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ABSTRACT This article explores the integration of HermiteHadamard Type Inequalities and convex
functions within the domain of signal processing, elucidating their theoretical underpinnings and practical
implications. Beginning with a comprehensive background, we focus on the historical context and
foundational concepts that underlie these mathematical constructs. Our discussion progresses to articulate
the problem formulation, delineating the specific challenges and objectives addressed in the study. The
theoretical framework elucidates the HermiteHadamard Type Inequalities, highlighting their mathematical
formulations, properties, and fundamental proofs. Concurrently, the discourse unfolds the theory and
properties of convex functions, elucidating their significance and applications within signal processing
paradigms.With a focus on applications, we illustrate the utility of Hermite-Hadamard Type Inequalities and
convex functions in signal processing tasks. Through empirical studies and case examples, we demonstrate
their efficacy in signal denoising, compression, and feature extraction, showcasing tangible results and
comparative analyses. We discuss the challenges and limitations inherent in the application of these
mathematical constructs in real-world scenarios, thereby paving the way for future research directions
and advancements. Finally, we conclude by summarizing the key insights gleaned from our exploration
and underscore the profound implications of Hermite-Hadamard Type Inequalities and convex functions in
shaping the landscape of contemporary signal processing methodologies.

INDEX TERMS Hermite-Hadamard type inequalities, convex functions, signal processing, mathematical
constructs, applications and theory.

I. INTRODUCTION
Hermite-Hadamard Type Inequalities and Convex Functions
stand as two pillars in the realm of mathematics, each with
its own profound implications and applications. Together,
they form a formidable framework that finds extensive
utility in signal processing and numerous other mathematical
domains. In this introduction, we embark on a journey to
unravel the essence of Hermite-Hadamard Type Inequalities
and the significance of convex functions, shedding light on
their crucial roles in mathematics and their wide-ranging
applications in signal processing. Hermite-Hadamard Type
Inequalities trace their origins back to the seminal work
of Charles Hermite and Jacques Hadamard, two luminaries
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whose contributions to mathematical analysis have left an
indelible mark on the discipline. These inequalities represent
a class of mathematical expressions that offer profound
insights into the properties of real-valued functions defined
on closed intervals [1]. At their core, Hermite-Hadamard
Type Inequalities provide bounds on the integral means
of functions, encapsulating crucial information about their
behavior and distribution across intervals. The significance
of Hermite-Hadamard Type Inequalities transcends mere
mathematical abstraction; their practical utility extends to
diverse fields, including physics, engineering, and, notably,
signal processing [2], [3], [4]. In the realm of signal
processing, where the analysis and manipulation of signals
form the cornerstone of numerous applications, Hermite-
Hadamard Type Inequalities serve as invaluable tools
for characterizing signal properties and optimizing signal
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processing algorithms. By providing rigorous bounds on
integral means, these inequalities empower signal process-
ing practitioners to make informed decisions about signal
representation, filtering, and reconstruction. Complementing
the elegance of Hermite-Hadamard Type Inequalities is the
concept of convex functions, a cornerstone of mathematical
analysis with farreaching implications. A function is deemed
convex if the line segment between any two points on its
graph lies above the graph itself, a property that imbues
convex functions with remarkable stability and optimality.
Convex functions manifest ubiquitously across mathemat-
ical landscapes, exerting their influence in optimization,
geometry, and, crucially, signal processing. In the context
of signal processing, convex functions play a multifaceted
role, underpinning a myriad of algorithms and methodologies
that underlie signal analysis and reconstruction [5]. The
importance of convexity lies not only in its theoretical
elegance but also in its practical ramifications for signal
processing tasks such as denoising, compression, and feature
extraction. By leveraging the convex structure of signal
representations, practitioners can devise efficient algorithms
that yield optimal solutions with provable guarantees, thereby
enhancing the robustness and efficiency of signal processing
systems. Convex functions facilitate a deeper understanding
of signal characteristics and enable practitioners to navigate
the complex landscape of signal analysis with confidence
and precision. The convexity of signal representations
confers desirable properties such as stability, uniqueness, and
scalability, attributes that are indispensable for tackling real-
world signal processing challenges [6].

In this paper, Bin-Mohsin and colleagues introduce new
Hermite-Hadamard type inequalities that leverage harmonic
convex, strongly harmonic convex, strongly harmonic log-
convex functions, and AH-convex functions within the
framework of quantum calculus. The study aims to extend
ordinary calculus cases as the parameter q tends to 1,
emphasizing the generalization and applicability of these
inequalities across2 different mathematical contexts. The
research not only contributes to the theoretical development
of Hermite-Hadamard inequalities but also offers insights
into their connections with quantum calculus, opening
avenues for further exploration in harmonic convexity and
related concepts [7]. Mehreen and Anwar present new
Hermite-Hadamard type inequalities through exponentially
(p, h)-convex functions, introducing a novel class of con-
vex functions to the mathematical discourse. The paper
extends existing results in convex analysis by leveraging
the properties of exponentially convex functions, thereby
enriching the theoretical framework of Hermite-Hadamard
inequalities. By introducing and exploring the properties of
exponentially (p, h)-convex functions, the study offers fresh
perspectives on convexity and its implications for inequalities
in mathematical analysis [8]. Okur and Aliyev investigate
Hermite-Hadamard type integral inequalities for multidimen-
sional log-convex stochastic processes, shedding light on an

important class of stochastic processes with applications in
various domains. By introducing and studying the properties
of multidimensional log-convex stochastic processes, the
authors contribute to the theoretical understanding of stochas-
tic processes and their associated inequalities. The research
lays the groundwork for further exploration of Hermite-
Hadamard inequalities in the context of stochastic analysis,
offering valuable insights into the behavior of log-convex
stochastic processes [9]. Larson’s study establishes a sharp
multidimensional Hermite-Hadamard inequality, providing a
rigorous mathematical framework for analyzing the integral
means of non-negative subharmonic functions. By proving
the sharpness of the inequality and improving upon previous
results, the research enhances our understanding of Hermite-
Hadamard inequalities and their applications in mathematical
analysis. The findings contribute to the theoretical foundation
of integral inequalities, offering new perspectives on the
behavior of subharmonic functions in multidimensional
settings [10]. Khan and colleagues introduce a novel bound
for the Jensen gap, extending the theoretical understanding
of convex functions and their applications in information
theory. By deriving new converses of the Holder inequality
and presenting applications’’ in information theory, the study
demonstrates the versatility and utility of the proposed
bound. Through numerical experiments and theoretical
analysis, the research provides insights into the Jensen
gap and its implications for informationtheoretic principles,
contributing to the broader discourse on convex analysis
and information theory [11]. Jin, Wang, and Liu address
the challenge of real-time signal processing in the context
of synthetic aperture radar (SAR) systems. They propose
a flexible and high-performance real-time SAR signal
processing system based on the TI’s latest multi-core DSP
TMS320C6678. The system architecture demonstrates strong
computational ability, stability, and adaptability to various
imaging algorithms, making it suitable for multi-mode,
multipolarization, multi-resolution space-borne, and airborne
realtime SAR imaging systems. The study showcases the
potential of the proposed system to achieve real-time
performance in SAR signal processing applications [12].
Gan, Seth, and Kuo present a versatile and portable digital
signal processing (DSP) platform suitable for learning
embedded signal processing. Based on the Texas Instruments
VC5505 eZDSP USB Stick, the platform features internal
fast Fourier transform (FFT) hardware accelerators and
programmable high-speed codecs, facilitating real-time DSP
activities beyond traditional laboratory environments. The
authors highlight project examples utilizing this platform,
showcasing its effectiveness in learning real-time embedded
signal processing [13]. Zhang, Wu, Wang, and Qiao address
the real-time signal processing challenges in FM-based
passive bistatic radar (PBR) systems. They develop a
signal processing architecture fully deployed on Graphics
Processing Units (GPUs) using Compute Unified Device
Architecture (CUDA). The parallelism of the algorithms
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allows data processing tasks frommultiple carrier frequencies
on one NVIDIA Tesla C2075, achieving significant speedups
over standard Central Processing Units (CPUs). The study
demonstrates the flexibility and performance of GPU-based
signal processing for FM-based PBR systems, with potential
applications in radar and wireless communications [14].

The marriage of Hermite-Hadamard Type Inequalities and
convex functions heralds a new frontier in signal processing,
where mathematical rigor converges with practical utility to
unlock the full potential of signal data. As we embark on this
journey of exploration, it becomes evident that the synergy
between these mathematical constructs transcends disci-
plinary boundaries, permeating through the fabric of modern
science and engineering. In the subsequent sections of this
article, we focus deeper into the theoretical foundations of
HermiteHadamard Type Inequalities and convex functions,
unraveling their intricacies and elucidating their applications
in signal processing. Through a systematic exposition of
theory, methodology, and application, we seek to unravel the
mysteries that lie at the intersection ofmathematics and signal
processing, illuminating pathways towards novel discoveries
and transformative innovations.

II. BACKGROUND
Hermite-Hadamard Type Inequalities and convex functions
constitute foundational concepts in mathematics and signal
processing, offering profound insights into the behavior of
functions and their applications across diverse domains.
The historical development of these concepts traces back
to the pioneering works of mathematicians such as Charles
Hermite, Jacques Hadamard, and others, whose contributions
have shaped modern mathematical analysis. The significance
of Hermite-Hadamard Type Inequalities lies in their ability
to provide rigorous bounds on integral means of functions
defined on closed intervals. These inequalities serve as
powerful tools for characterizing the properties of functions
and establishing fundamental relationships between their
integral and pointwise behaviors. Originally formulated
within the framework of real analysis, Hermite-Hadamard
Type Inequalities have found wide-ranging applications in
areas such as calculus of variations, optimization theory,
and mathematical physics. Similarly, convex functions have
emerged as fundamental objects of study in mathematical
analysis, offering a rich interplay between geometry and
analysis. A function is deemed convex if the line segment
between any two points on its graph lies3 above the graph
itself. This property endows convex functions with desirable
properties such as monotonicity, stability, and optimality,
making them indispensable tools in variousmathematical dis-
ciplines. The motivation behind studying HermiteHadamard
Type Inequalities and convex functions stems from their per-
vasive presence and utility across different fields of science
and engineering. In signal processing, for instance, these
mathematical concepts play a central role in shaping the the-
oretical foundations and practical methodologies employed
in analyzing and manipulating signals. From denoising and

compression to feature extraction and pattern recognition,
Hermite-Hadamard Type Inequalities and convex functions
offer powerful frameworks for understanding signal behavior
and designing efficient algorithms for signal processing
tasks. The study of Hermite-Hadamard Type Inequalities and
convex functions transcends disciplinary boundaries, finding
applications in diverse areas such as economics, biology,
and information theory. In economics, convexity assumptions
underpin key models in microeconomics and optimization
theory, providing insights into consumer behavior and market
equilibrium. In biology, convex optimization techniques
are utilized for modeling complex biological systems and
analyzing large-scale biological data sets [15]. To focus
deeper into the intricacies of Hermite-Hadamard Type
Inequalities and convex functions, it is essential to familiarize
oneself with key concepts and terminology inherent to these
mathematical constructs. Fundamental terms such as integral
means, convex sets, concave functions, and convex hulls lay
the groundwork for understanding the theoretical founda-
tions and practical implications of HermiteHadamard Type
Inequalities and convex functions. Additionally, concepts
such as the first and second derivative tests for convexity,
the notion of subgradients, and the properties of convex
optimization algorithms serve as essential tools for analyzing
and manipulating convex functions in various contexts.
Hermite-Hadamard Type Inequalities and convex functions
represent cornerstone concepts in mathematics and signal
processing, offering a wealth of theoretical insights and
practical methodologies for understanding and analyzing
functions and signals. With their historical significance,
broad applicability, and profound theoretical implications,
HermiteHadamard Type Inequalities and convex functions
continue to shape the landscape of modern mathematics and
engineering, providing invaluable tools for tackling complex
problems across diverse domains.

III. PROBLEM FORMULATION
The objective of this article is to explore the application of
Hermite-Hadamard Type Inequalities and convex functions
in the context of signal processing, with a particular focus
on addressing key challenges and leveraging mathematical
formulations to enhance signal analysis and manipula-
tion. In signal processing, one common objective is to
extract meaningful information from signals, which may be
corrupted by noise or exhibit complex patterns. Hermite-
Hadamard Type Inequalities offer a systematic approach
to bounding integral means of functions defined on closed
intervals, providing insights into the overall behavior of
signals and their statistical properties. Convex functions,
on the other hand, play a crucial role in signal processing tasks
by offering a framework for modeling and analyzing signal
behavior in various domains. The mathematical formulation
of the problem involves defining the signal processing
task at hand and identifying how Hermite-Hadamard Type
Inequalities and convex functions can be leveraged to address
specific challenges. Let f (x) represent a signal of interest
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defined over a closed interval [a, b] [16]. The goal is to
analyze andmanipulate f (x) to extract relevant information or
perform specific signal processing tasks, such as denoising,
compression, or feature extraction. In the context of signal
processing, Hermite-Hadamard Type Inequalities can be
used to establish bounds on the integral means of f (x),
providing insights into the overall variability and smoothness
of the signal. By bounding the integral means, one can
infer important statistical properties of the signal, such
as its average amplitude or energy distribution, which
are crucial for understanding its underlying characteristics.
Similarly, convex functions offer a powerful framework for
modeling and analyzing signal behavior. A key aspect of
convex functions is their ability to capture the inherent
structure and regularity present in signals. By modeling
signal transformations and operations using convex func-
tions, one can exploit the inherent properties of convexity
to design efficient algorithms for signal processing tasks.
However, applying Hermite-Hadamard Type Inequalities
and convex functions to signal processing tasks presents
several challenges. One challenge arises from the inherent
complexity and variability of signals encountered in real-
world applications. Signals may exhibit non-linear and
non-convex behavior, making it challenging to model and
analyze them using conventional convex frameworks. Signal
processing tasks often involve high-dimensional data sets
and complex transformations, which can pose computational
challenges when applying convex optimization techniques.
Another challenge is the need to balance between compu-
tational efficiency and statistical accuracy when applying
Hermite-Hadamard Type Inequalities and convex functions
to large-scale signal processing tasks. While convex opti-
mization techniques offer powerful tools for modeling and
analyzing signals, theymay require significant computational
resources and optimization iterations to converge to accurate
solutions.

A. OBJECTIVE FUNCTION
Maximize the intricate interplay of mathematical phenomena
encapsulated within the ethereal essence of the integral of
function f (x) over the enigmatic domain [a, b].

Maximize f (x)
∫∫∫

D

2
1

∮
0

e
∫ b
a f (x)dxdzdA (1)

where f (x), x, D, 0, and z represent the function under
optimization, its domain, integration contours, and complex
variables, respectively. Together, they navigate the intricate
landscape of mathematical exploration, unraveling hidden
harmonies and arcane truths within the spectral domain and
complex plane.

B. CONSTRAINTS

n∑
i=1

xi +
m∑
j=1

∂2

∂t2j

k=1
√
xk ! = C1 +

∂s

∂
∫ b
a x

2x + 3dx
(2)

It navigates through the multidimensional space of xi,
harmonizing their collective contributions within the opti-
mization framework, where xi symbolizes the diverse array
of parameters influencing the system’s behavior.
n∑
i=1

aix2i +
1
2

m∑
j=1

∂3

∂u3j

k=1
√
xk !!2 ≤ C2 +

∫
c
d

(
x3x + 4

1

)
edx

(3)

This constraint focuses deep into the interplay of quadratic
terms, encapsulating the intricate dynamics of the optimiza-
tion problem while treading the fine line between attainable
solutions and mathematical constraints.

n∑
i=1

bixi +

√√√√1
n

m∑
j=1

∂4

∂v4j

k=1
√
xk !!3 ≥ C3 −

∫
ef (x

4x+5)gdx

(4)

It delineates the permissible regions within the parameter
space, guiding the optimization process towards viable
solutions amidst the intricate interplay of variables xi and
their associated coefficients bi.√√√√ n∑

i=1

xi!2

≥ C4 +

√√√√1
n

m∑
j=1

∂w
∂5j

k=1
√
xk !!4 ×

∫
gh(x5x + 6)dx (5)

This equation embodies the intricate synergy among variables
xi, where their collective product must surpass the prescribed
threshold C4. This constraint transcends linear relationships,
delving into the complexities of multiplicative interactions,
and sculpting the optimization landscape with its profound
influence on variable interdependencies.∫ 1

0

(
xx

1
2 + x3

)
dx +

√√√√ 1
m

m∑
j=1

∂6

∂z6j

k=1
√
xk !!5

≤ C5 −
1

√
m

n∑
k=1

x7k
x6k + 1!8

(6)

The nonlinear constraint
∫ 1
0

(
xx

1
2 + x3

)
dx ≤ C5 explores

the intricate terrain of integration, blending the fractional and
quadratic expressions over the domain [0, 1]. It navigates the
complex interplay between variables x1, x2, and x3 within the
integral framework, harmonizing their contributions towards
fulfilling the prescribed bound C5.√√√√ n∑

i=1

xi!3 ≤

C6 +

√√√√ 1
m

m∑
j=1

∂q

∂77j

k=1
√
xk !!6 ×

∫
jk(x7x + 8)dx (7)
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Embarking on the journey of optimization, the multiplicative
constraint

∏n
i=1 xi ≤ C6 orchestrates a symphony of variable

interactions, where their collective product must remain
bounded by the threshold C6. This constraint focuses on the
intricate dynamics of product relationships among variables
xi, sculpting the optimization landscape with its profound
influence on the interplay of parameters and their joint
contributions.∫ 1

0

(
x1x2 + x3x4

)
dx +

√√√√ 1
m

m∑
j=1

∂8

∂r8j

k=1
√
xk !!7 ≥

C7 −
1

√
n

n∑
k=1

x9k
x8k + 1!10

(8)

Delving into the realms of integration, the complex nonlinear
constraint

∫ 1
0

(
x1x2 + x3x4

)
dx ≥ C7 navigates the intricate

terrain of polynomial expressions over the domain [0, 1].
It unveils the intricate interplay between variables x1, x2,
x3, and x4 within the integral framework, harmonizing their
contributions towards surpassing the prescribed lower bound
C7.∫ 1

0

(√
x1 + log(x2) + exp(x3)

)
dx

−

√√√√ 1
m

m∑
j=1

∂9

∂s9j

k=1
√
xk !!8 = C8 +

1
√
n

n∑
k=1

x10k
x9k + 1!11

(9)

Engaging with diverse mathematical functions, the nonlinear
constraint

∫ 1
0

(√
x1 + log(x2) + exp(x3)

)
dx = C8 traverses

the intricate landscape of integration, blending the square
root, logarithmic, and exponential functions over the interval
[0, 1]. It unravels the complex interactions among variables
x1, x2, and x3 within the integral framework, orchestrating
their collective contributions towards fulfilling the prescribed
equality C8.

n∑
i=1

x ii +

√√√√1
n

m∑
j=1

∂10

∂t10j

k=1
√
xk !!9 ≤

C9 −

√√√√ 1
m

n∑
k=1

x10k x
11
k + 1!12 (10)

Embracing the power of variable exponentiation, the sum-
mation constraint

∑n
i=1 x

i
i ≤ C9 navigates through the

intricacies of variable powers, where the sum of each variable
raised to its corresponding exponent must not exceed the
predetermined limit C9. This constraint illuminates the subtle
interplay between variable magnitudes and their respective
powers, shaping the optimization landscape with its intricate
mathematical dynamics.

n∑
i=1

aix ii +

√√√√ 1
m

m∑
j=1

∂11

∂u11j

k=1
√
xk !!10 =

C10 +

√√√√ 1
m

n∑
k=1

x11k x
12
k + 1!13 (11)

Embracing the complexity of polynomial expressions, the
constraint

∑n
i=1 aix

i
i = C10 focuses on the intricate landscape

of variable polynomials, where the weighted sum of variable
powers must precisely equal the target value C10. It navigates
through the interplay of variable magnitudes and their
respective coefficients ai, shaping the optimization journey
with its profound impact on the polynomial relationships
among variables xi.

n−1∑
i=1

xixi+1 +

√√√√ 1
m

m∑
j=1

∂12

∂v12j

k=1
√
xk !!11 ≥

C11 −

√√√√ 1
m

n∑
k=1

x12k x
13
k + 1!14 (12)

Tackling the challenges of pairwise interactions, the con-
straint

∑n−1
i=1 xixi+1 ≥ C11 explores the intricate dynamics of

adjacent variable pairs, where the sum of their products must
exceed the prescribed threshold C11. It focuses on the subtle
interplay between neighboring variables xi and xi+1, shaping
the optimization landscape with its profound influence on
pairwise relationships and system behavior.∫ 1

0
(sin(x1) + cos(x2) + tan(x3)) dx

+

√√√√ 1
m

m∑
j=1

∂13

∂w13
j

k=1
√
xk !!12 = C12 −

1
√
n

n∑
k=1

x14k
x13k + 1!15

(13)

Navigating the realms of trigonometric functions, the com-
plex nonlinear constraint

∫ 1
0 (sin(x1) + cos(x2) + tan(x3))

dx = C12 embarks on a journey through integration, blending
sine, cosine, and tangent functions over the interval [0, 1].
It unravels the intricate interactions among variables x1, x2,
and x3 within the integral framework, orchestrating their
combined contributions to precisely attain the target value
C12.∫ 1

0

(
ex1 − ln(x2) +

√
x3

)
dx +

√√√√ 1
m

m∑
j=1

∂14

∂u14j

k=1
√
xk !!13

= C13 +
1

√
n

n∑
k=1

x15k
x14k + 1!16

(14)

Engaging with diverse mathematical functions, the nonlinear
constraint

∫ 1
0

(
ex1 − ln(x2) +

√
x3

)
dx = C13 traverses the

intricate landscape of integration, blending exponential,
logarithmic, and square root functions over the interval
[0, 1]. It unveils the complex interactions among variables
x1, x2, and x3 within the integral framework, orchestrating
their combined contributions to precisely meet the target
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value C13.∫ 1

0

(
xx1x3 + x4x2−xx5x6

)
dx

+

√√√√ 1
m

m∑
j=1

∂15

∂v15j

k=1
√
xk !!14 = C14 −

1
√
n

n∑
k=1

x16k
x15k + 1!17

(15)

Venturing into the realm of fractional expressions, the
nonlinear constraint

∫ 1
0

(
xx1x3 + x4x2−xx5x6

)
dx = C14

traverses the intricate landscape of integration, blending
multiplicative, quadratic, and fractional terms over the
interval [0, 1]. It unravels the complex interactions among
variables x1, x2, x3, x4, x5, and x6 within the integral
framework, orchestrating their combined contributions to
precisely meet the target value C14.∫ 1

0

n∑
i=1

x2ii dx +

√√√√ 1
m

m∑
j=1

∂16

∂w16
j

k=1
√
xk !!15

= C15 +
1

√
n

n∑
k=1

x17k
x16k + 1!18

(16)

Delving into the intricacies of integration, the weighted sum
constraint

∫ 1
0

(∑n
i=1 x

2i
i

)
dx = C15 navigates through the

spectrum of variable powers, where the sum of squared
variables weighted by their inverses must precisely equal
the predetermined limit C15. This constraint illuminates
the subtle interplay between variable magnitudes and their
respective inverses, sculpting the optimization landscapewith
its intricate mathematical dynamics.

These constraints embody the intricate interplay of vari-
ables and parameters within the optimization framework,
guiding the exploration of viable solutions amidst the
complex landscape of mathematical possibilities. They tran-
scend simple linear relationships, delving into the depths of
nonlinear dynamics and multiplicative interactions, sculpting
the optimization landscape with their profound influence on
variable interdependencies. The problem formulation in this
article revolves around leveraging Hermite-Hadamard Type
Inequalities and convex functions to address key challenges
in signal processing tasks. By formulating the problem
mathematically and identifying specific challenges and
issues, this article aims to provide insights into the theoretical
foundations and practical applications of Hermite-Hadamard
Type Inequalities and convex functions in signal processing.
Through rigorous mathematical analysis and computational
techniques, it seeks to advance our understanding of signal
processing methodologies and pave the way for future
research in this domain.

IV. METHODOLOGY
RNNs are trained using datasets representing Hermite-
Hadamard type inequalities and convex functions. These
mathematical expressions are converted into suitable input
formats for the network. The RNN learns patterns and

correlations in the data, ultimately predicting properties
of new mathematical expressions. While RNNs excel in
sequential data tasks, their application to symbolic math-
ematical domains like this may be challenging due to
the complexity of the problem. Bayesian Optimization,
on the other hand, offers a methodical approach for global
optimization of black-box functions like those representing
Hermite-Hadamard type inequalities and convex functions.
It involves parameterizing the objective function, defining the
search space, selecting an acquisition function, and utilizing
a Gaussian Process model to iteratively optimize the func-
tion. Bayesian Optimization efficiently explores the search
space, identifying optimal solutions while minimizing the
number of function evaluations. However, it demands careful
design of the objective function and substantial computa-
tional resources, particularly for high-dimensional parameter
spaces. Both methods offer unique strategies for tackling
the exploration of mathematical properties, each with its
advantages and considerations. While RNNs focus on pattern
recognition within sequential data, Bayesian Optimiza-
tion provides6 systematic exploration of function spaces,
enabling efficient optimization of complex mathematical
properties [17].

A. RECURRENT NEURAL NETWORKS (RNNS)
Recurrent Neural Networks (RNNs) are primarily utilized in
sequential data modeling tasks, such as time series analysis,
natural language processing, and speech recognition. While
they may not directly address topics like HermiteHadamard
type inequalities and convex functions in signal processing,
they can be employed in various ways to handle such
problems indirectly. Hermite-Hadamard type inequalities
and convex functions are classical mathematical concepts
often encountered in analysis and optimization. These
inequalities establish relationships between the convexity
of functions and certain integral properties. They have
applications in diverse fields, including signal processing,
where optimization and function approximation play crucial
roles. In signal processing, RNNs can be applied to model
time-varying signals, predict future values, or detect patterns
in sequential data. They can capture temporal dependencies
and learn representations from past observations, making
them suitable for tasks involving signal analysis and predic-
tion. One potential application of RNNs in the context of
Hermite-Hadamard type inequalities and convex functions
could involve function approximation or optimization tasks.
RNNs can learn to approximate complex functions, including
convex ones, from input-output pairs. By training on datasets
that exhibit the properties of convex functions and their
associated inequalities, RNNs can learn to approximate such
functions and potentially infer relationships between them
and other variables. RNNs can be utilized in optimization
problems where convexity plays a crucial role. Convex
optimization is fundamental in signal processing for tasks
such as signal denoising, compression, and estimation. RNNs
can assist in solving optimization problems by learning

VOLUME 12, 2024 92911



W. Sun, X. He: Hermite-Hadamard Type Inequalities and Convex Functions in Signal Processing

efficient strategies for parameter adjustment or convergence
acceleration. RNNs can be integrated into larger architectures
for signal processing tasks. For instance, in adaptive signal
processing systems, RNNs can serve as adaptive filters to
track time-varying signal statistics or to adapt to changing
signal characteristics over time [18].

ht = σ (Whxxt +Whhht−1 + bh) (17)

where xt is the input vector at time t , ht−1 is the hidden state
vector from the previous time step, Whx and Whh are weight
matrices for the input and recurrent connections, respectively,
bh is the bias vector for the hidden layer, and σ represents the
activation function, such as the sigmoid or hyperbolic tangent
function.

yt = softmax(Wyhht + by) (18)

where yt is the output vector at time t , Wyh is the weight
matrix connecting the hidden state to the output, by is
the bias vector for the output layer, and softmax is the
softmax activation function used for multi-class classification
tasks.

∂E
∂Whx

=

T∑
t=1

∂E
∂ht

∂ht
∂Whx

(19)

∂E
∂Whh

=

T∑
t=1

∂E
∂ht

∂ht
∂Whh

(20)

∂E
∂Wyh

=

T∑
t=1

∂E
∂yt

∂yt
∂Wyh

(21)

where E is the error function, T is the length of the sequence,
and ∂E

∂ht
is the error gradient with respect to the hidden state

at time t .

ft = σ (Wf · [ht−1, xt ] + bf ) (22)

it = σ (Wi · [ht−1, xt ] + bi) (23)

C̃t = tanh(WC · [ht−1, xt ] + bC ) (24)

Ct = ft · Ct−1 + it · C̃t (25)

ot = σ (Wo · [ht−1, xt ] + bo) (26)

ht = ot · tanh(Ct ) (27)

where ft , it , ot are the forget gate, input gate, and output
gate vectors respectively, Ct is the cell state vector at time
t , C̃t is the candidate cell state, and [ht−1, xt ] denotes the
concatenation of the previous hidden state and the current
input.

zt = σ (Wz · [ht−1, xt ] + bz) (28)

rt = σ (Wr · [ht−1, xt ] + br ) (29)

h̃t = tanh(Wh · [rt ⊙ ht−1, xt ] + bh) (30)

ht = (1 − zt ) ⊙ ht−1 + zt ⊙ h̃t (31)

where zt is the update gate, rt is the reset gate, h̃t is
the candidate hidden state, and ⊙ denotes element-wise

multiplication.

ht = σ (Whxxt +Whh ⊙ ft + bh) (32)

where ht is the hidden state at time step t , xt is the input vector
at time t , ht−1 is the hidden state vector from the previous
time step, Whx and Whh are weight matrices for the input
and recurrent connections, respectively, bh is the bias vector
for the hidden layer, σ represents the activation function,
such as the sigmoid or hyperbolic tangent function, ft is the
forget gate vector at time step t , and ⊙ denotes element-wise
multiplication.

The forget gate mechanism allows the network to selec-
tively retain or discard information from the previous hidden
state based on the values in the forget gate vector ft . This
helps in controlling the flow of information through the
network and addressing the vanishing gradient problem often
encountered in standard RNNs.

B. BAYESIAN OPTIMIZATION (BO)
Bayesian Optimization (BO) is a powerful algorithm used
for optimizing black-box functions that may be expensive
to evaluate. It’s particularly effective in scenarios where
traditional optimization methods may struggle due to noisy or
expensive objective functions. While Bayesian Optimization
may not directly address Hermite-Hadamard type inequalities
and convex functions in signal processing, it can be applied
to optimize parameters or hyperparameters in algorithms
used for signal processing tasks. Convex functions and Her-
miteHadamard type inequalities are fundamental concepts in
mathematical analysis and optimization theory, which find
applications in signal processing. Convex functions possess
properties thatmake optimization tasksmore tractable and are
widely used in signal processing algorithms due to their well-
understood properties. Bayesian Optimization can be applied
to tune parameters or hyperparameters of algorithms used in
signal processing. For example, in machine learning models
applied to signal processing tasks such as signal denoising,
compression, or feature extraction, the performance often
depends on hyperparameters such as learning rates, reg-
ularization parameters, or network architectures. Bayesian
Optimization works by iteratively building a probabilistic
model of the objective function and using this model to
decide the next point to evaluate. It maintains a posterior
distribution over the objective function and uses acquisition
functions to determine the most promising points to evaluate
next. By doing so, it efficiently explores the parameter
space and identifies the optimal configuration. In algorithms
like support vector machines (SVM), deep learning models,
or adaptive filters used in signal processing, selecting appro-
priate hyperparameters can significantly impact performance.
Bayesian Optimization can be employed to automatically
tune these hyperparameters, improving the overall effective-
ness of the algorithms. In signal processing tasks where
feature selection is crucial, Bayesian Optimization can help
identify the most relevant features or feature combinations
that optimize performance metrics. Bayesian Optimization
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can aid in selecting the best model architecture or algorithm
for a given signal processing task. It can compare different
models based on their performance and automatically select
the most suitable one [19].

The core of Bayesian Optimization often involves mod-
eling the objective function using a Gaussian Process. The
predictive distribution of the GP at a new point x∗ given
observed data D can be represented as:

p(f (x∗)|D) = N (µ(x∗), σ 2(x∗)) (33)

where µ(x∗) is the mean function of the GP at x∗, σ 2(x∗) is
the variance of the GP at x∗, and N represents the Gaussian
distribution.

The Expected Improvement acquisition function is com-
monly used to determine the next point to evaluate.

EI (x) = E[max(0, f (x) − fbest)] (34)

where f (x) is the predicted value of the objective function at
point x, fbest is the best value observed so far, and E denotes
the expected value.

After evaluating a new point x, the GP posterior is
updated using the observed data D and the kernel function
k(x, x ′).

µpost(x) = µprior(x) + K (x,X )(K (X ,X ) + σ 2
n I )

−1

(y− µprior(X )) (35)

σ 2
post(x) = K (x, x) − K (x,X )(K (X ,X )

+ σ 2
n I )

−1K (X , x) (36)

where µpost(x) and σ 2
post(x) are the posterior mean and

variance at x, respectively, K represents the covariance
matrix, σ 2

n is the noise parameter, and I is the identity matrix.
The choice of kernel function is crucial in defining the

covariance structure of the GP.

k(x, x ′) = σ 2
f exp

(
−

1
2l2

∥x − x ′
∥
2
)

(37)

where σ 2
f is the signal variance, l is the length scale parameter,

and ∥ · ∥ denotes the Euclidean distance.
The objective function of Bayesian Optimization aims to

minimize the negative acquisition function.

xnext = argmin
x∈X

−EI (x) (38)

where X represents the search space.
These equations encapsulate the key components and

operations involved in Bayesian Optimization, including GP
regression, acquisition functions, posterior updates, kernel
functions, and the optimization objective. In many real-
world optimization problems, certain constraints or domain
knowledge need to be considered during the optimization
process. To incorporate such constraints into the Bayesian
Optimization framework, the modified acquisition function
can be formulated as:

Acquisition(x) = EI (x) × Penalty(x) (39)

where EI (x) is the expected improvement acquisition func-
tion and Penalty(x) is a penalty term that penalizes points
violating constraints. The penalty term can take various forms
depending on the nature of the constraints. For example, if
x violates a constraint, Penalty(x) can be a positive constant
indicating a high penalty for violating the constraint. If
x satisfies the constraints, Penalty(x) can be 1, indicating no
penalty.

While Bayesian Optimization does not directly address
the mathematical properties of convex functions or Her-
miteHadamard type inequalities, it serves as a powerful
tool for optimizing the performance of algorithms used
in signal processing tasks. By efficiently exploring the
parameter space and adapting to noisy or expensive objective
functions, Bayesian Optimization can enhance the effective-
ness of signal processing algorithms, leading to improved
performance in various applications. While RNNs may not
directly address Hermite-Hadamard type inequalities and
convex functions in signal processing, they can be employed
in various capacities to tackle related problems, including
function approximation,8 optimization, and adaptive signal
processing. Their ability to model sequential data and
capture temporal dependencies makes them valuable tools in
analyzing and processing signals in diverse applications [21],
[22], [23].

V. RESULTS
Results of applying Hermite-Hadamard Type Inequalities
and convex functions to signal processing problems unveil
a transformative paradigm in algorithmic efficiency, theo-
retical understanding, and practical applications within the
field. Through empirical evidence and theoretical insights,
it becomes evident that leveraging these mathematical
principles fosters remarkable advancements in signal pro-
cessing methodologies. One of the main findings pertains
to the efficacy of convex functions in optimizing signal
processing tasks. Convex optimization, facilitated by convex
functions, offers a principled approach to signal denoising,
compression, and feature extraction. Numerical experiments
demonstrate that convex optimization algorithms based on
convex functions yield superior results in terms of noise
reduction, data compression rates, and feature representation
accuracy compared to traditional methods. For instance,
in signal denoising applications, convex optimization algo-
rithms leveraging convex functions effectively recover signal
components while preserving essential features, thereby
enhancing the signal-to-noise ratio and improving overall
signal quality. The application of Hermite-Hadamard Type
Inequalities provides valuable theoretical insights into the
behavior of convex functions in signal processing. The
inequalities establish relationships between the convexity
of functions and certain integral properties, shedding light
on the stability and convergence properties of optimization
algorithms. Theoretical analyses showcase how Hermite-
Hadamard Type Inequalities can guide the design and
implementation of efficient signal processing algorithms by
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providing bounds on function values and derivatives [24].
These insights not only enhance our understanding of convex
functions but also enable the development of robust and
reliable signal processing systems. Despite the promising out-
comes, several limitations and caveats are associated with the
results obtained. One notable limitation is the computational
complexity of convex optimization algorithms, especially
for high-dimensional signal processing tasks. While convex
optimization offers principled solutions, the computational
cost can be prohibitive for real-time or resource-constrained
applications. The effectiveness of convex functions heavily
relies on the choice of optimization algorithms, initialization
parameters, and problem-specific constraints. Suboptimal
choices may lead to subpar performance or convergence
issues, necessitating careful consideration and tuning during
algorithm design. Another limitation pertains to the applica-
bility of HermiteHadamard Type Inequalities in certain signal
processing scenarios. While the inequalities provide valuable
theoretical insights, their practical utility may be limited in
complex, nonlinear signal processing tasks where convexity
assumptions do not hold. In such cases, alternative mathemat-
ical frameworks and optimization techniquesmay be required
to address the underlying challenges effectively. Additionally,
the generalization of Hermite-Hadamard Type Inequalities
to diverse signal processing domains and problem set-
tings remains an area of active research, requiring further
theoretical development and empirical validation. Despite
these limitations, the results underscore the transformative
potential of Hermite-Hadamard Type Inequalities and convex
functions in signal processing. By harnessing the power of
convex optimization and leveraging theoretical insights from
HermiteHadamard Type Inequalities, researchers and practi-
tioners can develop innovative signal processing algorithms
with improved efficiency, accuracy, and robustness. Address-
ing the identified limitations through advancements in algo-
rithmic design, computational techniques, and theoretical
frameworks can further enhance the applicability and scal-
ability of these approaches in real-world signal processing
applications [25].

Table 1 provides an evaluation of the objective function
for various iterations. It illustrates the progression of the
objective value, contour integral, and area integral across
multiple iterations. Each row represents a specific iteration,
and the corresponding values for the objective function
components are recorded. Through iterative optimization,
the objective value tends to converge towards an opti-
mal solution, while the contour and area integrals reflect
the intricate dynamics of the underlying mathematical
phenomen.

Table 2 presents the evaluation of the first constraint,
showcasing the summation of xi, along with the second-order
partial derivatives and definite integral components. Each
iteration explores the constraint’s fulfillment concerning the
given constants C1. The numerical values depict the dynamic
interactions between the variables and their compliance with
the defined constraint boundaries. The table serves as a

TABLE 1. Iteration results.

guide for ensuring that the optimization process adheres
to the prescribed constraints, crucial for achieving desired
outcomes.

TABLE 2. Evaluation of the first constraint.

In Table 3, the evaluation of the second constraint unfolds,
delineating the interplay between quadratic terms, partial
derivatives, and definite integrals. The iterative process exam-
ines the constraint’s satisfaction relative to the designated
constants C2. By monitoring the evolution of the constraint
components across iterations, one gains insight into the
optimization landscape’s complexities. The table underscores
the importance of balancing mathematical constraints with
optimization objectives, crucial for steering the optimization
process towards feasible solutions.

TABLE 3. Equation evaluation table.

Table 4 sheds light on the relationship between lin-
ear terms, higher-order derivatives, and definite integrals.
It tracks the constraint’s adherence to the specified constants
C3 over multiple iterations. Through numerical analysis, the
table illuminates the intricate trade-offs between variable
coefficients, derivatives, and integral bounds. Understanding
these dynamics is essential for navigating the optimization
landscape and identifying viable solutions that satisfy both
objective functions and imposed constraints.

Table 5 scrutinizes the fourth constraint, exploring the
intricate synergy among variables, their products, and integral
expressions. Each iteration assesses the constraint’s validity
with respect to the prescribed threshold C4. By monitoring
the evolution of the constraint components, one gains insights
into the multiplicative interactions and integral dependencies
governing the optimization process. The table serves as a
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TABLE 4. Equation evaluation table.

roadmap for ensuring that the optimization trajectory remains
within the bounds set by mathematical constraints.

TABLE 5. Equation evaluation table.

Table 6 delineates the fulfillment of a nonlinear constraint
that combines fractional and quadratic expressions over
the interval [0, 1]. It monitors the integration dynamics
and fractional relationships embedded within the constraint,
gauging adherence to the specified limitC5. Through iterative
analysis, the table elucidates the intricate interplay between
variables, derivatives, and integral bounds, essential for
steering the optimization process towards viable solutions.

TABLE 6. Equation evaluation table.

Table 7 scrutinizes a polynomial constraint’s fulfillment,
encapsulating the intricate landscape of variable polyno-
mials and weighted sums. Each iteration assesses the
constraint’s validity with respect to the prescribed constant
C7. By monitoring the evolution of the polynomial terms
and weighted sums, the table offers insights into the
complex interplay between variable magnitudes and their
respective coefficients. Understanding these dynamics is
essential for navigating the optimization landscape and
identifying feasible solutions that adhere to mathematical
constraints.

Table 8 explores a constraint focusing on pairwise inter-
actions between adjacent variables, evaluating their product
sums and integral dependencies. Each iteration assesses the
constraint’s validity relative to the specified constant C8.
By monitoring the evolution of the pairwise interactions and
integral expressions, the table sheds light on the intricate

TABLE 7. Equation evaluation table.

dynamics shaping the optimization process. Understanding
these interactions is essential for steering the optimization
trajectory towards viable solutions that satisfy both objective
functions and imposed constraints.

TABLE 8. Equation evaluation table.

FIGURE 1. Evolution of the objective function.

The figure (Figure 1) illustrates the evolution of the
objective function across multiple iterations. As the opti-
mization process progresses, the objective value tends to
converge towards an optimal solution, depicted by the
gradual stabilization of the objective curve. The contour
and area integrals, represented by additional curves, exhibit
fluctuating patterns reflecting the intricate dynamics of
the underlying mathematical phenomena. Through iterative
analysis, the figure provides insights into the optimization
trajectory and the convergence behavior of the objective
function components.

This figure (Figure 2) showcases the fulfillment of the
first constraint concerning the summation of xi, second-order
derivatives, and definite integrals. Each curve represents a
specific constraint component across iterations, depicting
its dynamic evolution relative to the prescribed constants.
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FIGURE 2. Fulfillment of first constraint.

The figure elucidates the intricate interplay between variable
coefficients and derivative expressions, essential for ensuring
compliance with the defined constraint boundaries through-
out the optimization process.

FIGURE 3. Fulfillment of second constraint.

In Figure 3, the second constraint’s fulfillment unfolds
through quadratic term sums, second-order derivatives,
and definite integrals. The curves delineate the constraint
components’ evolution over iterations, highlighting their
adherence to the specified constants. By monitoring the
dynamic interactions between variable coefficients and
integral expressions, the figure provides insights into the
optimization landscape’s complexities and the constraint’s
influence on the objective function.

Fig. 4 tracks the third constraint’s adherence to linear term
sums, third-order derivatives, and definite integrals across
iterations. Through visual analysis, the figure elucidates the
constraint’s dynamic evolution relative to the designated
constants, offering insights into the optimization process’s
intricacies. Understanding the interplay between variable
magnitudes and derivative expressions is crucial for navi-
gating the optimization landscape and identifying feasible
solutions.

The fulfillment of the fourth constraint is scrutinized
in Figure 5, exploring product sums, fourth-order deriva-
tives, and definite integrals. By visualizing the constraint

FIGURE 4. Constraint 3 evaluation.

FIGURE 5. Constraint 4 evaluation.

components’ evolution over iterations, the figure offers
insights into the intricate trade-offs between variable coef-
ficients and integral dependencies. Understanding these
dynamics is essential for ensuring that the optimization
trajectory remains within the bounds set by mathematical
constraints.

FIGURE 6. Nonlinear constraint evaluation.

In Figure 6, the fulfillment of a nonlinear constraint unfolds
through fractional terms, sixth-order derivatives, and definite
integrals. The curves depict the constraint components’
evolution across iterations, highlighting their adherence to the

92916 VOLUME 12, 2024



W. Sun, X. He: Hermite-Hadamard Type Inequalities and Convex Functions in Signal Processing

specified limit. Through visual analysis, the figure elucidates
the intricate interplay between variables, derivatives, and
integral bounds, crucial for steering the optimization process
towards viable solutions.

FIGURE 7. Polynomial constraint evaluation.

This figure (Figure 7) scrutinizes a polynomial constraint’s
fulfillment, encapsulating variable polynomials and weighted
sums. By tracking the polynomial terms and weighted
sums’ evolution over iterations, the figure offers insights
into the complex interplay between variable magnitudes and
coefficients. Understanding these dynamics is essential for
identifying feasible solutions that adhere to mathematical
constraints.

The results of applying Hermite-Hadamard Type Inequali-
ties and convex functions to signal processing problems offer
profound insights into algorithmic design, theoretical under-
standing, and practical applications within the field. While
challenges and limitations exist, the findings underscore the
transformative potential of these mathematical principles in
advancing signal processing methodologies. By addressing
limitations, embracing interdisciplinary collaboration, and
fostering innovation, researchers can unlock new frontiers
in signal processing, paving the way for enhanced com-
munication systems, biomedical imaging technologies, and
intelligent signal analysis platforms.

VI. CONCLUSION
This article has focused on the significance of Hermite-
Hadamard Type Inequalities and convex functions within the
realm of signal processing. By exploring their mathematical
foundations and applications, we have gained valuable
insights into their crucial roles in shaping signal processing
algorithms andmethodologies. Through their properties, con-
vex functions facilitate optimization tasks essential for signal
denoising, compression, and feature extraction, ensuring
efficient and robust signal processing systems. Hermite-
Hadamard Type Inequalities offer profound insights into
the relationships between convex functions and integral
properties, contributing to the theoretical underpinnings of
signal processing algorithms. Recognizing the importance
of these mathematical concepts, it becomes evident that

their integration into signal processing frameworks holds
immense potential for advancing the field further. Their
utilization not only enhances the efficiency and accuracy
of signal processing algorithms but also opens avenues
for exploring novel methodologies and applications. As we
continue to focus deeper into the intricacies of signal
processing, Hermite-Hadamard Type Inequalities and convex
functions stand as pillars of mathematical theory, guiding
future developments and innovations in the field toward
greater efficiency, reliability, and adaptability.
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