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ABSTRACT Effectively interfacing synthetic systems with a tangible world using a growing number
and variety of sensors under the constraints of precision, resilience, and adaptability is indispensable.
In particular, system integration employing leading-edge technologies is both rewarding and challenging
because of signal swings, manufacturing deviations, and noise. Utilizing the general self-X concept and the
transition from a common amplitude-domain to biology-inspired adaptive spike-domain processing offers a
viable solution. In this work, a neuromorphic concept and the first prototype of an adaptive spiking sensory
front-end with self-X properties were designed and fabricated using XFAB CMOS 0.35 µm technology.
The chip includes synapse, neuron, self-adaptive spike-to-rank coding (SA-SRC), and adaptive coincidence
detection (ACD) cells with areas 0.086 mm x 0.046 mm, 0.06 mm x 0.041 mm, 0.75mm x 1.3 mm,
and 0.123 mm x 0.336 mm, respectively. The cells were applied to achieve an adaptive sensor signal-to-
spike converter (ASSC) feeding SA-SRC, followed by a decoder to a 4-bit digital code. Characterization
achieved differential non-linearity (DNL), integral non-linearity (INL), missing codes, effective number of
bits (ENOB), and signal-to-noise and distortion ratio (SINAD), with values of 0.41 LSB, 0.3 LSB, nomissing
codes, 3.82 bits, and 24.79 dB respectively. The system consumed 321 µW of power, required 158 pJ
per conversion, and had a conversion speed of 492 ns. A final angular decoder system application with
Tunnel Magnetoresistance (TMR) sensors revealed our spiking sensory front-end’s ability to reduce the
angle measurement error from 24.95 to 12.72 degrees due to adaptation after system perturbation.

INDEX TERMS Neuromorphic spiking sensory system, presentation of information in the spike domain,
spiking neural networks, self-X, adaptive spiking sensory systems.

I. INTRODUCTION
The fields of sensor technology and sensory systems are
experiencing rapid growth and diversification, with a wide
range of practical applications [15]. With the continuous
development of novel sensory concepts and physical trans-
duction elements coupled with substantial advancements in
integration technology, both new and existing components
are becoming progressively smaller [16]. On one hand,
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integration technologies have simplified the utilization of
sensors and related systems; on the other hand, they have
introduced greater challenges for the design of corresponding
electronics. The incorporation of state-of-the-art technologies
for the realization of mixed-signal systems yields advantages
in terms of the power efficiency and processing speed,
as noted in [18] and [19]. This phenomenon can primarily
be attributed to the lower supply voltages and decreased
capacitance values. As integration technologies for scaling
continue to progress, traditional analog designs that rely on
the representation of information in the amplitude domain
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FIGURE 1. The block diagram of the traditional sensor signal interface chain is shown. Sensor signal conditioning includes several
functions, such as using programmable gain amplifiers (PGAs) with operational amplifier (op-amp) circuits to adjust the signal to the
ADC’s full-scale voltage. An anti-aliasing filter reduces signal noise to comply with the ADC’s resolution needs.

face increasingly formidable challenges [17], [20], [23], [24].
As elucidated in [21] and [22], circuit design faces complex-
ities, including challenges, such as reduced signal amplitude,
diminished intrinsic device gain, heightened noise levels,
exacerbated device mismatch, dwindling supply voltage, and
variations in the manufacturing process. These obstacles
collectively underscore the evolving landscape and the
heightened demand for modern analog design practitioners.
Effectively establishing connections with numerous sensors
in either single or multi sensor systems presents notable
challenges [25].
The development of reliable analog front ends (AFEs) is

of utmost importance for the comprehensive effectiveness
of application systems [45]. To ensure optimal performance,
sensor systems require analog front-ends that offer high accu-
racy, robustness, and adaptability, along with self-X attributes
including self-calibration, self-healing, self-adaptation, self-
optimization, and self-trimming, as emphasized in [46]. Fig. 1
shows the conventional signal interface chain of a sensor [46].
This interface serves critical functions, including sensor
signal conditioning, anti-aliasing filtering, and analog-to-
digital conversion (ADC). The small sensor signal may be
further amplified through an additional gain stage after the in-
amp. This stage uses programmable gain amplifiers (PGAs)
based on operational amplifier (op-amp) circuits to match the
signal to the ADC’s full-scale voltage. The anti-aliasing filter
then minimizes signal noise to meet the ADC’s resolution
requirements. If an active filter is used, it can also provide
additional amplification. Additionally, the fully-differential
active filter can function as the ADC driver, managing its
high input load and aligning the filtered signal to the ADC’s
common-mode voltage. The ADC unit then converts the
conditioned analog signal to digital form for interfacing
with the digital processing unit. In particular, complex
mixed-signal systems such as analog-to-digital converters
(ADCs) encounter these challenges when transitioning to
smaller technology nodes [22], [26], [27], [28].
State-of-the-art approaches are dedicated to addressing the

difficulties related to analog-to-digital converters (ADCs),
and numerous configurations have been suggested in schol-
arly works. Semtech Inc. introduced the Zooming ADC
concept, embodied in chips such as SX8724, which boasts
digital reconfigurability. The aim was to overcome the limi-
tations associated with traditional ADCs. The core principle

underlying Zooming ADC is a well thought two-step process.
It commences with an initial low-resolution ADC stage
responsible for the coarse conversion of the input signal. The
output of this stage subsequently undergoes processing using
a digital-to-analog converter (DAC). The divergence between
the original input signal and the DAC’s output constitutes
what we refer to as the ‘residue,’ which is then subjected to
further refinement in the second stage. In the second stage,
a fine ADC with a restricted conversion range was employed.
In recent years, there has been a surge in the introduction of
hybrid ADCs [48], [49], [50], [51], [52], which effectively
combine the strengths of diverse architectural approaches to
attain superior performance that transcends the capabilities of
a single architecture. The Zooming ADC, a prime example
within this category [51], ingeniously merges successive-
approximation-register (SAR) ADC and delta-sigma modu-
lator ADC designs, capitalizing on their unique attributes to
achieve remarkable resolutions and energy efficiency.

The proposed study [29] introduced an architecture for
an analog-to-digital converter (ADC) called a pipelined
Hopfield neural network memristive ADC. This approach
aims to leverage the advantages of memristors in terms
of their area and power efficiency, thereby overcoming
constraints typically associated with traditional ADCs. The
integration of memristors enables the development of an
analog-to-digital converter (ADC) based on neural networks.
Their proposed architecture comprised three modules: a
random perturbation unit (RPU), neuron unit, and 2T2R
synaptic unit. The 2T2R synaptic units consisted of two
memristors, an inverter, a PMOS tube, and an NMOS tube,
all of which were controlled by the RPU. The RPU primarily
consists of operational amplifiers, data selectors, NAND
gates, a random number generator (RNG), and a T trigger.

The researchers in [30] introduced an artificial neural
network (ANN) analog-to-digital converter (ADC) that
incorporates subranging and non-uniform memristors. This
design addresses the device-mismatch issue by employing
a trainable memristor weight that can be adapted. The
proposed architecture consists of a composite structure
featuring a 2T1R weight unit circuit, a converter stage with
amplifiers to enhance the gain, neurons composed of a
trans-impedance amplifier (TIA) and inverter, and a feedback
circuit for control purposes. Furthermore, the researchers
in [31] and [32] presented a synthesizable ADC that aims
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to overcome the obstacles encountered in conventional
ADC design. The ADC architecture comprises three distinct
hardware layers parallel to a conventional neural network
structure: the foundational input layer, intricate hidden layer,
and ultimate output layer. To construct these layers, resistive
random-access memory (RRAM) crossbar arrays and static
CMOS inverters were employed. Moreover, they employed
scalable and synthesized operational amplifiers and analog
inverters within the RRAM crossbar. To obtain the output,
they applied Thevenin’s theorem to RRAM crossbar arrays.

However, the ADCs featured in [29], [30], [31], [32], [48],
[49], [50], [51], and [52] employed amplitude-coded signals,
a technique that utilizes varying signal amplitudes to repre-
sent different data values. Although widely recognized, this
method faces challenges in contemporary CMOS technology
nodes. In contrast, adjusting the dimensions of transistors
and the supply voltage in CMOS technology results in a
decreased gate delay within digital circuits. Consequently,
this advancement in CMOS scaling results in improved
time resolution and sparking increased interest in the time
domain, as documented in [33]. This incentive prompted
researchers to design systems that utilize spike or time-
coded signals, characterized by their technology-agnostic
attributes, which maintain resilience even as technology
advances, as evidenced in the studies cited [34], [35], [36].
Converting continuous input signals into pulse frequencies
by utilizing a significant array of spikes may lead to
escalated energy usage, particularly when the spiking neural
network (SNN) architecture becomes more extensive and
complex. As a result, these characteristics may not align
with the requirements of power-efficient and resilient devices
in the context of edge computing, as discussed in [37],
[38], and [39]. In response to these challenges, a prior
version of the sensor-to-spike-to-digital converter (SSDCα)
chip was engineered to employ spike timing, along with
the adapted concept of acoustic localization for a novel
ADC concept [40]. In this endeavor, the concept was
opportunistically leveraged and applied to different domains.
Nonetheless, this design lacks adaptivity, which is crucial for
sustaining system functionality during aging, drift, damage,
or lesions. The capacity to devise a precise, robust, adaptable
design and resilience is of paramount importance to ensure
the success of the application system.

Subsequently, the pivotal components of our envisioned
neuromorphic spiking sensory system, distinguished by its
inherent self-X capabilities and utilization of spike-based
or time-coded signals, were successfully integrated into
our chip [47]. The implemented system incorporates a
technology-agnostic attribute and retains its robustness
despite technological advancements. This adaptive method-
ology has the potential to address a spectrum of challenges,
including various types of degradation, such as static and
dynamic, as well as reversible and irreversible. In previous
research [41], [42], [43], [44], we introduced the concept of
utilizing spike timing to adapt acoustic localization to a novel
neuromorphic spiking sensory system.

The structure of the paper is outlined as follows:
Section II discusses insights drawn from biological sensory
systems, focusing on the adaptation of acoustic localiza-
tion principles to a novel neuromorphic spiking sensory
system. Section III delves into the neuromorphic system
electronics, aiming to develop a self-X capable neuromor-
phic spiking sensory system that transmits information via
spike timing, integrating the adaptive sensor signal-to-spike
converter (ASSC) and self-adaptive spike-to-digital converter
(SA-SDC) components. Section IV covers the integration
of neuromorphic system components, highlighting the spike
domain segment’s completion using the chip. Section V
presents the characterization and application of the neuro-
morphic chip, showcasing the measurement characteristics
of the implemented system on the fabricated chip. Finally,
Section VI provides the conclusion of the study.

II. INSIGHTS DRAWN FROM BIOLOGICAL SENSORY
SYSTEMS
Organisms possess an impressive capacity to perceive both
physical and chemical attributes [1], [2]. In addition, they
exhibit adaptability to environmental variations and the
emergence of faults and lesions. Neural networks play pivotal
roles in orchestrating this regulatory process. Within living
entities, sensory systems focus on harboring a myriad of
sensors interconnected with peripheral neural ensembles [3].

Acoustic localization is an exception to this pattern.
It involves the localization of various objects, such as
predators, water, prey, or food, through the utilization of
spatially separated pairs of sensors [4], [5], [6], [7], [8], [9].
Organisms utilize the time lag between signal arrivals in
their two ears, termed the interaural time difference (ITDs),
to determine the source of a sound. Temporal information
can then be mapped onto a network of nerve cells as a
spatial representation. A theory supporting this mapping was
proposed by Jeffress (1948). Jeffress (1948) formulated a
theory based on the three fundamental assumptions, outlined
by Ashida and Carr [4]. These assumptions are:

1. An organized configuration of ascending nerve fibers
within the conduction pathways functions as a delay line.
2. Subsequently, an ensemble of coincidence detectors
transforms the synchronized inputs into the output spike
rates. 3. Ultimately, a neuronal place map was created within
the cell array by implementing deliberate alterations in the
spiking rates.

Fig. 2a presents a unique SNN model tailored to acoustic
localization. Fig. 2b shows a neuromorphic spiking sen-
sory system that incorporates adaptive mechanisms within
a dual-stage framework, effectively mimicking Jeffress’s
model [10]. Our primary goal is not to enhance acoustic
localization but to adapt this concept to a novel neuromorphic
spiking sensory system. In the initial phase, the incoming
sensor signal is transformed into a pair of spikes by an
adaptive sensor signal-to-spike converter (ASSC). These
spikes exhibit a variation in time difference (TD) contingent
upon the incoming sensor signal. In Fig. 2b, the second
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FIGURE 2. (a) Acoustic localization mechanism. The brain determines the position of a sound source by analyzing the interaural time differences
(ITDs) between the signals received at each ear, denoted as t1 and t2, with t2 representing the time the sound reaches the left ear and t1 the right
ear. (b) Architectural representation of the proposed neuromorphic spiking sensory systems. The adaptive sensor signal-to-spike converter (ASSC)
unit converts the sensor’s signal into two distinct spikes occurring at different times, dependent on the sensor input. The self-adaptive
spike-to-rank coding (SA-SRC) block then produces a digital code based on the temporal difference between these spikes. The SA-SRC comprises
two primary components: adaptive coincidence detection (ACD) and winner-take-all (WTA), which include memory.

component, known as the self-adaptive spike-to-digital con-
verter (SA-SDC), incorporates Jeffress’s (1948) theoretical
framework based on three fundamental assumptions. The first
assumption is actualized through synaptic weights, whereas
the second is executed by an array of adaptive coincidence
detectors (ACD). These detectors transform the time differ-
ences (TDs) of the dual input pulses into ranked spike code.
Finally, the third assumption is realized by winner-take-all
(WTA) mechanisms and algorithms, to transmute the ranked
spike code into a digital representation.

III. NEUROMORPHIC SYSTEM ELECTRONICS
The increasing need for sensor systems in IoT and Indus-
try 4.0, capable of efficient performance in dynamic settings
and addressing the constraints of traditional amplitude-based
sensors, has become evident. The objective of this study was
to develop a novel neuromorphic spiking sensory systemwith
self-X capability. This system exhibits promising attributes,
such as operating at a low voltage, robustness against noise,
and minimal power consumption, thereby addressing the
challenges posed by technology scaling. The neuromorphic
spiking sensory system is designed to convey information
via spike timing, rendering it well suited for integration
into sophisticated electronic sensor systems. The envisioned
neuromorphic spiking sensory system comprises the ASSC
and SA-SDC components, as depicted in Fig. 2.

A. ADAPTIVE SENSOR SIGNAL-TO-SPIKE CONVERTER
(ASSC)
The sensor response span rarely matches the SA-SDC input
range, as shown in Fig. 3. In cases where the sensor’s
operating range is narrower than the input span of the
SA-SDC, as shown in Fig. 3a, the SA-SDC’s dynamic
range remains underutilized, leading to non-utilization of all
available ACDs. Conversely, when the sensor span surpassed
the SA-SDC input range, as indicated in Fig. 3c, the sensor
data became inaccessible. Additionally, instances exist where
the spans are both equal, but offset (Fig. 3b). In another
scenario, there is a difference in duration (400 ns and
600 ns) and a 200 ns offset between the spans, as shown in
Fig. 3d. Frequently, the spans exhibit inequality and offset,
necessitating level-shifting and amplification in the time
domain to align them. The lack of alignment between the
spans necessitates either a costly expansion of the dynamic
range of the SA-SDC, or results in the loss of sensor data.
Consequently, achieving optimal performance requires align-
ing both the sensor and the SA-SDC spans. To accomplish
this, the ASSC serves as an essential conditioning circuit,
ensuring that the spans are equal without the need for level-
shifting. Remarkably, the ASSC is sufficiently versatile to
simultaneously amplify and level shift the sensor signal in the
time domain. Using our approach, we adapted the zooming
ADC concept from the amplitude domain to spike domain.
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FIGURE 3. Here are instances where corrections are required: (a) The sensor’s range is smaller than the SA-SDC’s input range. (b) Another scenario
emerges when the sensor and SA-SDC appear to have matching operational ranges, yet there is an observable offset or misalignment between them
that warrants correction. (c) The sensor’s range surpasses the input range of the SA-SDC. (d) Both the sensor and SA-ADC feature distinct ranges and
experience a positional offset.

FIGURE 4. Block diagram of proposed adaptive sensor signal-to-spike
converter (ASSC). ASSC consists of two elements: a pair of synapses and a
pair of neurons. The synaptic inputs are interconnected, with each
synapse’s output connected to a neuron. Furthermore, each neuron is
linked to an individual switch, which in turn is connected to the V1 and
V2 inputs.

The proposed ASSC comprises two components, two
synapses and two neurons as shown in Fig. 4. Synaptic inputs
are interlinked with the output of each synapse linked to a
neuron. Additionally, every neuron is connected to a single
switch, which is then connected to V1 and V2 inputs. In a
previous study [11], [42], we introduced an adaptive synapse
concept that employs a CMOS-emulated memristor as a
synapse equivalent to mimic both the short-term plasticity
(STP) and long-term plasticity (LTP) observed in biological
synapses. A schematic of the proposed adaptive synapse is
shown in Fig. 5.
Several biological neuronal models, possess a range of

distinct properties. The attributes necessary for successful
implementation of the proposed design were examined.
This implementation functions akin to a neural network
time delay, where the time required for the initial spike
corresponds inversely to the magnitude of the incoming
charge. These attributes are intrinsic to all spiking neuron
models. To align with the specifications of this study while
minimizing the count of adaptation variables and transistors,
we modified and eliminated unnecessary components from
the leaky integrate-and-fire (LIF) neuron model proposed by
Indiveri in 2003 [12]. Indiveri’s LIF analog neuron model,
designed to replicate the intricacies of biological neurons,
encompasses a comprehensive set of elements, including

FIGURE 5. The synapse schematic of the ASSC and ACD blocks. The
CMOS-emulated memristor mimics the synaptic plasticity found in
biological synapses, including both long-term plasticity (LTP) and
short-term plasticity (STP). This circuit embodies the adaptive synapse
(AS) in our proposed design, with transistor dimensions in µm. In the ACD
block, the up-counter is controlled by the autonomous control circuit
shown in Fig. 8.

provisions for establishing an arbitrary refractory period,
modulating the neuron’s threshold voltage, regulating the
spike frequency adaptation, introducing positive feedback,
integrating a transistor for current leakage, integrating a
membrane capacitor, and incorporating a digital inverter
for pulse generation. This neuron circuit, although notably
flexible in its construction, is primarily oriented toward
emulating biological neurons. Consequently, this design
approach yielded an increased number of adaptation variables
and higher transistor count. We modified the neuron model
proposed by Abd and König [42] to align it with the specific
requirements of ACD while concurrently improving power
efficiency, enhancing processing speed, and optimizing area
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FIGURE 6. The analog leaky integrate-and-fire (LIF) neuron circuit, is
customized to suit the requirements of implementing the ASSC and
SA-SDC components. This circuit, characterized by transistor sizes
measured in µm, represents a streamlined adaptation of Indiveri’s
neuron model and is tailored to align with the specific demands of this
application.

utilization. Fig. 6 shows a schematic of the modified neuron
model.

The ASSC operates in two distinct phases. In the initial
phase, switches sw1 and sw2 are engaged, thereby allowing
the membrane capacitors of neurons to undergo a charging
process up to voltage levels V1 and V2, respectively.
The second phase involves the opening of these switches,
followed by the application of a precisely timed pulse to
the synapses. This pulse finalizes the integration process
of the membrane capacitors within the neurons, driving
them toward the activation threshold, thereby inducing the
generation of neuronal spikes. It is crucial to note that the
time difference between the occurrences of these spikes is
contingent on the voltage discrepancy between V1 and V2.
Conventional signal conditioning systems commonly employ
instrumentation amplifiers that function as signal-processing
amplifiers. However, these systems rely on amplitude coding
and are consequently more susceptible to the caveats of rapid
technological advancement. In our envisioned neuromorphic
spiking sensory system, amplification occurs within the time
domain. The ASSC gain is calculated using the following
equation:

ASSC gain =
ASSC output span at weight A
ASSC output span at weight B

. (1)

The synaptic weights were regulated by both their Vgs
values and the corresponding settings of their upper counters.
Weight A can denote any adjustable weight configured to
achieve the desired gain, while weight B signifies the weight
of the synapses when the Vgs values are set to zero and the
upper counters are set to 255. Because there are two synapses,
this requires the use of two up-counters, Vgs1 and Vgs2.
At the current stage of the work, the synaptic weights of the
ASSC are controlled in an open-loop manner by adjusting the
synapse weights via the counter, as well as Vgs1 and Vgs2.
Fully automated control is part of the second hierarchical
layer, which will be implemented in the subsequent phase of
the project.

The offset refers to the difference between the sensor
span and SA-SDC input span values that shift the transition
from the ‘‘first code’’ digital output of the SA-SDC to the
subsequent code increment. This offset is measured in
the least significant bit (LSB) and can be calculated using the
following equation:

offset =
TDS
LSB

. (2)

where the time difference span (TDS) is the time difference
between the sensor span and the SA-SDC input span. The
gain and offset can be modulated by adjusting synaptic
weights. The quantifiable bit capacity, denoted as the number
of bits (NoB) achievable through the SA-SDC, is contingent
on the time span of the ASSC, which can be extended through
the application of gain. The determination of the maximum
achievable number of bits, referred to as the maximum
number of bits (MNoB) that the ASSC can provide, can be
computed using the following equation:

MNoBASSC = ld(MNoLASSC ). (3)

where the maximum number of ASSC levels (MNoLASSC) is
computed using the following equation:

MNoLASSC =
time span of the ASSC

LSB
. (4)

B. SELF-ADAPTIVE SPIKE-TO-DIGITAL CONVERTER
(SA-SDC)
The proposed SA-SDC comprises two integral elements.
The first is self-adaptive spike-to-rank coding (SA-SRC),
followed by the winner-take-all (WTA) mechanism and the
algorithm, as illustrated in Fig. 2. SA-SRC produces spike
orders that precisely mirror the temporal disparities among
incoming spikes received by its inputs. These spike-order
codes embody a coding approach contingent on the precise
sequential organization of spikes within a cluster of neurons,
which is directly influenced by the firing sequence of these
neurons [13], [14].

In the current stage of development, the proposed SA-SRC
utilizes a total of sixteen adaptive coincidence detection
(ACD) units, as depicted in Fig. 7. The SA-SRC architecture
is divided into upper and lower segments, generating outputs
(Out1 - Out8 and Out9 - Out16) and accommodating
single-ended or differential sensory inputs. Each segment
employs two inputs (in1 and in2), with in1 directly entering
the ACDs in the upper segment, and in2 forming the delay
chains. In the lower segment, in2 is directly linked to ACDs,
whereas in1 undergoes sequential processing. The temporal
extent of the delay chain is influenced by the neuron firing
time, which is modulated by synapse weights that adapt
to timing variations. For a comprehensive understanding of
the adaptation synapse, including detailed timing charts and
explanations, more details on the adaptation synapse can
be found in [42]. The central component of the SA-SRC
architecture comprises an ACD, which is realized through
the integration of a solitary neuron (N) and two adaptive
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FIGURE 7. Proposed self-adaptive spike-to-rank coding (SA-SRC) scheme. The key component of the SA-SRC is the adaptive coincidence
detection (ACD) block. The SA-SRC contains 16 adaptive coincidence detectors (ACDs), each comprising two adaptive synapses (ASs) and a
neuron (N). The SA-SRC produces spikes that generate rank codes based on the time interval between the two input spikes. The SA-SRC
harnesses self-X capabilities, underpinned by a dual-layer adaptivity framework. The initial layer is driven by the autonomous ACD circuit,
while the subsequent layer leverages VLEAK and VRFR for neural regulation, and vg1 and vg2 to oversee synaptic operations.

synapses (AS), as depicted in Fig. 7. Schematics of the neuron
and synapse are shown in Figs. 6 and 5, respectively.

The SA-SRC operates in two modes: normal and adaptive.
In the normal mode, both synapses of the ACD are linked to
the neuron. In this mode, the transmission gates T1, T3, T4,
and T5 are active (on), while T2 is inactive (off), as illustrated
in Fig. 7. In the adaptation mode, a two-layer adaptation
hierarchy is used. The first layer operates at the ACD level
and has two states: In the first state, the weight of the first
synapse is adjusted, with only the first synapse connected to
the neuron. All first synapses across the ACDs are linked
in parallel (one column) and their weights are adjusted
simultaneously. In this state, transmission gates T1 and T4
are on, while T2, T3, and T5 are off. In the second state,
the weight of the second synapse is adjusted, with only the
second synapse connected to the neuron. All second synapses
across the ACDs are connected in parallel and their weights
are adjusted at the same time. In this state, transmission gates
T2 and T5 are on, whereas T1, T3, and T4 are off.

The synaptic weight determines when the neuron fires,
making the firing time directly proportional to the synaptic
weight. Two pulses, adapt_pulse and in1, monitor the
neuron’s firing time before and after the rising edge of the

neuron’s pulse, respectively. This monitoring is performed by
an autonomous control circuit, as shown in Fig. 8. According
to Fig. 8, the output of the first AND gate (left) should be
0 if the output of the neuron has not shifted left, as depicted
in Fig. 9. Similarly, the output of the second AND gate
(right) should be 1 if the output of the neuron has not
shifted right, as shown in Fig. 9. The outputs of the first and
second AND gates (left and right shift) are stored in D flip-
flops DFF1 and DFF2. The first and second counters then
adjust and store the weights of the first and second synapses,
respectively. The Clear input serves multiple functions: it
clears the outputs of DFF1 and DFF2 to prepare for the
next weight check, discharges the neuron capacitor, and acts
as the counter clock signal after inversion. The multiplexer
passes the AND3 gate output at a specific time by setting the
Read signal to zero. The selection signal of the multiplexer
activates after completing the comparison of the adapt_pulse,
in1, and Out_N signals and storing the results (left and right)
in DFF1 and DFF2. The reset in the autonomous control
circuit, as shown in Fig. 8, resets DFF3, DFF4, andDFF5. The
Reset signal triggers the adaptation mode. DFF3 and DFF4
store the adaptive signals of the first and second synapses.
The output Adapt signal from the NOR gate indicates that
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FIGURE 8. In the first layer, the autonomous control circuit within ACD
achieves the self-adaptation of synaptic weights.

FIGURE 9. The timing diagram for the adaptive synapse. Two pulses,
adapt_pulse, and in1, verify the neuron’s firing time before and after the
neuron’s rising edge, respectively. When the neuron fires at a particular
moment, the right signal is 1, and the left signal is 0. The Read signal is
utilized to read data after a designated period.

the ACD is in self-adaptation mode when it is 0. The
autonomous control circuit leads to unsupervised adaptation.
At the first adaptation level, simultaneous adjustments for
all ACDs occurred concurrently, ensuring uniform delays
across connections. The primary factors affecting ACD
performance are process, voltage, and temperature (PVT)
variations, packaging effects, and aging effects. These factors
are mitigated by the self-X feature of the ACD unit, achieved
through two adaptation layers. The adaptation process is
described in detail in [42].

The second level oversees hierarchical adjustments, focus-
ing on variables such as VLEAK, VRFR, vg1, and vg2,
and awaiting the completion of the first-level solution. The
adaptation process involves resetting the membrane capaci-
tor, manual adjustments to variables, and iterative updates,
as explained in [42]. For a comprehensive understanding and
detailed development, refer to [42] and [47].
The SA-SRC cell on-chip currently comprises 16 outputs,

which are sparse rank-coded spikes. To convert the rank
order code outputs of the SA-SRC into digital numbers,
we designed the WTA circuit and algorithm using Verilog,
a hardware descriptive language. WTA cells are responsible
for determining the winner among SA-SRC outputs. The

FIGURE 10. The implementation of the architecture of a state machine
diagram of the WTA and the algorithm. To transform the rank order code
outputs of the SA-SRC into digital values, the WTA identifies incoming
signals and assigns an order based on their arrival time.

FIGURE 11. The rank code decoding algorithm is employed for the
conversion of rank codes into binary codes.

WTA detects incoming signals and assigns a corresponding
order with respect to the time of arrival, as shown in Fig. 10.
For example, in2 is the first; therefore, it assigns a value
of 1 to in2. Similarly, in4 comes after in2, and it obtains a
value of 2. Fig. 11 depicts the algorithm implemented on Red
Pitaya 2, which is aimed at decoding rank codes into binary
codes. The current conversion of the rank-order code into
digital numbers is a possibility for demonstrators and can be
subject to improvement.

The ideal SA-SDC produces a finely tuned digital output
code determined by the precise time difference between the
signals in1 and in2. In an optimal operational setting, the
SA-SDC should consistently generate digital output repre-
sentations evenly distributed across the complete spectrum
of time differences between in1 and in2. Every digital
output representation represents a fractional expression of
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FIGURE 12. MPC USIX chip. (a) Upon completion of the manufacturing process, the chip exhibits both the bonding wires and the sealing ring,
indicating the integration of key components for functionality and connectivity. (b) The chip layout incorporates the pad frame, emphasizing its
comprehensive design.

time difference. The even distribution is contingent on the
weight of the least significant bit (LSB), which is determined
by the converter resolution and full-scale time difference
(FSTD). The term ‘‘Full-Scale’’ (FS) denotes the extent
of the time difference range between in1 and in2, within
which SA-SDC processes the input signal, encompassing the
maximum possible time difference between the two inputs.
The LSB weight was calculated using the following formula:

LSB =
FSTD
2n

(5)

In this equation, n represents the number of bits used
for resolution. Expanding the cascade by incorporating
additional ACDs enhances the capability to measure the
temporal gaps between in1 and in2, thereby augmenting the
resolution of the SA-SDC. The number of ACDs required to
attain a specific number of bits (NOB) can be determined
using equation (6) [42].

NOBSA−SDC = ld(x). (6)

The parameter ‘x’ in the equation corresponds to the
number of ACDs utilized. In the current developmental phase,
our design incorporated 16 ACDs units, as illustrated in
Fig. 7. The calculation of the NOBSA−SDC can be determined

using equation (6), resulting in a precision of four bits.
The conversion speed of the neuromorphic spiking sensory
system was determined using the following equation.

Conversion time = timeASSC + timeSA−SDC . (7)

Here, the timeASSC corresponds to the duration required
for ASSC operation, which can be adjusted based on the
synaptic weights to achieve the desired gain. The timeSA−SDC
encompasses the duration required for SA-SDC to convert
the time difference value between two spikes received at its
input into a digital code. It is a composite of two integral
components, SA-SRC and the WTA mechanism, with its
associated algorithm. The following equation was used to
calculate the timeSA−SDC ,:

timeSA−SDC = timeSA−SRC +WA time. (8)

The WA time represents the duration required by the
WTA mechanism and algorithm to transform the rank-order
code outputs of SA-SRC into digital values. The duration
depends on both the time and quantity of ACDs employed
in its construction. The time span was computed using the
following equation:

timeSA−SRC = number of ACDs ∗ timeACD. (9)
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FIGURE 13. (a) The laboratory setup demonstrates the measurement characteristics of a neuromorphic spiking sensory system. Two MPC
USIX chips are employed for this experiment. The first chip includes SA-SRC, synapse, and neuron cells, while the second chip consists of
synapse and neuron cells. (b) The top view of the configuration shows the second chip on PCB_2 and a portion of the interface layer. The
interface layer facilitates connections between the Red Pitaya boards and the PCBs. (c) The block diagram illustrates the connections
between Red Pitaya_1, Red Pitaya_2, PCB_1, and the interface layer. (d) Illustrate the PCB used for the first and second chips.The four-layer
PCB prototype was designed using Eagle Autodesk software. Separate power and ground planes, along with decoupling capacitors near the
chip power pins, were included to reduce system noise.

The duration of each ACD varied with the weight of
the synapses, which was determined during adaptation. The
synaptic weights can also vary according to the specific
process, voltage, and temperature (PVT) conditions at any
given time.

IV. INTEGRATION OF NEUROMORPHIC SYSTEM
COMPONENTS
In our chip, we addressed the aforementioned problems
through two distinctive contributions to enhance the capabil-
ities of the universal sensor interface with self-X properties

(USIX), as detailed in a previous study [46]. The USIX
on the multi-project-chip (MPC) has this name because we
have integrated the essential components for both amplitude-
and spike-domain representation, all in conjunction with the
incorporation of self-X functionalities for analog front ends
(AFE). The objective of this study was to complement the
spike domain segment by utilizing the chip and the outcomes
of the measurements.

A. CHIP DESIGN AND DEMONSTRATION BOARD
Within our chip, we incorporated critical components that
are essential to the neuromorphic spiking sensory system.
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FIGURE 14. The figure illustrates the block diagram of the physical hardware implementation used for the
demonstration prototyping, which aims to evaluate the essential components of the adaptive neuromorphic
spiking sensory system. Two FPGA evaluation boards from Red Pitaya were used. The first board was
configured to create a control module within the programmable logic (PL) to manage the SA-SRC cells,
synapses, and neurons of the ASSC. The second board was utilized to implement the Winner-Takes-All
(WTA) mechanism and the algorithm for decoding rank codes.

These components included neuron, synapse, adaptive self-
adaptive spike-to-rank coding (SA-SRC), and coincidence
detection (ACD). Fig. 12a shows detailed insights into the
post-manufacturing chip, whereas Fig. 12b shows the chip
layout implementation. The protective coating, along with
the upper metal layer on the chip, obscures the features of
the die. The initial findings and detailed characterization
pertaining to the SA-SRC block have been previously
documented [47], [53].

The initial component of the proposed sensor system, the
ASSC, incorporates a configuration comprising two synapses
and two neurons. To realize a practical implementation of
this design, our approach necessitated the utilization of
two chips, because each chip houses a single neuron and
synapse. Comprehensive physical hardware-level assessment
and testing of our adaptive neuromorphic spiking sensory
system during the demonstration prototyping phase, we opted
for the FPGA assessment platform provided by Red Pitaya
as our chosen embedded computing system. To complete
the integration, we employed a specialized PCB with an
integrated socket to extend the capabilities of the Red Pitaya
and create a comprehensive demonstration board, as shown
in Fig. 13.

B. IMPLEMENTATION AND ARCHITECTURE
Fig. 14 shows a block diagram of the physical hardware
implementation for demonstration prototyping aimed at
accelerating the neuromorphic spiking sensory system. In this
experimental setup, two FPGA evaluation boards from Red
Pitaya were employed. The first board was employed to
generate a control module within the programmable

logic (PL) responsible for managing the SA-SRC cells,
synapses, and neurons of the ASSC. On the second
board, we implemented both the Winner-Takes-All (WTA)
mechanism and algorithm used for decoding rank codes.

In Fig. 16 and Fig. 15, we present a comprehensive
depiction of the implemented architecture for the adap-
tive neuromorphic spiking sensory system on Red Pitaya
boards 1 and 2. We utilized Verilog hardware descriptive
language to implement a control module within Red Pitaya’s
programmable logic (PL), as illustrated in Fig. 16. This
module governs the essential components of the proposed
system: the ASSC and SA-SRC. It manages the cells within
these blocks, comprising two synapse cells, two neurons,
and one SA-SRC cell. The module performs several critical
tasks. First, it manages the reset p_up1, p_up2, P_s, and
VLEAK I/O pins associated with synapse and neuron cells.
Second, it generates signals to regulate the SW1 and SW2
functionalities of TMUX1102DBVR chips. Third, it manages
the VLEAK, adapt, and adapt_pulse I/O pins functionality of
the SA-SRC cell. To accomplish these functions, the control
module leverages the general-purpose I/O pins provided
by the Red Pitaya, establishing a direct connection to the
I/O pins of the chips. The TMUX1102 switches from
Texas Instruments are precision complementary metal-oxide
semiconductor (CMOS) switches. Both the WTA and algo-
rithm were executed on dedicated Red Pitaya board 2,
as shown in Fig. 15. We successfully integrated the MUX,
enabling seamless switching of the RAM block addresses.
This allowed us to alternate between the address from
the algorithm module during the writing process and that
provided by the processor during the reading operations.
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FIGURE 15. The execution of module architecture on Red Pitaya board 2 encompasses the simultaneous implementation of both the
Winner-Takes-All (WTA) mechanism and the algorithm. This ensures a comprehensive integration of functionalities.

FIGURE 16. The control module’s flow diagram in the programmable
logic leverages the flexible general-purpose I/O pins on the Red Pitaya,
forming a direct interface with the synapse, neuron cells, and SA-SRC
integrated into the chip. These I/O pins are also connected to the
TMUX1102DBVR chips.

V. NEUROMORPHIC CHIP CHARACTERIZATION AND
APPLICATION
The purpose of this experiment is to demonstrate the mea-
surement characteristics of a neuromorphic spiking sensory
system implemented on a fabricated chip. In this experimen-
tal procedure, our initial step involves characterization of
the initial block within our proposed system, referred to as
the ASSC. Following this initial characterization, we inter-
connected the ASSC with the SA-SDC to comprehensively
characterize the entire system under investigation.

The ASSC produces a pair of spikes with a temporal
gap between them contingent on the disparity in voltage
levels between V1 and V2. Illustrated in Fig. 17 is the

FIGURE 17. The output of the ASSC at V1 and V2 is equal to 0.9 V and
zero volts, respectively.

output of the ASSC when V1 is set to 0.9 V and V2 is
maintained at 0 V. The synapse weights of the ASSC are
regulated by the up-counters and voltages vs1 and vs2.
Initially, the up counters are initialized to a value of 255, and
the voltage levels vs1 and vs2 are configured to 2.4 V and
2.35 V, respectively. Under these specific synapse weights,
the transfer function of the ASSC exhibits an offset, as shown
in Fig. 18. Themagnitude of this offset can be computed using
equation (2) and is determined to be 77.6 LSB. To rectify
this offset, adjustments were made to the synaptic weights,
as shown in Fig. 18. In this modified configuration, the
up-counters were retained at a value of 255, and both vs1 and
vs2 were set to 2.4 V. The LSB of the neuromorphic spiking
sensory system will be calculated during characterization of
the SA-SDC block, as will be shown later. This LSBwas used
for both ASSC and SA-SDC blocks.

To characterize the transfer function of the ASSC, the
voltage differential between V1 and V2 was incrementally
adjusted, spanning the range from -1.45 V to 1.45 V, with
increments of 0.05 V. The gain was modulated by adjusting
the synaptic weights within the ASSC. Fig. 19 and Fig. 20
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FIGURE 18. demonstrates the proficiency of the ASSC in rectifying offset
errors. The synaptic weights were adjusted to correct this offset.

FIGURE 19. The transfer function of the ASSC system is determined
through a measurement procedure specifically designed for low-gain
scenarios.

FIGURE 20. The transfer function of the ASSC system is determined
through a measurement procedure specifically designed for high-gain
scenarios.

depict the transfer function of the ASSC obtained using
measurement processes for various gains. The duration of
the ASSC was extended through adjustments in the gain
settings, resulting in a corresponding increase in the number
of bits that could be effectively resolved by SA-SDC. The

FIGURE 21. The SA-SRC’s output was measured with the inputs V1 and V2
of the ASSC set to 0 V and 0.2 V, respectively.

FIGURE 22. The SA-SRC’s output was measured with the inputs V1 and V2
of the ASSC set to 0.55 V and 0 V, respectively.

attainable MNoBASSC , resulting from adjustments in gain,
can be computed using equation (3), yielding a value of
11.98 bits, which can be effectively resolved by the SA-SDC.

The initial component of the SA-SDC, referred to as
the SA-SRC, has 16 outputs, each of which generates a
corresponding spike. The sequence of these spikes accurately
reflects the time difference between the spikes received at the
input from the initial ASSC block. Fig. 21 provides a visual
representation of the SA-SRC output when the inputs V1 and
V2 of the ASSC are set to 0 V and 0.2 V, respectively. Fig. 22
shows an additional instance portraying the SA-SRC output
under different input voltage conditions, with the values of V1
and V2 set to 0.55 V and 0 V, respectively, within the ASSC.
The SA-SRC outputs, labelled from out1 to out16, function
as representations of the individual spike order codes. The
numerical annotations of the output waveforms indicated the
sequential order of the spike codes relative to each other.

Based on the experimental findings, we established the
ability of an SA-SRC cell to produce 16 distinctive spike-
order codes, each corresponding to a specific temporal
disparity between its input signals. This is equivalent to
encoding information into a 4-bit binary representation in
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the current study. The SA-SRC input range was identified
and characterized by changing and measuring the time
delay between the signals in1 and in2. The experimentally
measured range spanned from −120 ns to +120 ns. Hence,
the FSTD equates to 240 ns, and the least significant bit
(LSB) can be determined through the calculation provided
by equation (5), resulting in a value of 15 ns. Regarding
the speed, the current SA-SRC demonstrator achieved a
conversion time of 370 ns. On Red Pitaya board 2, both
the WTA circuit and algorithm are executed. This process
involves translating the rank-order code outputs of the
SA-SRC cell into digital values and saving these values in
thePL block RAM. The process of converting the rank to
dense digital code is 1.035 ns. The SA-SDC time denotes
the period required for the SA-SDC to transform the time
difference value between two spikes received at its input
into digital code, as computed by equation (8), resulting
in 371.035 ns. The conversion speed of the neuromorphic
spiking sensory system was assessed using equation (7),
which yielded a result of 491.035 ns.

Evaluating the performance of the neuromorphic spiking
sensory system involves the testing of various parameters.
These parameters, outlined in the converter specifications,
fall into two categories: those related to the transfer function
and those representing the distortion introduced to the
converted signal. In the first group, the static parameters,
including the integral non-linearity (INL), differential non-
linearity (DNL), and missing codes were included. These
metrics provide crucial insights into system accuracy and
functionality. The SA-SDC was ideally designed with a
step width of one LSB, representing the minimum unit
in its time-to-digital conversion. The discrepancy between
this ideal and the actual measurement is defined as the
differential non-linearity (DNL) error. Additionally, integral
non-linearity (INL) measures the maximum deviation from
the actual response curve to the ideal curve. Furthermore,
a well-designed SA-SDC should eliminate missing code
issues that occur when gaps exist in the digital output code,
indicating that certain output values are never produced. This
is frequently owing to the unavailability of analog input
values that are capable of producing particular codes.

The standard procedure for evaluating the DC charac-
teristics of the SA-SDC, including the INL, DNL, missing
code, and transfer function, involves a specific test setup.
In this setup, a function generator was configured to produce
a gradual voltage ramp ranging from the minimum input
voltage to themaximum. This voltage rampwas applied to the
ASSC inputs represented as V1 and V2. These inputs lead to
the generation of time delays in the ASSC outputs, identified
as out1 and out2. This time delays the transition within the
range of -120 ns to +120 ns, effectively covering the complete
input spectrum of the SA-SDC. This test comprehensively
assessed the performance characteristics of the device. The
SA-SDC samples were collected as the input ramp gradually
traversed the entire SA-SDC conversion range. The ramp
rate of ascent was controlled to ensure that each SA-SDC

FIGURE 23. The transfer function of the neuromorphic spiking sensory
system with self-X capabilities for both ideal and actual case.

FIGURE 24. The measured DNL and INL curves correspond to the
depicted curve in Fig. 23.

code was sampledmultiple times, typically for approximately
20 instances in this experiment. During this procedure, the
ASSC gain was adjusted to ‘gain_1’ by fine-tuning the
synaptic weights within the ASSC, as illustrated in Fig. 19.
Subsequently, the digital outputs generated by the SA-SDC
were stored in the PL block RAM for the entire duration of
the linear ramp input.

The measurements were conducted under standard con-
ditions, with a supply voltage of 3.3 V and a temperature
of 23 ◦C. In Fig. 23, the neuromorphic spiking sensory
system transfer function of the experiment illustrates the
correlation between the SA-SDC output and the voltage
difference between the input signals V1 and V2 of the
ASSC on the horizontal axis. The limitations observed in
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FIGURE 25. Illustrating the performance of the neuromorphic spiking
sensory system, the reaction to a sinusoidal signal is observed. This signal
has specific characteristics: 0.8 Vp-p amplitude, 3 kHz frequency, and a
0.4 V DC offset. In this scenario, V2 receives the signal, while V1 is
intentionally set to zero.

FIGURE 26. The picture depicts the fully differential sinusoidal input
signals that were administered to V1 and V2. These signals featured
specific characteristics: 0.8 Vp-p amplitude, 1 kHz frequency, and a 0.4 V
DC offset.

the experimental results for 16 distinct spike order codes
or four bits of our current prototype are due to chip size
restrictions and not the underlying information processing
concept. The key parameters of the SA-SDC, comprising
the INL, DNL, and count of missing codes (NOMCs),
showcase values, with INL at 0.3, DNL at 0.41 LSB, and
zero missing codes, as illustrated in Fig. 23. Furthermore,
Fig. 24 provides detailed DNL and INL curves, offering a
more comprehensive view of the results presented in Fig. 23.

The second category of parameters for assessing the
neuromorphic spiking sensory system comprises of dynamic

FIGURE 27. Displaying the neuromorphic spiking sensory system’s
capabilities, the response to fully differential sinusoidal input signals
applied to V1 and V2 was observed. These signals exhibited distinct
attributes, with an amplitude of 0.8 Vp-p, frequency of 1 kHz, and a 0.4 V
DC offset.

FIGURE 28. The FFT output of the neuromorphic spiking sensory system
unveils its reaction to fully differential sinusoidal input signals. This
observation is based on the signals applied to V1 and V2, as depicted in
Fig. 26.

attributes. These include metrics, such as the effective
number of bits (ENOB) and signal-to-noise and distortion
ratio (SINAD), which play a pivotal role in the system’s
performance evaluation. Typically, these parameters are
derived from the fast Fourier transform (FFT) of digital
samples obtained from the converter output when subjected to
a pure sine wave input. SINAD represents a comprehensive
metric encompassing not only the signal-to-noise ratio, but
also harmonic distortion and other unwanted components
in the output of the neuromorphic spiking sensory system.
It quantifies the ratio between the desired signal power and
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FIGURE 29. Functional setup depicting the implementation of the TMR interface with the proposed neuromorphic spiking sensory system.

the combined power of all undesired elements such as noise
and distortion. ENOB signifies the measured performance
of the neuromorphic spiking sensory system based on
its response to the input signal. A key consideration is
that, as noise, especially distortion components, increases,
it subsequently diminishes the ENOB of the system. These
dynamic parameters are crucial for gaining a deeper under-
standing of the system performance and shedding light on
their efficiency.

Initially, we evaluated the system by subjecting it to a
sinusoidal signal with an amplitude of 0.8 Vp-p, frequency of
3 kHz, and DC offset of 0.4 V. The sampling frequency of the
neuromorphic spiking sensory system was 130 kHz, with V2
receiving the signal and V1 set to zero. The corresponding
system outputs are shown in Fig. 25. In the assessment
of dynamic performance, as well as parameters such as
SINAD and ENOB, fully differential sinusoidal input signals
characterized by a 0.8 Vp-p amplitude, 1 kHz frequency, and
0.4 V DC offset were applied to V1 and V2, as shown in
Fig. 26. The sampling frequency of the neuromorphic spiking
sensory system was established at 130 kHz. The ASSC gain,
denoted as ‘gain_1,’ was regulated by modifying the synaptic
weights within the ASSC. A visual representation of this
process is shown in Fig. 19. Subsequently, the digital outputs
generated by the neuromorphic spiking sensory system were
systematically stored in the block RAM of the PL.

The overall system output, shown in Fig. 27, is graphically
represented, where the x-axis corresponds to the sample
number, and the y-axis signifies the digital output data.

Fig. 28 shows the output signal when examined in the
frequency domain through the execution of a fast Fourier
transform (FFT). The dynamic parameters were derived from
the FFT analysis of the digital sample dataset. Evaluation
of the dynamic performance of the neuromorphic spiking
sensory system includes parameters such as SINAD and
ENOB, which yield specific values. The SINAD parameter
registers at 24.79 dB, and ENOB at 3.82 bits for the current
work.

A prototype demonstration highlights the integration of
our proposed neuromorphic spiking sensory system with a
Tunnel Magnetoresistance (TMR) sensor, specifically, the
AFF755B TMR sensor from Sensitec. This experiment
assessed and tested our adaptive neuromorphic spiking
sensory system and the TMR sensor, as shown in Fig. 29.
The TMR sensor was equipped with a pair of balanced,
fully differential configurations, generating two distinct
differential signals separated by 90 ◦, namely, sine and cosine
outputs. A block diagram of the proposed interface with the
TMR sensor is shown in Fig. 30. In the present configuration
of the laboratory setup, the hardware can interface with a
single differential signal, as illustrated in Fig. 30. In the
upcoming stages, there are plans to increase the number
of bits, enhance the capacity of the system to handle two
differential signals, and implement this capability on a single
chip using advanced technologies. This advancement aims to
calculate and enhance the angle measurements by positioning
the system to compete effectively with the state-of-the-art
technologies.
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FIGURE 30. Block diagram for TMR interface implementation with the proposed neuromorphic spiking sensory system.

FIGURE 31. (a) Laboratory configuration for TMR interface implementation with the proposed neuromorphic spiking sensory system. Fig. 13 (c)
and (d) show the block diagram of the connections between Red Pitaya_1, Red Pitaya_2, PCB_1, and the interface layer, as well as the PCB itself.
(b) The top view configuration of the TMR and DC motor. (c) The top view of the configuration highlights the TMR signal connections to the
neuromorphic spiking sensory system.
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Simultaneously, another researcher within our group is
concentrating on studying the self-x concept for sensor
systems at higher andmultiple levels, and the angular decoder
serves only as a case study [54]. The primary aim of this
prototype demonstration was to validate the functionality of
the electrical interface in real sensor applications by focusing
on sensor readout digitization. Moreover, emphasis was
placed on the capability of the ASSC block to synchronize
both the sensor and SA-SDC spans with variations in the
amplitude of the sensor signal. A block diagram of the
proposed interface with the TMR sensor is shown in Fig. 30.
The outputs of the TMR sensor sin+ and sin- are directed to
the inputs of the ASSC, denoted as V1 and V2, respectively.
The ASSC functions as a crucial conditioning circuit that
aligns the spans of the sensor and the SA-SDC. It exhibits
versatility by simultaneously amplifying and level-shifting
the sensor signal in the time-domain.

The magnet is mounted onthe front of the motor shaft and
thus revolves, while the PCB with the TMR is stationary,
facing the magnet with a tunable gap. The configuration of
the laboratory arrangement is illustrated in Fig. 31, which
shows its integration with a TMR sensor. The TMR sensor
was initially positioned 4 mm from the magnetic detector
in front of the motor shaft. As illustrated in Fig. 32, the
TMR sensor yielded differential outputs of approximately
0.225 Vp-p. To align both the sensor and the SA-SDC
span, adjustments to the synapse weights, specifically the
gain and offset, were executed. In this revised setup, the
up-counters were maintained at a value of 255, and both vs1
and vs2 were set to 1.8 V. The sampling frequency of the
neuromorphic spiking sensory system was set to 7.7 kHz,
which was sufficient to encompass the maximum expected
frequency from the DC motor when operating at its highest
speed. Subsequently, the digital outputs generated by the
neuromorphic spiking sensory system were methodically
stored in PL block RAM. The comprehensive system output
depicted in Fig. 33 graphically represents the sample number
on the x-axis and the digital output data on the y-axis.

To address the channel limit in the current phase of the
study, we initially read and converted a sine bridge followed
by a cosine bridge. Subsequently, we manually synchronized
the zero crossings using shift operators, as illustrated in
Fig. 34a. These synchronized signals were then utilized for
the angle computation, as defined by the following equation:

θ = arctan
(
2Asin sin(α + φ) + offset sin
2Acos cos(α) + offset cos

)
. (10)

In this equation, θ denotes the measured angle, and
α represents the rotational angle of the magnet with respect
to the sensor. 2Asin and 2Acos represent the maximum sine
and cosine amplitudes, respectively. φ denotes the phase
error between the sine and cosine waveforms. The offsetsin
and offsetcos terms denote the deviations in the amplitudes
of the sine and cosine signals, respectively. Fig. 34 shows
the angle calculation and absolute error obtained from the
fully differential TMR signals, the TMR sensor positioned

FIGURE 32. Outputs from the TMR sensor were recorded at a distance
of 4 mm.

FIGURE 33. Demonstrating the functionality of the neuromorphic spiking
sensory system, we observed its response to the differential outputs of
the TMR sensor, which were applied to V1 and V2. It was recorded when
the TMR sensor was positioned 4 mm away.

at a distance of 4 mm. For the current design phase, the
highest absolute deviation is noted to be 12.89◦, computed
by subtracting the actual angle computed from the ideal best-
fit line. Considering the limitations of the 4-bit ADC, the
theoretical best angle resolution for the current prototype
is 360 ◦ divided by the number of steps in one period, which
is 32 steps (16 levels per half cycle), resulting in an error
of 11.25 ◦.
For the next test, the TMR sensor was relocated to

a position 7 mm away to investigate the impact of the
reduction in the amplitude of the signal on the calculation
of angle errors. As shown in Fig. 35, the TMR sensor
produces differential outputs of approximately 0.104 Vp-p.
Throughout this process, the ASSC synapse weights were
maintained, with the up counters set at 255 and both vs1 and

97034 VOLUME 12, 2024



H. Abd et al.: Neuromorphic Spiking Sensory System With Self-X Capabilities

FIGURE 34. Angle calculation using a TMR sensor positioned 4 mm away
from the motor shaft, (a) showing fully differential sine and cosine
signals. (b) Evaluation of the computed angle compared to the ideal
angle. (c) Absolute error in angle measurement.

FIGURE 35. Outputs from the TMR sensor were recorded at a distance
of 7 mm.

vs2 adjusted to 1.8 V. Fig. 36 illustrates the calculation of
angles and absolute error with the TMR sensor positioned
7 mm away. The highest absolute deviation is noted to
be 24.95◦. Based on the experimental outcomes, the TMR
signals induced time delays in the ASSC outputs, denoted as
out1 and out2. The time delays ranged from -55 ns to +55 ns,
which did not cover the complete input conversion spectrum
of SA-SRC. According to the experimental observations, the
SA-SRC cell generated eight unique spike-order codes within
this range, corresponding to a 3-bit binary representation of
the encoded information as shown in Fig. 36.
Adjustments were made to the synapse weights of the

ASSC to align both the sensor and SA-SDC spans to utilize
the full input conversion range of SA-SRC. In this adjusted
configuration, the upper counters were set to 255, and both
vs1 and vs2 were adjusted to 2.1 V. The neuromorphic

FIGURE 36. Angle calculation was performed using a TMR sensor
positioned 7 mm away from the motor shaft. The ASSC synapse weights
remained the same as in the previous experiment when the TMR sensor
was positioned at 4 mm, with the up counters set at 255 and both vs1
and vs2 set to 1.8 V. (a) Illustrating fully differential sine and cosine
signals. (b) Evaluating the computed angle compared to the ideal angle.
(c) Absolute error in angle measurement.

FIGURE 37. Angle calculation was performed using a TMR sensor
positioned 7 mm away from the motor shaft. The ASSC synapse weights
were adjusted, with the up counters set at 255 and both vs1 and vs2 set
to 2.1 V. (a) illustrating fully differential sine and cosine signals,
(b) evaluating the computed angle compared to the ideal angle, and
(c) presenting the absolute error in angle measurement.

spiking sensory system operated at a sampling frequency
of 7.7 kHz. The following modifications to the synaptic
weights, the TMR signals introduced temporal delays in the
ASSC outputs ranging from -120 ns to +120 ns. This interval
comprehensively spans the entire input conversion spectrum
of the SA-SRC. Experimental observations indicate that
within this range, the SA-SRC cell produces 16 distinctive
spike-order codes, equivalent to a 4-bit binary representation
of the encoded information. The overall system output,
presented in Fig. 37 a, visually represents the sample number
on the x-axis and the digital output data on the y-axis. Fig. 37
illustrates the calculation of the angles and absolute error with
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the TMR sensor positioned 7 mm away after adjustments
were made to the synapse weights of the ASSC to align both
the sensor and SA-SDC spans. The highest absolute deviation
is noted to be 12.72◦.
The outcomes obtained with the sensor positioned at both

4 mm and 7 mm from the magnetic detector demonstrate the
system’s proficiency in converting the sensor signal into a
digital format. Furthermore, the results highlight the efficacy
of the ASSC block in aligning the sensor and SA-SDC block.
It is noteworthy that in both scenarios, the full hardware
capacity of the SA-SDC block, comprising four bits, was
utilized in the current design. Moreover, the results illustrate
the system’s ability to adapt and reduce the absolute error
in the angle measurement from 24.95◦ to 12.72◦ during this
phase of the study.

VI. CONCLUSION
The creation of a successful application system relies
on the integration sensors and suitable sensor electronics,
thereby linking the system to the physical world. Our
aim was to develop an adaptive neuromorphic spiking
sensory system with key features, including noise resilience,
power efficiency, scalability compatibility, and low-voltage
operation. Furthermore, it is imperative to highlight that
one of the key features of our approach is the ability to
increase the yield without requiring labor-intensive ‘pick-
and-place’ operations for individual calibration or trimming,
which is continuously repeated during the circuits operation
and life cycle. The selected information representation
method relies on the spike domain, which is inspired by
the biological sensor systems. This project focused on the
measurement and characterization of a neuromorphic spiking
sensor chip. Our chip, produced using XFABCMOS 0.35µm
technology through EUROPRACTICE, encompasses the
following essential components: neuron, synapse, ACD, and
SA-SRC. The ASSC, which is the primary component
of our sensor system, involves a design comprising two
synapses and two neurons. The implementation required
two chips, each housing one neuron and one synapse. The
ASSC demonstrated its capability to correct offsets through
modifications to synapse weights, and gain modulation was
achieved by tuning synaptic weights. The measurement
depicts the transfer function of the ASSC across various
gains, where adjusting the gain increases the attainable
MNoBASSC to approximately 11.98 bits. Subsequently,
we interconnect the ASSC with the SA-SDC to characterize
the entire system holistically. The constraints observed in
the test outcomes, which limit the generation of 16 unique
spike-order codes or four bits in our present model, arise
from the chip’s constraints, rather than the fundamental
concept of information processing. Performance evaluation
encompasses key parameters such as INL, DNL, ENOB, and
NOMCs, yielding values of 0.3 LSB, 0.41 LSB, 3.82 bits,
and zero missing codes. In this experiment, we conducted
a comprehensive hardware-level assessment of our adaptive
neuromorphic spiking sensory system and TMR sensor.

The primary goal of this prototype demonstration was to
confirm the functionality of the electrical interface in real
sensor applications, emphasizing the importance of sensor
readout digitization. Regarding power usage, the system
consumes 321 µw. The decision to employ the 0.35 µm
technology and implement the 4-bit version was influenced
by financial factors and was intended to showcase the
viability of the solution. It is essential to highlight that the
concept is not restricted to these specifications and holds
the potential for expansion in both bit capacity and the
technology employed. To demonstrate the characteristics
of our proposed design, which are characterized by their
technology-agnostic attributes, for the next stage of the work,
we began implementing the design using the FinFET 12 nm
from Global Foundries and finalizing the levels of adaptation
along with potential enhancements to both the neuron circuits
and the adaptation approach.
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