utilizes the
advantages of statistical and data-driven methods, simulta-
neously. In this approach, first, the sensors’ data are pre-
processed and normalized to prepare for the learning engine.
The learning engine is designed in two phases based on
a lightweight deep feature extraction and analysis of the
data depending on its temporal and spatial characteristics.
First, the raw sensors’ data is diverse and fed to the
detection unit in normal and differential forms. These units

determine the existence of anomalies and their results are
augmented and fed to the next learning stage. The second
learning module classifies the anomalies based on their
behavioral patterns and duration in the system, which are
reflected in the adaptive and learned thresholds, in three
categories transient, intermittent, and permanent. Afterward,
appropriate handling actions are applied to them based on
the considered rule-based engine. This engine filters the
anomalies and prevents them from the system’s input by
correcting or blocking them. To demonstrate the efficiency
of our proposed method, several experiments on real-life
benchmarks of AVs are considered. The results of these
experiments show that our proposed method is capable of
detecting and classifying anomalies well while forcing low
overhead and complication to the target system. The rest
of the paper is organized as follows. The literature review
and related studies are summarized in Section II, and the
details of the proposed method and experimental results and
evaluations are presented in sections III and IV. Finally,
sectionV draws the conclusion remarks and suggested trends.

II. RELATED STUDIES
Anomalies in sensor data are the main source of errors and
failures in cyber-physical systems. As a result of anomaly
occurrence in sensors’ data, the system operates on corrupted
information or misses some parts of the input. Anomalies are
categorized into three main classes based on their shapes:
point, contextual, and pattern [6]. Moreover, their duration
effect in the system is transient, intermittent, or permanent.
Independent of the anomalies’ type, comparing the sensors’
data to its threshold in normal operation is the main
idea of anomaly detection approaches [6], [5], [8]. These
approaches are classified into statistical and data-driven
methods [1], [6], [7].

Statistical-based anomaly detection approaches analyze
the system behavior through mathematical theories. To this
aim, the collected information forms a probability distri-
bution, and statistical operators such as mean or variance
are employed to detect abnormal behaviors [10], [11]. The
likelihood of the sensors’ data to the derived statistical model
is the measure of anomaly detection in these approaches.
Along with statistical schemes, piece-wise linear models,
construction Markov chain, signal processing methods,
time series analysis, and employing information theory are
the most effective related approaches of this field [11].
Employing these approaches provides several advantages
such as high accuracy in anomaly detection due to the
certainty in the derived system model. However, along with
the complexity of applications in terms of their behavior and
input patterns, deriving the appropriate statistical models is
very complicated and requires high processing capabilities
that are not available in many cases. This limitation leads the
designers to the second class of methods that are based on
employing learning schemes on systems’ data [10], [12].

Data-driven anomaly detection approaches utilize machine
learning to derive the pattern and behavior of the application’s
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data based on its historical information. The model’s
reliability in these approaches is less than the previous
class but is more used due to their appropriateness in
modern complicated applications with limited resources [1],
[5], [6]. In this class, several approaches based on super-
vised, non-supervised, reinforced, and deep learning are
employed related to the characteristics of the target appli-
cation [11], [21], [22]. Supervised data-driven anomaly
detection employs a set of labeled data that determines
the target data based on an expert classification. In this
context, support vector machines, decision trees, and rule-
based classifiers demonstrated appropriate efficiency [1],
[5], [11], [21]. Since in many applications, the labeled
predefined data is not available, semi and unsupervised
learning schemes are introduced. Deep learning techniques
like auto-encoders, Boltzmann, and Bayesian network-based
schemes are examples of these class of anomaly detection
approaches. Massive data demand of modern applications
leads to anomaly detection to deep learning-based approaches
that are supervised or unsupervised according to the collected
data. Convolutions neural networks, auto-encoders, sequen-
tial networks, Generative adversarial networks, and hybrid
models are the most successive related methods in various
applications [1], [4], [9], [11], [20], [27], [29].

Online and real-time anomaly detection is a major
requirement of designers with the growth of cyber-physical
systems that are tightly reliant on sensors’ data. The
mentioned data-driven anomaly detection approaches mostly
suffer from proper location and data processing time. Thus,
proposing a real-time and lightweight anomaly detection
approach is a trend in modern cyber-physical systems. To this
aim, windowing, updating dynamic models, and employing
short-term memories on incoming sensors’ data are known
as appropriate solutions! [2], [8], [11], [28]. Nowadays,
proposing lightweight and efficient approaches in this field
is still a requirement and should be considered in various
applications based on their characteristics.

III. PRELIMINARIES
A. AUTONOMOUS VEHICLES
Autonomous vehicles (AVs) aim to replace the human driver
with electro-mechanical devices at specific levels. In this
context, six levels based on the level of human intervention
are introduced by the Society of Automotive Engineers
(SAE). The first three levels are dependent on the support
of the driver alongside the automotive feature and the
others completely rely on the automotive driving properties.
Figure 1 shows these levels and their specifications as
presented in SAE standard j3016 [15], [16], [17].
As this figure shows, at levels 0-4 the driver’s action is

required constantly or on-demand. However, levels 5 and
6 are completely driverless. AVs combine technology
advancements in terms of processing and sensor devel-
opments to accurately sense the roadway, other vehicles,
and objects on and along the roadway and generate the

FIGURE 1. Levels of driving automation based on SAE standard [15].

appropriate reaction in real-time. In this context, various
research fields are presented to deal with the requirements
and limitations of this area. In all described automation levels,
the vehicles gather environmental data from their various
built-in sensors. Thus the reliability of the sensors and the
accuracy of their corresponding data is very important.

B. SENSOR’S ANOMALY
The sensor’s data are generated serially in time. An anomaly
is a point or set of points with different behavior over
prediction. There are several types of anomalies based
on their behavior and duration in systems. Anomalies are
classified into three categories point, conceptual, and pattern
related to their behaviors [6], [13]. The point anomalies
are unusual compared to the data but in the same pattern
and occurred rarely. The conceptual anomaly affects the
variation frequency of the data but is in the normal range
which does not lead to data inconsistency. Lastly, the pattern
anomaly is the most complicated one and is detectable based
on its inconsistency with data behavior in time. This kind
of anomaly can’t be detected before extracting the normal
behavior of the system [6], [23].

Moreover, the sensors’ anomalies have various time
durations. Transient anomalies are very short in time and their
effect diminishes soon. However, the permanent anomalies
are persistent and have long-term effects on the system. These
anomalies lead to the system crash in time and their effect
should be eliminated. Intermittent faults occur repeatedly in
the system in several instances and their behavior in each
sample is similar to the transient faults [2], [13]. Based on
the application, all anomaly types could occur during the
system execution. The output of a GPS sensor injected by the
mentioned anomalies is presented in Fig. 2.

C. LONG SHORT-TERM MEMORY NETWORKS (LSTM)
Long Short-Term Memory (LSTM) networks are a type of
recurrent neural network that can learn sequences deeply for
their upcoming prediction. This capability is provided by
employing the feedback connections that focus on the entire
sequence of data to process. This feature makes the LSTM
networks an appropriate candidate for predicting patterns in
sequential data like time series, text, and speech [18], [19].

The architecture of this network consists of three main
elements forget, input, and output gates along with the
memory cell. The first gate determines the necessity of
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FIGURE 2. Sample output of a GPS sensor with various types of
anomalies in time.

saving the corresponding data of the previous time step (h(t-
1)). To this aim, a sigmoid activation function is employed
to decide whether to keep or discard this information.
Equation 1 shows the details of computation in this gate.

ft = σ (xt × Uf + Ht−1 ×Wf ) (1)

where, Xt is the input of the current time step, Uf is the
corresponding weight of input, Ht−1 is the hidden state of
the previous step andWf represents its corresponding weight.
After applying the sigmoid function, the ft maps to zero or one
and determines keeping or discarding the data of the previous
time step. The second gate is input and is employed to
determine the importance of the current information carried
by the input. The equation of this gate is defined as follows:

it = σ (xt × Ui + Ht−1 ×Wi) (2)

where Ui is the weight matrix of input and Wi represents the
weight matrix of input associated with hidden states. In this
gate again, a sigmoid function is applied to map its result in
the range [0,1]. Finally, the output gate determines the output
of the current step based on its input and previous state. To this
aim the following equation is employed:

ot = σ (xt × Uo + Ht−1 ×Wo) (3)

where Uo is the weight matrix of output and Wi represents
the weight matrix of output associated with hidden states.
Similarly, a sigmoid function is applied to map the result of
this gate in the range [0,1]. Last, the tanh activation function is
applied to the result of the output gate to update the cell state.
Figure 3 shows the architecture of an LSTM cell considering
its gate and working flow.

LSTM is capable of storing long-term information without
being affected by the current input or output due to its
separate memory cell. Thus, this feature could be employed
in sequence prediction while adjusting its required cells based
on the problem scale.

FIGURE 3. The structure of the LSTM cell considering its gate and working
flow [18].

IV. PROPOSED METHOD
Our proposed approach aims to detect and mitigate the
anomalies of sensors in automated vehicles during their
operation. To this goal, various types of anomalies based
on their time duration and behavior in the system are
considered. Since the proposed scheme is considered for real-
time operation it should be light weighed and react fast.
These features are not compatible with deep learning-based
schemes that are very suitable for anomaly detection in large
data volumes such as the outputs of sensors in automated
cars. To handle this, we have proposed a data-driven approach
that employs a lightweight anomaly detection engine based
on an LSTM auto encoder along with a dynamic rule
engine. Moreover, the temporal and spatial aspects of data
are considered hierarchically. Our proposed learning engine
applies to the system in two steps, first, the anomalies are
identified and then they are classified based on their impact
duration in the system. This data-driven detection engine
performs based on dynamic threshold values that are derived
and adjusted dynamically during system operation depending
on the effects of anomalies on data. Afterward, the designed
rule-based engine mitigates the detected anomalies based on
their types and anomaly-free data are sent to the processing
core of the system. Fig 4 shows the block diagram of our
proposed ARAD.

As this figure shows, first the raw sensors’ data are
fed to our proposed anomaly detection architecture. These
data include various types of anomalies and should be pre-
processed to remove ambiguous parts and convert them to an
understandable format. In this phase, the raw data are filtered,
cleaned, and ordered to be prepared for the learning phase,
and to reduce the data scattering it standardizes in the range
[0,1]. Since the target data is extracted from sensors in the
form of a time series, it should be framed appropriately. Small
frames disturb the data dependency feature and large frames
enforce complicated analysis. To this aim, we have performed
several experiments and divided the data into a frame size of
eight.
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FIGURE 4. Block diagram of our proposed ARAD.

Afterward, the pre-processed data is passed to the proposed
detection engine. This engine has two parts: the first detects
abnormal data, and the second classifies the anomalies based
on their duration in the system. Due to the hierarchical
architecture of the proposed detection scheme, its complexity
and timing overhead have been managed to be utilized in
embedded real-time applications such as self-driving cars.
The first stage of our proposed detection engine consists
of a lightweight LSTM due to the time series form of the
sensor’s data. This scheme makes it possible to predict future
data from the history and detect abnormal behaviors that are
not matched to the expected pattern. This phase classifies
the sensors’ data into normal and abnormal categories.
Due to the criticality of this detection and its effect on
the performance of the ahead steps, we have combined
it with a redundant structure. This unit gets the sensors’
data in the differential format and extracts their existing
abnormal behaviors. Thus, by considering data diversity in
detection units their performance has been improved. These
detection units that are fed with original and differential data
of sensors are performed in parallel and their results are
compared to determine the abnormal data of the system. The
second unit is based on the LSTM structure the same as
the primal one but summarized and light-weigh to manage
the system’s overhead and cost. Since the input data of
the detection unit are extracted from sensors sequentially
its changes over time are limited and smooth which makes
the range of their differential values very narrow. Thus,
considering a lightweight LSTM structure for the second
redundant unit that processes the differential data with
limited variation to detect abnormal behaviors is appropriate.
Figure 5 shows the architecture of our proposed detection
engine.

As this figure shows the original and differential sensors’
data are passed to the detection unit to operate the primal and
redundant detection modules. The results of these modules
are compared to predefined thresholds and then connected to
derive the final output. To determine the final output, equal
weights are considered for the primal and redundant modules

FIGURE 5. Architecture of ARAD’s detection unit (θ1andθ2 are the
threshold values of the primal and redundant detection modules).

but this could be learned and adjusted. The thresholds are
determined based on a learning approach and are fine-tuned
during the system execution. It should be noted that the
initial value of the thresholds are derived by intersecting
the precision and recall and then they are adjusted through
learning.

In the third step, the abnormal data are classified into
transient, intermittent, and permanent errors based on their
behavior and duration length. To this aim, the detected
abnormal data are passed from the explained detection unit to
the anomaly classifier module. The structure of this module
is based on the LSTM due to our data format which is
time series. Due to the previous classification of the data
and limiting the process to abnormal data, the considered
LSTM architecture is lightweight with three layers of 16-8-3
neurons. The final layer of this unit classifies the anomalies
based on their repetition and duration length by probabilistic
selection.

Finally after classifying the anomalies, they are handled
based on their types in the rule-based mitigation engine.
This unit consists of confrontational and recursive actions
to remove the erroneous data and filter them earlier in
their ahead occurrences. These strategies are determined
based on the detected anomaly types. In this context, the
transient errors are corrected by time series interpolation
extracted by the past and predicted future samples. In case
of intermittent errors in addition to their correction, the
corresponding patterns are added to the pre-processing unit
to be filtered and avoided earlier. Moreover, regarding the
permanent errors due to their durability in the system and
irreparable consequences, the system stops the operation and
resets to activate the backup solutions. As a result of this
phase, the cleaned data is passed to the system or its operation
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FIGURE 6. The block diagram of our proposed ARAD based on its
operational stages.

enters the pre-defined safe mode. The block diagram of our
proposed method based on its operational steps is presented
in Fig. 6.

V. EXPERIMENTAL RESULTS
To evaluate our proposed approach to detecting and mitigat-
ing anomalies effectively in real-time, in this section the setup
description, analysis of the features and capabilities of the
proposed ARAD, and its comparison to related studies are
presented.

A. SIMULATION SETUP AND DATASET DESCRIPTION
The proposed anomaly detection approach is simulated with
Python and in the Google Colaboratory environment. In this
context, the Intel(R) Xeon(R) CPU@ 2.20GHz and NVIDIA
Tesla K80 with 12GB of VRAM processors are utilized.
Since the proposed method targets at sensor data, we have
employed theMulti-Modal Intelligent Traffic Signal Systems
GPS (MMITSS) dataset. This dataset is collected by the
multi-modal intelligent transportation signal systems along
with the vehicle’s GPS to provide performance and operation
details of vehicles over time. This dataset describes the
vehicle’s position and speed, fidelity measures of GPS-
based data elements, and vehicle operation data. This dataset
includes more than 4.7 million entries that are collected over
time and presents 17 various features for them. Some of
the most important features of MMITSS are index, vehicle
ID, lap ID, time, date, moving direction, latitude, longitude,
height, speed, and source of data collection. These entries are
in the form of a multi-modal time series that are updated each
100ms over several days [14].
Since our proposed method aims at detecting the anoma-

lies, our data set should contain errors and abnormal

behaviors. The MMITSS dataset is clear and shows the
normal behavior of some test vehicles that are collected by
GPS sensors. Thus, it is required to inject various types of
anomalies into it. In this context, we have injected transient,
intermittent, and permanent errors into the data considering
their duration and behavior. The anomalies are dispensed
based on Gaussian distribution and their duration is set
experimentally. We assume that transient and permanent
anomalies last about 28 to 56 seconds and 180 to 240 seconds,
consequently. Moreover, the period of intermittent errors is
assumed to be about 270 to 330 seconds. The distances of
these anomalies and normal data are determined by uniform
distribution and the portion of the abnormal data in the dataset
is set to 64% such that covering all anomaly types. Based on
this mentioned procedure, our considered dataset is labeled
for the proposed learning procedure. It should be noted that
the defined injection process based on statistical behaviors
of the anomalies is followed from previous research of this
field [2], [8].

Afterward, the data should be prepared and segmented
to remove the redundant information and make it ready
for the detection learning engine. To prepare the data,
we have summarized the features as vehicle ID, time, moving
direction, latitude, longitude, height, speed, and source. Then
the data is segmented into windows of size eight and reshaped
in three dimensions (samples, timestamps, features) to be
prepared for the LSTM structure. The window size is derived
experimentally to compromise the accuracy and real-time
operation. Last, due to the large variation range of the
data, they are standardized by their standard deviation and
mean. It should be mentioned that the data split 70-30%
between the train and test phases of the proposed learning
schemes.

B. EXPERIMENTAL RESULTS
To evaluate our proposed anomaly detection method, the
effectiveness of its units in terms of accuracy in the
detection, classification, and mitigation of anomalies is
first studied. Moreover, since the aim of this method
is real-time application its overhead is important so
timing analysis is performed on it. Finally, the perfor-
mance of our proposed method is compared to related
research in terms of the detection capability and enforced
overhead.

1) EVALUATING THE EFFICIENCY OF THE PROPOSED
DETECTION UNIT
Our proposed ARAD passes the pre-processed sensors’ data
to the detection unit to determine the existence of anomalies.
This unit consists of two parallel learning units fed with
original and differential data their results are aggregated and
produce the final decision. The probabilistic output of the
detection units with original and differential data is shown
in Fig. 7.

As this figure shows, the probabilistic output of the
detection unit in its two modules that are fed with original
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FIGURE 7. The probabilistic output of the detection units.

and differential data are totally different. Thus, considering
this data variation improves the accuracy of this unit and
makes its classification more precise. It should be noted that
the sparseness of the probabilistic output of the detection
unit based on differential data is due to the limited range
of variation in this case. The illustrated probabilistic output
of these modules should be mapped to binary classes of
abnormal or normal behaviors. In this context, a threshold
value is considered that we have determined experimentally
in this step.

Afterward, the results of the mentioned modules of the
detection unit are aggregated to a non-sequential structure
that compares them and performs weighted voting between
them based on leaned and dynamic threshold values. To deter-
mine the appropriate initial threshold value of this unit,
the precision and recall parameters are derived for various
thresholds, and the value corresponding to their intersection
point is selected. Then a simple neural network consisting of
a single neuron is employed to adjust the selected threshold
value based on the false negative and false positive points.

TABLE 1. Evaluated parameters of the anomaly detection unit and its
modules.

FIGURE 8. Confusion matrix of our proposed anomaly detection unit.

TABLE 2. Evaluated parameters of the anomaly classification unit.

The evaluated parameters of the detection unit considering
its modules are summarized in Table 1.

Based on these results, augmenting the results of two
detection modules enhances the output in terms of detection
capability. The detection unit performs well with precision
95% in finding the abnormal data and separating it from
normal and healthy ones. Moreover, to demonstrate the
effectiveness of the detection unit its confusion matrix is
presented in Fig. 8.

As this figure shows, the detection capability of our
proposed unit is very good and its miss-classification rate
is about 5%. Moreover, the false positive is smaller than the
false negative limits the useless anomaly handling, and saves
the system’s operation time.

After detecting the anomalies, they should be classified
based on their types. To this aim the anomalies are classified
into three classes transient, intermittent, and permanent based
on their pattern and duration. The evaluated parameters of this
unit are presented in table 2.

As this table shows, our proposed classification unit is
capable of finding anomaly types with acceptable precision.
The precision of detecting permanent anomalies is less than
the other types due to its large duration and the limitation
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TABLE 3. The detailed overhead analysis of our proposed ARAD in terms
of FoC parameter.

of the prediction window. However, the miss-classification
rate of permanent anomaly is about 15% and its majority
(14.2%) is caused by the false positive predictions that are
less harmful but may waste time. Moreover, this parameter
for transient and intermittent faults is estimated at 2% and
3%, respectively.

The mitigation rule engine performs the appropriate action
on the detected anomalies based on their types. In this context,
due to the lower detection rate of permanent anomalies,
more rules are considered in this engine to reduce the false
positive rate during its mitigation and save the system’s
time.

2) OVERHEAD ANALYSIS OF OUR PROPOSED ARAD
Since the proposed anomaly detection aims at real-time
applications such as autonomous vehicles, its complexity,
and overhead should be very limited. Moreover, this scheme
should be precise and reliable to avoid anomalies in
the system. These factors are contradicted and usually,
precise computations enforce a heavy load on the system
that is not acceptable in real-time applications. To this
aim, we have introduced a parameter that considers the
precision, recall, and computation cost of the detection
method simultaneously. This parameter is called FoC for F1-
score over computation and its large value is wanted during
the detection process. To estimate the computation cost, the
number of learning neurons of the detection methods is
considered.

The computation overhead of our proposed method based
on its learning neurons is presented in Table 3. Based on
this table, our proposed method consists of four LSTM
models for the detection and classification of anomalies.
The third first ones have 39 neurons considering the one
that is added to learn the proper threshold value for
anomaly detection and the last one has 27 neurons of their
classification.

3) COMPARISON TO RELATED RESEARCH
To evaluate the effectiveness of our proposed method,
we have compared it to related research in terms of the
detection capability and enforced overhead. The anomaly
detection approach of [8] is proposed based on LSTM and
CNN structures to have real-time operation. The considered

FIGURE 9. The detection capability of our proposed ARAD over the
proposed method of [8] in terms of precision, recall, and accuracy.

TABLE 4. Comparison of our proposed anomaly detection to related
methods in terms of the detection capability, computation cost, and FoC.

LSTM of this approach consists of three layers with 256-
128-64 neurons and its output is passed to a CNN. The
overhead and time complexity of this method is high due
to its architecture but in cost of more precision in anomaly
detection. The comparison of our proposed method to
the real-time anomaly detection method of [8] in terms
of precision, recall, and accuracy is presented in Fig. 9.
In this figure, the results are averaged for various types of
anomalies.

As this figure shows, the capability of the proposedmethod
of [8] in anomaly detection is about 82% and 7% less than the
detection method of [8]. However, in real-time applications,
accuracy is important along with the response time. If the
target system provides the best accuracy but in cost of a
long time it is not efficient. Thus, we have compared our
proposed ARAD to the detection method of [8] in terms of its
accuracy and computation cost simultaneously by employing
the presented FoC measure. Table 4 shows the results of this
comparison.

As this table shows, our proposed ARAD outperforms the
real-time detection methods of [8], LSTM-based inspired
of [24] and [25], and CNN-based inspired of [2] in terms
of the FoC parameter. In this table, the computation cost
is considered as the number of neurons in the considered
methods. The number of neurons in our proposed model is
computed in detail in Table 3. The method of [8] consists
of an LSTM with 256-128-64-64-128-256 neurons and a
CNN architecture with about 28675 neurons. The considered

VOLUME 12, 2024 90439



A. Abdi, A. Ghasemi-Tabar: ARAD: Automated and Real-Time Anomaly Detection in Sensors of AVs

auto encoder-based model inspired of [24] and [25] is
considered of four 32 hidden layers along with input and
output layers. Moreover, the assumed CNN-based model
inspired of [2] consists of 11243 neurons based on its input
shapes. Our proposed method meets the trade-off between
the detection capability and computation overhead better
due to its higher value of FoC and is appropriate for
employment in real-time applications such as autonomous
vehicles.

VI. CONCLUSION REMARKS
Autonomous vehicles are introduced along with technology
advances in cyber-physical systems to facilitate driving.
These vehicles are sensing the environment and operating
without human involvement. Thus the sensing data that are
provided by their built-in sensorsmust be diverse and reliable.
In this context, various sensors are developed to gather all
required information from the environment. Moreover, the
accuracy of this data is analyzed precisely during the anomaly
detection process. The anomaly detection aims at finding
the abnormal behavior of the sensor’s data by comparing
them with the predicted pattern continuously. In this paper,
a real-time sensor anomaly detection approach called ARAD
is presented. This method is capable of detecting anomalies
during the system execution and classifying them into three
categories transient, permanent, and intermittent depending
on their duration. In addition, in ARAD a rule-based
mitigation engine is considered to handle the detected
anomalies and clean the input data of the system. Since our
target application is critical, its instantaneous and reliable
operation despite the huge volume of data provided by the
various sensors is required. Thus, our proposed method is
designed based on a lightweight and hierarchical architecture.
In ARAD the LSTM network is employed to predict
the data sequence and detect the abnormal behavior of
sensors’ data. To avoid the computation overhead of this
structure, we have employed the hierarchy and data diversity
properties to have a lightweight LSTM architecture capable
of detecting abnormal data in real time. Afterward, the
detected anomalies are classified based on their duration
to apply appropriate handling action to them. Finally, the
rule-based mitigation engine employs confrontational actions
to clean the anomalies and correct or block them before
the system’s input. Based on the experimental results,
our proposed method is capable of detecting 83% of the
anomalies at low computation cost and timing overhead.
Moreover, we have introduced a performance evaluation
measure called FoC that combines the detection capability
and computation cost in terms of the model’s neurons count
as two important parameters in real-time anomaly detection
methods. Based on FoC our proposed ARAD strongly
outperforms the detection method of [8] that is most related.
As the future trend, improving the feature extraction process
to dynamically determine the anomaly threshold of the data
more precisely along with employing attention mechanisms

to refine the detection capability of intermittent errors are
considered.
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