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ABSTRACT The structure of the upper airway is variable and complex due to its environmental and
physiological factors. Currently, doctors mainly rely on manual outlining and segmentation from images.
This method is time-consuming and relies heavily on the doctor’s experience. To solve this problem,
we propose a fully automatic segmentation model for upper airway Cone Beam Computed Tomography
(CBCT) images based on U-Net. The receptive field expansion module (RFEM) is used to replace the last
three convolutional blocks of the encoder in the original U-Net model to improve the feature information
extraction capability. And a large kernel attention module (LKA) is added to the skip connection part to
dynamically adjust the receptive field of the feature extraction backbone, to alleviate the feature loss and
redundancy of the skip connection. The dataset used in this paper is one created by us and the clinicians
themselves, totaling 1345 CBCT images. Which were taken from 53 patients with airway obstruction. The
imaging experts guided and delineated the label images. Experimental results show that the IoU and Dice
score of the upper airway segmentation predicted by the RELA_Net network model in this article on the
test sets are 94.39% and 97.10% respectively. Based on the prediction maps of the test set images, the
segmentation model proposed in this article demonstrates an improvement in comparison to U-Net and
other models, particularly in reducing over- and under-segmentation in the upper airway. This contributes to
improving the diagnostic accuracy for patients with airway obstruction, thereby enhancing patient care and
treatment planning.

INDEX TERMS U-net neural network, upper airway, medical image segmentation.

I. INTRODUCTION
For a long time, the upper airway has been an area of interest
in respiratory medicine, as it is primarily responsible for res-
piratory, vocal, and swallowing functions [1]. The structure
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and dimensions of the upper airway are determined by a
various of factors [2], [3], such as the soft tissues, muscles,
and craniofacial skeleton surrounding the pharynx, all of
which influence airway volume and facial growth patterns.
When soft tissue laxity, adenoid, and tonsil hypertrophy are
present, they predispose individuals to partial or total upper
airway obstruction, which leads to the risk of obstructive
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sleep apnea (OSA) [4], [5]. OSA is a common sleep breathing
disorder that refers to episodes of apnea during sleep caused
by partial or complete obstruction of the upper airway. It sig-
nificantly affects patients’ quality of life and may even be
life-threatening [6].

One study [7] showed that pharyngeal airway dimensions
were significantly larger in those who breathed through
the nose than in those who breathed through the mouth.
In growing individuals with oropharyngeal or nasopharyn-
geal obstruction caused by enlarged tonsils or adenoids,
airway capacity is significantly increased after tonsillectomy
or adenoidectomy. Therefore, it is important to perform regu-
lar airway examinations and undertake surgical interventions
when necessary. Upper airway image segmentation allows for
the visualization of lesion diagnosis, observation of treatment
effects and helps to reduce the risk of OSA. Currently, for
the segmentation of the upper airway, most doctors use the
patient’s CBCT images as the basis for effective segmentation
of the upper airway region in images by manual delineation,
which takes a lot of time and is inefficient. In addition,
it is heavily dependent on the physician’s experience, and
for the same patient’s CBCT image, different physicians
may obtain different outlining results due to differences in
experience [8]. There is a great deal of subjectivity in this
manual segmentation, and these differences directly affect
the effectiveness of the treatment and increase the risk of
side effects for the patient. Therefore, in order to improve
the efficiency of diagnosis, reduce the workload of doctors,
and quantitatively assess the effect before and after treatment,
it is important to establish a fast and accurate automatic upper
airway segmentationmodel for the diagnosis and treatment of
OSA patients [9].

II. RELATED WORK
In recent years, with the rapid improvement of computer
hardware performance, deep learning technology has been
rapidly developed. Compared with traditional machine learn-
ing and computer vision methods [10], [11], [12], methods
based on deep learning have achieved good results in the field
of image segmentation. Their excellent feature extraction and
representation capabilities offer advantages in segmentation
accuracy and speed. Deep learning models such as Convolu-
tional Neural Network (CNN) [13], [14], [15] are becoming
increasingly popular in medical image segmentation.

In the field of medical image segmentation, U-Net [16] is
the basemodel used bymost of the current segmentation algo-
rithms. It uses skip connections to link the semantic features
in the encoder and decoder paths, and finally obtains a feature
map that contains both low-level semantic information and
incorporates high-level semantic information, thus achieving
accurate segmentation of medical images. Inspired by the
success of U-Net, most of the recently proposed leading
models are built on top of the U-Net architecture to cope
with a variety of problems in different image segmenta-
tion tasks. Zhou et al. introduced the Unet++ [17] network

model, which revised dense skip connection paths, resulting
in a more adaptable network structure. This modification
effectively mitigates the semantic divide issue associated
with direct connections in U-Net. Huang et al. proposed
the UNet3+ [18] network model based on Unet++ to add
another full-scale skip connection method, which achieves
the fusion of low- and high-resolution information at different
scales.

In many images processing researches, combining spe-
cific attention can enhance the performance, such as the
MRAUNet [19] model, which introduces a specially designed
module called Multi-Resolution Attention that significantly
improves the image quality and recognition accuracy.
In paper [20], an attention-guided CNN architecture is pro-
posed to combine feature maps with local details to improve
classification performance. Similarly, attention mechanisms
have been introduced in many medical image segmentation
efforts [21], [22], [23], For instance, Oktay et al. integrated
the attentionmechanism intoU-Net and introduced theAtten-
tion U-Net [24] network. This network learns the relationship
between pixels during up-sampling through the attention
gate module, increasing model sensitivity to foreground
pixels. Ruan et al. proposed the MALUNet [25] network
model, which incorporates multiple attention mechanisms.
This model combines channel attention and spatial atten-
tion with a lightweight design to better focus and adjust the
channel and positional information of the feature map. When
trying to solve the problem that deeper networks are prone
to gradient vanishing, He et al. [26] proposed the ResNet
network model, which introduces a deep residual architecture
that has been widely used in different segmentation net-
works. Some other studies [27] applied Transformers to UNet
architectures, for example, the TransUNet [28] model applies
Transformers to the encoder stage of the U-Net architecture.
The combination of Transformer’s ability to interact with
global information and U-Net’s ability to fuse multi-scale
features is utilized, resulting in significant performance gains
in image segmentation tasks.

In the task of segmenting of upper airway, accurate
segmentation of upper airway structures is important for
medical image analysis and diagnosis. However, existing
methods [29] have some limitations when dealing with
upper airway images with complex details and high noise
inter-ference. In order to solve these problems, this paper
proposes a model that combines a RFEM module and LKA
module for upper airway image segmentation. The experi-
mental results show that the network in this paper is able
to obtain more accurate segmentation and achieve excellent
performance. The main contributions of this paper are as
follows:

1) We proposed RELA_Net network is based on the
U-Net structure, replacing the conventional convolutional
block with a RFEM module in the encoder part and adding a
LKAmodule on the skip connections for accurate segmenting
the upper airway parts in CBCT images.
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FIGURE 1. U-Net network model structure.

2) We have created a dataset of the upper airway
under the guidance of a professional pathologist. The
experimental results on this dataset, through compari-
son experiments with other methods and ablation experi-
ments, confirm that RELA_Net achieves better performance
in upper airway segmentation than other state-of-the-art
methods.

3) To evaluate the generalization ability of our proposed
RELA_Net, we validated our model on the publicly available
dataset DSB 2018.

The rest of the paper is organized as follows: Section III
describes in detail the network structure proposed in this
paper. Section IV presents the dataset used in this study
and provides a detailed description of the training process
setup. Section V presents all the experimental results of
this paper. Finally, Section VI concludes our findings and
suggests potential avenues for future research.

III. METHODS
A. U-Net OVERVIEW
U-Net is the current benchmark model for mainstream
image segmentation tasks and has had a profound impact
on semantic segmentation since it was proposed, as shown
in Fig. 1, the U-Net backbone network consists of three
parts: encoder, decoder, and skip connections. In the
encoding pathway, there are primarily feature extraction
blocks and pooling layers. The feature extraction segment
employs 3 × 3 convolutions and ReLU activation functions.
A 2 × 2 pooling operation ensures maximum receptive
field while simultaneously reducing the image resolution.
In the decoding path, up-sampling and convolution are used
for feature reconstruction, and the skip connection is the
highlight of U-Net, which fuses information from different
scales, thus preserving the original features of the image.
Its lightweight structure and excellent performance have
made it a classic model in the field of medical image
segmentation.

B. RELA_Net ARCHITECTURE
Due to the problems of noise, blurring, and low contrast in
medical images, their feature extraction is more challenging
than ordinary images, and the ordinary convolutional module
in the U-Net decoding path may lead to insufficient fea-
ture information extraction. Therefore, this paper proposes
a new model called RELA_Net, and the detailed structure
is shown in Fig. 2. We replace the last three layers in the
encoding path from normal convolution blocks to RFEM
modules fusing different dilated convolutions, each with a
different dilation rate. The RFEMmodule helps to understand
the context of the CT image by increasing the receptive
fields extracted from the convolutional kernel, and can obtain
the contextual information of different receptive fields while
ensuring computational efficiency. In addition, the feature
extraction process is prone to lose the target information due
to the complex background of medical images. Therefore,
a LKA attention mechanism is integrated at skip connec-
tions, allowing themodel to dynamically prioritize significant
image features, thereby enhancing feature extraction and
selection.

1) RECEPTIVE FIELD EXPANSION MODULE
To more comprehensively extract advanced features from the
image, there is an urgent need to capture non-local contextual
information with a large receptive field, serving as an impor-
tant complement and compensation. Drawing inspiration
from KCPNet [30], this paper introduces an RFEM module
based on dilated convolutions of densely connected voids,
replacing the convolution blocks of the last three layers of
U-Net. The key distinction from other expansive convolution
modules, such as Atrous Spatial Pyramid Pooling (ASPP) in
DeepLab, is that we assign greater weight to the initial feature
map, thereby retaining more original information.

The dilation convolution operation used in the RFEMmod-
ule is intended to expand the receptive field to capture broader
context information. The dilation convolution is shown in
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FIGURE 2. RELA_Net architecture.

FIGURE 3. Dilation convolution.

Figure 3, by introducing a jump interval in the convolution
kernel, which represents the jump step length between the
elements in the convolution kernel, known as the dilated
rate. In conventional convolution operations, each element of
the convolution kernel is multiplied with the corresponding
position of the input data. In contrast, in dilated convolution,
the elements of the convolution kernel have a fixed spacing
between them and are no longer densely arranged. This inter-
val is determined by the dilation rate, and by increasing the
dilation rate, dilated convolution can expand the receptive
field of the convolutional kernel, enabling it to capture a
broader range of input data. This mechanism is particularly
useful in computer vision tasks. The dilated convolution is
able to increase the network’s receptive field while keeping
the number of parameters constant, allowing the model to
better handle features with different scales and hierarchies,
compared to traditional convolution operations.

The RFEMmodule expands the receptive field by utilizing
various dilated convolutional layers, and thismodule achieves
this through multiple concatenation operations. The RFEM
module effectively captures both non-local contextual fea-
tures and local target features, enabling it to gather feature
information across different scales. This capability facilitates
enhanced fusion of global image information and strengthens
the model’s feature extraction capabilities. These features
are useful for processing complex image data and extracting

advanced features, and are therefore more suitable for use in
deep networks.

The RFEM module consists of 3 × 3 dilated convolution
layers and 1×1 ordinary convolution layers, and the specific
RFEM module structure is shown in Fig. 4. The RFEM
module sequentially processes the input features using dilated
convolutions with different dilation rates and merges the
processed features with the input features. Firstly, the dilated
convolutions with dilation rates of 2, 4, 8 and 16 are per-
formed sequentially for feature extraction. The two ordinary
1 × 1 convolutions in the RFEM module are placed before
the dilated convolutions with dilation rates of 4, 8, and 16,
respectively, which are used to reduce the number of feature
channels and help to reduce the number of model parame-
ters to avoid overfitting. By repeatedly concatenating with
the original feature maps, this process avoids the significant
dilation of original feature map information in subsequent
convolutions.

The entire RFEM dilated convolution module operation
can be summarized as follows:

R1 = DConv3 × 3r=2(Input) (1)

R2 = DConv3 × 3r=4(Conv1 × 1(R1
Input)) (2)

R3 = DConv3 × 3r=8(Conv1 × 1 (R1
R2
Input)) (3)

R4 = DConv3 × 3r=16(Conv1 × 1 (R1
R2
R3
Input))
(4)

Output = R1
R2
R3
R4
Input (5)

In the formula, ‘‘
’’ represents the concatenation of
feature maps extracted from various dilated convolutions
based on their channel dimensions. ‘‘Input’’ and ‘‘Output’’
correspondingly denote the initial input feature maps and the
final output feature maps.

2) LARGE KERNEL ATTENTION MODULE
Transformer [31] based models such as Vision Transformer
(ViT) [32] and others [33] have gained popularity in computer
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FIGURE 4. RFEM module structure.

vision due to their effectiveness in image recognition tasks.
Studies [34], [35] have shown that a large receptive field is a
key factor in their success. For example, ConvNeXt [36] uses
7 × 7 deep convolution in its backbone, which significantly
improves the performance of downstream tasks. Additionally,
D-LKANet [37] is a simplified attention mechanism using
a large convolutional kernel that fully appreciate the volu-
metric context. Similarly, SegNeXt [38] demonstrated that
large kernel convolution plays an important role in modulat-
ing convolutional features with richer context. LSKNet [39]
can dynamically adjust its large spatial receptive field to
better simulate the ranging context of various objects in
a remote sensing scene. These studies show that convolu-
tional networks with designs with large receptive fields can
also achieve comparable performance to transformer-based
models.

Due to the relatively high variability of different slices of
the same site in medical images, which often requires a wide
range of receptive fields and different ranges of contextual
information. This is because parts of the upper airway that
are not part of the upper airwaymay be incorrectly segmented
without reference to a sufficiently distant context. Moreover,
the majority of existing segmentation models employ a stan-
dard skip connection between the encoder and decoder, often
overlooking the issue of image feature gaps and losses that
occur during these connections.

In order to solve this problem, in this paper, we design
a method of hybrid attention selection mechanism for large
kernel called LKA. The module is designed to be able to
capture features from different receptive fields by adapting
a large convolutional kernel, combined with an attentional
mechanism for filtering, in order to more efficiently deal
with complex background changes in and around the object.
This approach helps to improve the model’s target recogni-
tion accuracy while reducing the sensitivity to background
interference, making the model perform better when dealing
with complex scenes. The hybrid attention selection mech-
anism simultaneously considers both channel and spatial

information to weight the features extracted by convolutional
kernels at different depths, thereby achieving precise feature
extraction. This mechanism goes about dynamically adjust-
ing the weights of each kernel based on inputs, enables the
network to adaptively select kernels of different sizes and
flexibly adjust the adapted receptive field. In this way, the
network can autonomously choose the appropriate convolu-
tional kernel size and receptive field range according to the
characteristics of the input data and the task requirements,
so as to process complex scenes and tasks more effectively.

Given the necessity for a broader contextual understanding
in upper airway images, we use this characteristic for the seg-
mentation task by adapting its larger spatial receptive field to
blend and filter features effectively. The structure of the LKA
module is shown in Figure 5. Each LKA module consists
of a large kernel selection (LK) sub-block, which dynami-
cally adjusts the network’s receptive field as needed, and an
attention sub-block, which consists of a mixture of channel
attention (CA) and spatial attention (SA). CA uses globally
averaged information to re-weight feature channels, while
the SA module enhances the ability of cyberspace masks to
model contextual information. By harnessing the strengths of
both approaches, we sequentially aggregate information from
large kernels across both spatial and channel dimensions.
This enables us to capture richer information, enhancing the
localization capability while preserving crucial details and
suppressing noise and irrelevant information.

The overall module of LKA can be summarized as
follows: Initially, the input feature maps traverse through
various kernel functions of different sizes to acquire features
with distinct receptive fields.

Attn1 = Conv1 × 1(conv5 × 5(Input)) (6)

Attn2 = Conv1 × 1(conv7 × 7 (conv5 × 5(Input))) (7)

where conv5 × 5 has a convolution padding of 2,
conv7 × 7 has a dilated convolution rate of 3 and padding
of 9, and 1 × 1 convolution is used to resize the number of
channels to reduce the computation.
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FIGURE 5. LKA module structure.

FIGURE 6. Channel attention module.

FIGURE 7. Spatial attention module.

Then, the extracted features are selected by CA. The CA is
shown in Fig. 6 and is divided into two parts. Firstly, global
average pooling (Avgpool) and global maximum pooling
(Maxpool) are performed for the individual feature layers
coming in as input, respectively. After that the obtained
results are processed using the shared fully connected layer,
the two processed results are summed and the Sigmoid is
taken to fix the value to between 0-1 to obtain this weight.

The resulting weights are then multiplied by the original
input feature layer Attn1:

Attn1 = CA (Attn1) · Attn1 (8)

Attn2 = CA (Attn2) · Attn2 (9)

Subsequently, feature concatenation takes place:

Attn = Attn1
Attn2 (10)

After the feature maps are concatenated, the resulting fea-
ture map, denoted as Attn, undergoes feature selection using

the SA module illustrated in Fig. 7, whose input feature
maps are the concatenated feature maps of the CA outputs
described above. The SA operation involves both averaging
and max-pooling across channels of the input features, effi-
ciently extracting spatial relations.

SAavg = Pavg(Attn), SAmax = Pmax(Attn) (11)

where SAavg and SAmax are the average andmaximumpooled
spatial feature descriptors. To allow information interaction
between different spatial descriptors, the spatially merged
features are connected, and the merged features are converted
into 2 spatial feature maps using a convolutional layer F, after
which the spatial features are obtained by applying a sigmoid
activation function:

SA = σ (F([SAavg+ SAmax])) (12)

where σ (·) denotes the sigmoid function.
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The features in the decomposed large kernel sequence
are then weighted with the corresponding spatially-selective
masks and fused with a 1 × 1 convolution to obtain the
attentional features S:

S = F(SA[0] · ttn1 + SA[1] · ttn2) (13)

The final output of the LKA module is the elemental
product between the input features Input and S:

Output = Input · S (14)

IV. EXPERIMENTS
A. DATASET
1) UPPER AIRWAY CBCT DATASET
CBCT images of the upper airway are usually stored in the
Digital Imaging and Communications for Medical (DICOM)
file format, which is highly structured and contains a wealth
of medical imaging information, but may sometimes con-
tain unnecessary redundant data. When processing these
CBCT scan images, the DICOM format was converted to png
image format to facilitate subsequent analysis and processing.
By comparing the three views, it was found that the sagittal
plane of the upper airway CBCT image could demonstrate the
overall airway area, and the nasopharyngeal, oropharyngeal,
and hypopharyngeal airways could be observed sequentially
from top to bottom, which was easy for the doctor to observe
the narrow part of the airway. Therefore, the sagittal image
of the CBCT image was chosen to label the upper airway.

The labelling tasks were as follows: firstly, clinicians from
the Otorhinolaryngology Head and Neck Surgery Clinic of a
certain affiliated central hospital demonstrated the labelling
of CBCT images of the upper airway, and explained the
knowledge of nasopharyngeal, oropharyngeal and hypopha-
ryngeal parts of the upper airway. Subsequently, members of
the group labeled the upper airway CBCT image data. The
doctor then screened and optimized the labeling results to
complete the upper airway CBCT image data labeling task.
The dataset for this paper was selected from 53 patients with
respiratory dyspnea, andCBCT data from 9 patients were ran-
domly chosen as the test set, with the rest used for the training
set. A total of 1345 upper airway CBCT images were labeled
in the dataset, with 950 images allocated to the training set,
238 images to the validation set, and 157 images to the test set.
Some of the patient input images and corresponding ground
truth labels are displayed as shown in Figure 8.
In terms of data preprocessing, to prevent overfitting,

we also applied some data augmentation techniques, includ-
ing horizontal flipping, vertical flipping, and random rotation.

The source of the data has been authorized not to involve
personal privacy.

2) DATA SCIENCE BOWL (DSB) 2018 DATASET
The DSB 2018 dataset is a public dataset from the Kaggle
competition [40], which includes 670 cell nucleus images.
We partitioned the original dataset into three parts: a training

FIGURE 8. Dataset examples: (a) Original Image 1, (b) Ground Truth 1,
(c) Original Image 2, (d) Ground Truth 2.

set of 428 images, a validation set of 107 images, and a test
set of 135 images.

B. IMPLEMENTATION DETAILS
The primary experimental setup is as follows: The operating
system used for the experiments is Windows 11. The GPU
utilized is an NVIDIA GeForce RTX 3080 Ti with 16GB of
RAM. The experiments were conducted using Python 3.8 and
the PyTorch 2.0.1 framework. During the experimentation
process, the batch size was set to 8. The input image size
was uniformly adjusted to 256 × 256 pixels. We employed
the Dice loss function as our segmentation loss. Training was
conducted using the Adam optimizer with a learning rate
of 0.0001 for all models. The training was carried out for
100 epochs.

All experiments in this study were conducted using the
same loss function and parameter settings for training.
During the training process, we did not utilize any pre-trained
weights for the mentioned models.

C. EVALUATION METRICS
In this study, precision (Pre), recall (Rec), intersection over
union (IoU), and Dice similarity coefficient (DSC) were
selected as evaluation metrics.

Precision indicates the proportion of samples predicted as
positive by the model that are indeed positive, relative to
all samples predicted as positive. This criterion assesses the
accuracy of predicting correct pixel samples, calculated using
the formula:

Pre =
TP

TP+ FP
(15)

Recall represents the proportion of correctly predicted
samples by the model relative to the total number of actual
correct pixel samples. The formula is as follows:

Rec =
TP

TP+ FN
(16)

IoU, represents the intersection of the segmentation predic-
tion result and the ground truth segmentation label divided
by their union. A higher IoU value closer to 1 indicates
better segmentation performance. The calculation formula is
as follows:

IoU =
TP

FP+ TP+ FN
(17)
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TABLE 1. Segmentation results of different models on upper airway dataset.

Dice similarity coefficient is a function used to measure
the similarity of two samples and can be used to calculate
the similarity between the predicted image and the labelled
image, taking a value between 0 and 1. The formula is shown
below:

Dice =
2TP

FP+ 2TP+ FN
(18)

True Positive (TP) represents correctly predicting upper
airway pixels. False Positive (FP) represents falsely predict-
ing background pixels as upper airway pixels. True Negative
(TN) represents correctly predicting background pixels. False
Negative (FN) represents falsely predicting upper airway
pixels as background pixels.

V. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we will report two types of experimental
results. We will compare our proposed model with previous
methods on two datasets. Additionally, we will conduct an
ablation study on the upper airway dataset to analyze the
effectiveness of each module in RELA_Net. We will evaluate
performance using Pre, Rec, IoU, and Dice coefficient.

A. COMPARISON WITH EXISTING METHODS
1) RESULT ON THE UPPER AIRWAY DATASET
In order to validate the overall segmentation performance of
RELA_Net on medical image segmentation tasks, we com-
pared RELA_Net with other UNet-based methods, includ-
ing U-Net, ResUnet [41], Atten-Unet, DeepLabv3+ [42],
DCSAU_Net [43], and other segmentation network models
on airway segmentation datasets under the perspective of
quantitative evaluation, and experimentally evaluated the var-
ious quantitative metrics for the prediction results of different
models were obtained. The results of the assessment are
shown in Table 1, where the best results are in bold. The
experimental results demonstrate that the RELA_Net model
proposed in this paper outperforms other segmentation net-
work models across most evaluation metrics, achieving the
highest scores in terms of Recall, Dice coefficient, and IoU
metrics. The average IoU and Dice scores achieved by our
method are 94.39% and 97.10%, respectively, showcasing
improved segmentation accuracy. When compared with clas-
sical and recent neural network benchmarks such as U-Net,

Atten-Unet, and ResUnet, our method exhibits enhancements
in IoU and Dice coefficients ranging from 0.38% to 1.73%
and 0.22% to 0.96%, respectively. These results indicate the
superior accuracy of our segmentation network model in
delineating the upper airway in CBCT images.

The visualizations of our segmentation model on this
dataset are shown in Figure 9, where areas of missegmen-
tation or omission are annotated with deep red boxes. The
results indicate that segmenting the overall airway in upper
airway images is relatively straightforward, while delineating
the edges surrounding the upper airway poses challenges.
Some models exhibit instances of under-segmentation and
over-segmentation at the edges of the airway. For instance,
U-Net and Unet++ show under-segmentation in certain
image segments, while ResUnet and DCSAU_Net demon-
strates erroneous segmentation in some segmentation out-
puts. In contrast, the model proposed in this paper achieves
more precise edge segmentation of the upper airway CBCT
images.

2) RESULT ON THE DSB 2018 DATASET
To evaluate the generalization ability of our proposed
RELA_Net, we validated the model on the DSB 2018 dataset.
The test results are presented in Table 2. In comparison with
other methods, our model achieved the highest scores in
Precision, IoU, and Dice, with scores of 91.21%, 84.96%, and
91.50% respectively, demonstrating the model’s capability to
enhance feature extraction and focus on relevant information,
thereby exhibiting superior generalization performance.

Figure 10 displays the segmentation visualization results
of several relevant networks on the DSB 2018 dataset.
RELA_Net can more accurately depict the contours and
shapes of cell nuclei. For instance, DCSAU_Net in the
first row exhibits over-segmentation. From the results
shown in the third row, our proposed model can better
approximate the ground truth labels, while ResUnet shows
under-segmentation and Deeplabv3+ demonstrates signifi-
cant over-segmentation. These experimental results indicate
that the features extracted by the U-shaped network inte-
grating receptive field expansion and large-kernel attention
modules contain better long-range semantic information
and local details. Compared to other mainstream models,
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FIGURE 9. Visualization of the segmentation results of the different methods on upper airway CBCT segmentation dataset.

TABLE 2. Segmentation results of different models on DSB2018 dataset.

RELA_Net can learn fine structures more effectively, leading
to the generation of more precise contours.

B. ABLATION STUDY
To explore the influence of different factors on model per-
formance, this study conducted ablation experiments with
various variables on the upper airway segmentation dataset.
The ablation experiments included: 1) Investigating the
impact of replacing different layers of the encoder with
dilated convolution blocks on network performance; 2) Com-
parative experiments with the addition of different attention;
3) Assessing the influence of added modules on network
performance.

1) IMPACT OF REPLACING DIFFERENT LAYERS OF THE
ENCODER WITH RFEM MODULES ON NETWORK
PERFORMANCE
Table 3 illustrates the results of ablation experiments
where the original convolution blocks were replaced with

RFEM dilated convolution blocks at various layers of the
encoder. According to the experimental findings, configur-
ing the last three layers of the U-Net encoder as dilated
convolution blocks facilitates deep feature extraction, offer-
ing a broader receptive field and contextual information.
Compared to adding RFEM modules to shallow layers or
all layers, this configuration demonstrates superior perfor-
mance, notably enhancing the optimization stability of the
model.

Noted: ‘‘
√
’’ indicates the adoption of the dilated convo-

lution block, ‘‘-’’ indicates otherwise. The optimal data is
highlighted in black.

2) COMPARATIVE EXPERIMENTS WITH THE ADDITION OF
DIFFERENT ATTENTION
To validate the effectiveness of the large kernel attention
mechanism we designed, we replaced different attention
modules before and after the large kernel feature
extraction and concatenation.
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FIGURE 10. Visualization of the segmentation results of the different methods on DSB2018 dataset.

TABLE 3. Replacement of dilated convolution blocks in different layers of the encoder.

TABLE 4. Comparison of experimental results with different attention added to LKA module.

Table 4 presents a comparative analysis of incorporating
different large kernel attentionmodules into skip connections.
In this table, ‘‘Baseline’’ denotes the U-Net model, while the
remaining five models integrate various large kernel attention
modules within the skip connections. Model1 represents the
incorporation of large kernel attention into the U-Net model,
with the addition of the SA mechanism following the extrac-
tion of features using different large convolutional kernels.
Structurally similar to the proposed LKA module, it does
not include the CA module. Model2, however, replaces the
SA attention in Model1 with CA attention. Model3 is our
proposed LKA module, which is a CA module added before
the feature concatenation of the Model1 module. In Model4,
the CA module preceding the feature concatenation in the
LKA module is replaced with the CoordAtt [44] module,
while in Model5, it’s substituted with the SE [45] module

before the feature concatenation in the LKA module. The
experimental results demonstrate that our designed LKA
module achieved IoU andDice scores of 94.27% and 97.02%,
respectively. This validates its effectiveness in reducing
information redundancy for skip connections. Compared to
other added attention mechanisms, our LKA module exhibits
superior performance in CBCT respiratory tract image
segmentation.

3) THE IMPACT OF ADDED MODULES ON SEGMENTATION
RESULTS
To further validate the effectiveness of the proposed modules,
we conducted ablation studies by gradually adding dilated
convolution blocks and large kernel attention modules to
the U-Net model as the baseline network, while keeping the
experimental setup and parameters consistent.
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TABLE 5. Comparison of experimental results before and after adding different modules.

Firstly, in the U-Net network encoder, we replaced ordi-
nary convolutional layers with the RFEM module, referred
to as Baseline + RFEM. Secondly, we integrated the LKA
module into the network, known as Baseline + LKA, to eval-
uate the performance of segmenting upper airway images.
Lastly, we fused these twomodules into the baseline network,
forming the proposed RELA_Net network. Experiments were
conducted on the upper airway dataset, and the experimental
data is shown in Table 5. It can be observed that by adding the
RFEM module and LKA module separately to the baseline
model, the IoU increased by 0.86% and 0.95%, respectively,
while the Dice score increased by 0.52% and 0.56%, respec-
tively. It validates that both modules can focus on the detailed
features of the images, enabling the model to fully extract
image features and improve segmentation performance.

After incorporating the RFEM module into the model, the
LKA module is added. It employs Large Kernel Attention to
extract features, enhancing or suppressing different channels
through a combination of SA and CA. This process aims to
improve the feature extraction and screening capabilities of
the image. Experimental results show that compared to the
baseline network, the addition of these two modules leads to
an improvement of 1.07% and 0.64% in Dice and IoU scores,
respectively, on the upper airway dataset.

The experimental results demonstrate that the integration
of the RFEM module not only enhances the extraction
of deep-level hierarchical information at the encoding
end but also, through the LKA skip connection structure,
assigns corres-ponding weights to features at different scales.
It enables more effective fusion of the features extracted
by the encoder, thereby contributing to achieving better
segmentation performance.

VI. CONCLUSION
This paper proposes a novel network model for 2D medical
image segmentation based on U-Net, named RELA_Net.
The model combines an encoder with ordinary convolutions
and dilated convolutions, along with a decoder composed of
convolutional upsampling layers. Additionally, to mitigate
potential feature loss and redundancy in skip connections,
the model incorporates a large-kernel attention mechanism.
Experimental results demonstrate that the RELA_Net model
outperforms several existing classical and state-of-the-art
models in evaluation metrics such as IoU and Dice similarity
index. These findings affirm the effectiveness and feasibility
of the proposed approach for segmenting upper airway CBCT
images.

Lastly, due to the complex and variable nature of airway
structures, there is still room for improvement in the net-
work’s ability to extract features from this area. In future
research, the primary tasks will be to continuously refine and
optimize the model’s architecture. Additionally, more effec-
tive image preprocessing algorithms could be introduced to
ensure that the model adequately learns image features, thus
comprehensively enhancing its segmentation capabilities for
upper airway image segmentation tasks. In subsequent work,
we will explore multi-class three-dimensional segmentation
methods to identify and accurately classify regions of the
upper airway, including the oropharynx and nasopharynx.
We aim to significantly advance the field of upper airway
image segmentation, thereby making important contributions
to clinical diagnosis and the development ofmedical imaging.
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