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ABSTRACT Internet of Things (IoT) devices introduce new vulnerabilities to the network. These devices
are relatively cheap, have simple design yet they can collect private user data, and be employed as botnets to
conduct large-scale attacks. In general, IoT devices have a limited set of functionalities. Thus, the network
administrator can formulate the expected traffic patterns of the devices and employ the network traffic to
detect malicious activities. Existing systems to detect anomaly in IoT traffic mainly use machine learning.
Thus, they require tuning the parameters of models and selecting/extracting a representative set of features
from the network traffic data. In this paper, we introduce a novel approach Locality Sensitive Anomaly
Detection and Identification (LSADI) to detect anomaly in IoT network traffic based on the locality-sensitive
hash of the traffic flow. The proposed approach does not require feature selection/extraction from the data
and does not have complex set of parameters that need to be tuned. Evaluation with three datasets containing
25 attacks shows that LSADI can detect and identify the type of anomalous flows with an accuracy above
90% on average and performs equally well compared to the state-of-the-art machine learning-based methods.

INDEX TERMS Internet of Things, networking, traffic fingerprinting.

I. INTRODUCTION

IoT devices introduce new vulnerabilities in a network as
there is a myriad of IoT devices with different communication
patterns. These devices have limited functionality and often
are unpatched even when software updates are available.
Limited resources also prevent IoT devices from having a
sophisticated security analysis on the device. Attackers can
launch various attacks against vulnerable IoT devices in the
form of brute force, and TCP SYN/UDP flooding [1], or use
these devices as botnets to launch DoS attacks by infecting
them with malware [2].

Several studies detect anomalous patterns in network
activity of the IoT devices using one-class machine learning
(ML) algorithms [1], [3] and autoencoders [2], [4]. Since
ML algorithms detect outliers in the network traffic, they
need to be trained on benign traffic of the IoT device and
then use the trained model to detect any malicious activity
as an outlier. Similarly, autoencoders can be trained on
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benign network traffic to learn IoT communication behavior
through neural networks [2]. In the compression process of
the autoencoder, the neural network learns the relation among
provided features. Even though autoencoders can reconstruct
normal traffic based on benign network traffic, they cannot
reconstruct abnormal traffic. While ML-based approaches
are promising, they require feature selection and extraction
from the data, which is resource-intensive and sometimes
undesirable due to privacy concerns [5].

In general, machine learning-based anomaly detection
systems have two phases, training and online detection. The
training phase consists of data pre-processing, ML model
selection, and training of the model. The data pre-processing
can further be split into data collection, feature selection, and
extraction of chosen features. The features for traffic analysis
are the properties of individual network traffic packets
such as packet size, arrival time, and direction, as well as
overall statistical values of traffic such as mean and standard
deviation of packet characteristics. After pre-processing the
data, the machine learning model is selected and trained on
the pre-labeled data. A crucial step in training the model
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is tuning the parameters to obtain optimum performance.
The model can be retrained if there is a need for an update
due to environmental changes, firmware updates, availability
of broader labeled data, etc. Finally, the trained model is
used for online detection of anomaly in network traffic.
The representativeness of the training data, selected features,
machine learning model, and its parameters are some of the
key factors impacting the performance of ML-based anomaly
detection systems.

Several studies focus on determining the relevant set of
features in the IoT network traffic for different machine
learning problems such as device identification [6], [7] and
anomaly detection [3], [8]. Identifying the representative set
of features enables the reduction of computing resources,
mitigates the curse of dimensionality, prevents the model
from overfitting the training data, and ignores noisy features.
Researchers have developed machine learning-based traffic
fingerprinting for IoT device identification [9], [10], device
event identification [11], [12], and anomaly detection and
identification [4], [7], [13], [14].

IoT devices differ from personal computing devices such
as laptops and tablets as IoTs are designed for performing a
particular task and often generate repetitive network traffic
patterns. This enables researchers to obtain the signature
of IoT device traffic for device identification [15], device
event identification [16], and anomaly detection in network
traffic [17]. In this paper, we present a novel approach called
Locality Sensitive Anomaly Detection and Identification
(LSADI) to detect/identify the anomaly in IoT network
traffic. LSADI generates the hash of benign network traffic
of an IoT device using a Locality-Sensitive Hash (LSH)
function. Note that the locality-sensitive hash differs from
cryptographic hashes. By design, LSH is less sensitive to
small changes in input in order to produce similar hash
values with similar inputs. This enables LSADI to detect
the anomaly in network traffic of the device by comparing
the hash of the traffic flow with the hash of the benign
traffic stored in the database. Furthermore, it enables the
identification of the type of malicious flow (TCP SYN, UDP
flooding, device infected with Mirai, etc.) by comparing the
hash of the traffic flow with the hash of known malicious
flows.

We evaluated LSADI on three different datasets. The first
dataset contains traffic from IoT devices under different vol-
umetric attacks such as ARP Spoofing, Ping of Death, Smurf,
Fraggle, and TCP Syn/SNMP/SSDP flooding. The second
and third dataset contains traffic from different IoT malware
such as Mirai, IRCBot, Hajime, Kenjior, etc. We compared
our approach with a one-class classifier-based approach
MUD-Engine, neural network-based approach Kitsune, and
with other one-class classifiers such as Local Outlier Factor,
One-Class SVM, Elliptic Envelope, and Isolation Forest.
Compared to previous studies [1], [2], [3], [4] that rely on
one-class classifiers and autoencoders, our approach does
not require feature extraction from the data and tuning the
parameters of the algorithm. Furthermore, it is relatively easy
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to update the model if the behavior of the benign device
changes due to firmware updates, and environmental/user
behavior changes.

In a preliminary study [17], we explored the use of
locality-sensitive hashing to detect volumetric attacks. This
study differs from [17] in several aspects. First, we propose
an approach to identify the attacks and design the system by
integrating the attack identification feature. Second, we incor-
porate multiple hashing algorithms to increase the overall
accuracy without significantly increasing the computational
overhead. Third, we systematically evaluate and show that
the best representative set of network traffic features change
from device to device. Fourth, we considerably extend the
evaluation of our new system with two more datasets. Finally,
we extended comparison of our system with other intrusion
detection systems including Kitsune [4], Gaussian Mixture
Models [18], pcStream [19] and Suricata [20].

In the rest of the paper; Section II provides our motivation
by discussing the importance of feature selection/parameter
tuning in network traffic fingerprinting; and provides back-
ground information on locality-sensitive hashes. Section III
introduces the design principles of the proposed LSADI
approach; and describes the datasets used for evaluation.
Section IV shows the experimental evaluation results.
Section V presents related studies on anomaly detection
in network traffic with one-class classifiers, autoencoders,
and anomalous traffic identification. Finally, Section VI
concludes the paper.

Il. BACKGROUND AND MOTIVATION

In this section, we discuss the importance of feature selection
and parameter tuning in traffic fingerprinting and provide
background information on locality-sensitive hashing.

A. FEATURE SELECTION AND PARAMETER TUNING
Feature selection is the process of selecting the best repre-
sentative features of the original data and remove the rest that
could be potentially irrelevant or redundant for the problem.
It mitigates the curse of dimensionality, prevents the model
from overfitting or underfitting the training data, and reduces
the required storage and computation resources. There exist
studies focusing on feature selection for various network
traffic fingerprinting problems. For instance, optimization-
based approaches such as Genetic Algorithm used to select
features for IoT device identification [6], and the Grey
Wolf Optimization algorithm for IoT botnet problems [7].
Statistical properties are also used to select features such as
Fisher’s score [21], variance and Hopkins statistics [3], and
selection based information gain resulting from the inclusion
of the feature [8].

To show the importance of feature selection we used the
IoT dataset from [1] that contains network traffic of nine IoT
devices exposed to fifteen different volumetric attacks. For
each device, we selected the best representative set of features
for detecting the attacks on devices. To do that we split
traffic of devices into flows of size one minute and collected
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FIGURE 1. Ranking of network traffic features of sample loT devices based on discriminative power.
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FIGURE 2. Accuracy (in terms of AUC) for local outlier factor with
different parameter set in detecting anomaly in loT traffic.

all numeric attributes (features) of each observed protocol
based on the Wireshark documentation. We normalized the
features and removed the ones with the same value in 99%
of the samples using the variance thresholding. We also
removed features that have a high correlation with 99%. Then
we ranked the features for each device using the univariate
feature selection and importance coefficient of features when
they are fitted to classifiers.

Figure 1 presents how the rank of the top ten features
with the highest discriminative power changes from device
to device for a sample of devices. We can observe that
top features are in general related to packet timing and
data size, such as inter-arrival timing of packets, average
session duration, average packet length, tcp header length,
etc. However, except for the inter-arrival timing of packets,
there does not exist a feature that performs well for all
devices. We observe that representative features differ even
if devices are from the same manufacturer (Wemo Motion
Sensor and Power Switch) or have a similar type (Netatmo
and Samsung cameras). For these reasons, to get the best out
of data, it is crucial to carefully select features. However,
analyzing features for each device and training separate
models for each device might be a time-consuming task
requiring huge manual labor.

VOLUME 12, 2024

To achieve high performance in network traffic finger-
printing it is critical to select the right ML model and
tune its parameters to the optimum. The preference for one
model over another depends on the nature of the problem,
the amount of available data, and the trade-off between
accuracy, speed, and resource requirement. For instance,
neural networks are preferred when there is abundant data,
whereas simple classifiers are preferred when the data is
limited. However, in both cases, the parameters of the models
need to be tuned to obtain the best performance. Figure 2
presents the accuracy of Local Outlier Factor based malicious
IoT traffic detection. Accuracy is in terms of area under curve
(AUC) and computed for different parameter combinations.
Even though both IoT devices belong to the same brand
WEMO the optimum parameters of the model differ. This
means that models need to be tuned to the optimum for
each device. Also, changes to the configuration, environment,
firmware update, user behavior, and even deployment region
may require retraining of the ML model. For instance, [22]
observed that the performance of the IoT device identification
system slightly changes when the system is trained on devices
bought in the US and tested on devices bought in the UK, even
when the devices belong to the same brand and manufacturer.
Similar behavior was observed in [16] regarding device
event identification. To this end, researchers have compared
different machine learning models for anomaly detection in
IoT network traffic [4], [7], [13] and identification of the type
of the IoT attack [13], [14].

B. LOCALITY-SENSITIVE HASHING
Cryptographic hash functions such as MD5 [23] or SHA
[24] generate completely different hashes if there exists a
small difference in input values. Locality-sensitive hashes are
different and produce similar hash values for similar inputs.
In this study, we use three different locality-sensitive hash
functions, namely nilsimsa [25], tIsh [26], and ssdeep [27],
for anomaly detection and identification in IoT traffic.
Nilsimsa: operates by using a window size of 5 characters
that slide along the input file, one character a time. (shown
in Figure 3(a)). Trigrams are generated when a new character
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output of the Nilsimsa is a 32-byte hash value. The similarity
score of two hashes ranges from —128 (i.e., completely
different) to 128 (i.e., completely similar) and is calculated by
subtracting 128 from the number of similar bits in two hashes.

TLSH: processes input by a sliding window of size of
5 bytes, moving one byte at a time. (as shown in Figure 3(b)).
In each step, TLSH selects 6 out of 10 possible trigrams
generated from the 5 bytes. For each trigram, a Pearson hash
is computed to populate a 128-bit array of bucket counts.
After iterating through the input, the quartile points of the
array are calculated to generate an output of 35 bytes. The
first 3 bytes of the output are referred to as the header and
constructed based on the quartile points, the object size, and
a checksum. The remaining 32 bytes are referred to as the
body and generated by comparing each array position to the
quartile points. The distance for the header is computed from
input size and quartile ratios, and the distance for the body
is calculated with the hamming distance between the digest
bodies. If the sum of two distances is low, then there is a high
similarity between two TLSH hashes.

SSDEEP: creates variable size blocks using a rolling hash
algorithm to set block boundaries. (as shown in Figure 3(c)).
It uses a sliding window of 7 bytes that moves one byte at a
time and identifies starting and ending points whenever the
rolling hash produces a specific output based on the current
bytes in the window. Generated blocks are hashed using a
cryptographic hash function FNV, and the 6 least significant
bits of each hash is encoded using the Base64 encoding.
SSDEEP returns the hash as a concatenation of all characters
generated through the blocks. The similarity score of two
SSDEEP digests ranges from O (i.e., completely different)
to 100 (i.e., same) and computed by counting the minimum

89470

[E30[=z10] 90 [ 70 [ -50 [ 30 [ -10 [ 10 [ 30 [ 50 | 70 | 90 730300

FIGURE 4. Nilsimsa hash similarity score for sample traffic flows.

number of operations required to transform one digest into
another using weighted operations such as insertion, deletion,
substitution of a single character, and transpositions of two
adjacent characters.

C. MOTIVATION

Our work was built on our previous studies on locality-
sensitive hashing [17], [28]. The similarity of locality-
sensitive hashes generated from two benign traffic flows
of a device is expected to be higher compared to the
similarity score of the benign and malicious traffic from
that device. Figure 4 shows the Nilsimsa similarity score
as a color-coded matrix for eight different traffic flows
containing both benign and malicious flows such as ARP
spoofing, SNMP flooding, and Fraggle (UDP flooding). The
similarity score is mostly higher between two benign traffic
and between malicious traffic of the same kind. This enables
LSADI to detect anomalies in IoT network traffic given
signatures of both benign and malicious traffic. Furthermore,
it allows differentiating signatures of anomalous flows from
each other enabling the identification of the malware if the
system already has the signature of malicious flow of the
same kind.

Ill. NETWORK TRAFFIC ANOMALY DETECTION AND
IDENTIFICATION

In this section, we present the LSADI (Locality Sensitive
Anomaly Detection and Identification) system to detect and
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identify the type of anomaly observed in network traffic and
provide details of the datasets used in our evaluation.

A. LOCALITY SENSITIVE ANOMALY DETECTION AND
IDENTIFICATION

Most of the IoT devices perform simple tasks, with
well-defined traffic patterns [29]. Thus, it is possible to
create a set of signatures from the benign traffic flow of
the device and use those signatures to detect anomalies in
the traffic. However, network traffic of the device can vary
based on factors such as firmware version, and configuration
parameters of the device. This should be reflected in the
signature mechanism and the signature of the different benign
traffic flows must differ a little. Since locality-sensitive hash
functions generate similar hash values for similar inputs, they
can be used to generate signatures of IoT traffic flows.

LSADI utilizes three locality-sensitive hash algorithms
namely Nilsimsa [25], TLSH [26], and SSDEEP [27] to
generate a set of hashes (i.e. signatures) from the benign
traffic flows of the IoT device and computes the threshold
value T for each hash function. Note that as traffic flow,
we employ raw packet data generated by the devices.
The T threshold value is computed by simply measuring
the average similarity of the hashes generated from the
benign traffic flows. Signatures from benign traffic and
the computed threshold value are stored in the database.
Similarly, signatures of previously known malicious flows are
stored in the database. Known malicious flows may include
the traffic generated from flooding attacks (e.g., SSDP,
SNMP, and UDP) or botnet attacks (e.g., Mirai, Bashlite).
Note that this operation is performed only once, thus, it does
not incur future overheads.

The overall functionality of LSADI is summarized in
Figure 5. It first generates the signatures of the device from
its benign traffic, computes the threshold value 7 from the
average similarity of the benign signatures, and stores them
in a database. The signatures of the known attacks are also
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stored in the database. When a monitored device generates
a new traffic flow, LSADI computes the locality-sensitive
hash (i.e. digest) of the flow, compares it with the benign
signatures of that device, and computes the average similarity
score. If the average similarity score is below the 7 threshold
value, the flow is labeled as malicious. This is repeated
for all three locality-sensitive hash functions (i.e., nilsimsa,
tlsh, and ssdeep) and a final label is determined by majority
voting. If the traffic is labeled as malicious, the digest of the
flow is compared to signatures of the already known attacks,
and the label of the attack is determined from the highest
average similarity value. The final identification result is
based on the majority voting of nilsimsa, tlsh, and ssdeep.
Detecting and identifying abnormal traffic patterns allows
network administrators to take necessary measures, such as
blocking specific network traffic, throttling the traffic rate,
or rejecting flows originating from particular sources (e.g.,
internal or external networks).

While nilsimsa performs best individually, we utilize
multiple hash functions as some attacks are missed by
nilsimsa but detected by other hashing approaches. For
instance, nilsimsa misses low rate TCP SYN reflection and
Ping of Death attacks whereas tlsh and ssdeep achieve
high detection accuracy. Similarly, for SMURF and Fraggle
attacks, nilsimsa and tlsh achieve high accuracy while ssdeep
performs poorly. We observed that employing all three
hashing methods with a majority voting increases accuracy
by 5% on average, and up to 27% for Fraggle. While nilsimsa
is the best-performing hash function, it has the highest
computation overhead. Hence, integrating tlsh and ssdeep
improves the overall accuracy while incurring considerably
less overhead than nilsimsa.

B. DATASETS

The summary of the datasets used in our evaluation is
provided in Table 1. The first dataset used in our evaluation
collects network traffic of real IoT malware running on
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TABLE 1. Summary of evaluated datasets.

Dataset Source Attacks Description
. Traffic from Raspberry Pi
Aposemat data | Parmisano et al. [30] 5 infected with IoT malware
Kitsune data Yisroel et al. [4] 5 N}ne IO.T (;lCVICCS infected
with Mirai
Volumetric Volumetric attacks launched
Hamza et al. [1] 15 to nine IoT devices as direct
attacks .
and reflection attacks

Raspberry Pi. IoT malware includes Mirai, IRCBot, Hajime,
Kenjior, and Okiru [30]. Hajime (Japanese for ‘‘beginning’’)
targets devices with open Telnet ports and default usernames
and passwords. It uses hardcoded addresses for its command
and control (C&C) server, and is built on a peer-to-peer
network. Hajime blocks access to ports 23, 7547, 5555, and
5358. Attacker can open a shell script to any infected machine
in the network at any time. Okiru is a variant of Mirai malware
that can utilize IoT devices as botnets. It is known as the
first malicious code to specifically target Argonaut RISC
Core (ARC) processors. While ARC processors are not as
common as Intel or ARM, they are employed in a wide area
of systems such as smart energy hubs, intelligent appliances,
wearable fitness, and medical devices. Kenjiro is a variant of
a Hakai malware designed similar to Izuku. The difference
between Kenjiro and Izuku is that Kenjiro changes its UDP
flood algorithm to add some randomization to the buffer.
Kenjiro mainly aims D-Link, Huawei, and Realtek routers.
IRCBot is built with the help of a Shellbot targeting IoT
devices and Linux servers. It also exploits authentication
bypass vulnerability in D-Link routers. IRCBot modifies the
DNS server setting in the configuration of the IoT devices
to redirect the traffic from the infected device to malicious
servers controlled by the attacker. In the rest of the paper,
we refer to this dataset as Aposemat data.

The second dataset contains network traffic from nine
IoT devices infected with real Mirai malware, along with
SSDP_Flood, SSL_Renegotiation, SYN_DoS, and Video
_Injection attacks [4]. Mirai malware is notoriously known
for utilizing IoT devices as botnets in DDoS attacks [31].
Devices infected with this malware continuously scan the
Internet for vulnerable devices and try to infect them using
factory default credentials. The dataset also contains traffic
from IP cameras exposed to attacks such as Video_Injection,
SSDP_Flood, SYN_DoS, and SSL_Renegotiation. In the
Video_Injection attack, an adversary injects a recorded video
clip into the live video stream of IP cameras. Similarly,
SSDP_Flood, SYN_DOS, and SSL_Renegotiation attacks
are conducted on a network of IP cameras. An attacker tries
to disable video streams by causing cameras to spam DVR
with UPnP advertisements as well as SSL renegotiations.
To conduct these attacks, authors use tools such as Saddam,
THC, Hping3, and Video Jack. In the rest of the paper,
we refer to this dataset as Kitsune data.

The final dataset contains 15 different volumetric attacks
launched towards 9 IoT devices [1]. Monitoring volumetric
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attacks is essential because they can be overlooked by access
control lists based on the Manufacturer Usage Description
(MUD) profile of the device. The dataset contains various
attacks, including ARP Spoofing, TCP SYN/SNMP/SSDP
Flooding, Fraggle (UDP Flooding), Smurf, and Ping of
Death. Both attackers and targets can be located on the
Internet (denoted as W) or the local network (denoted as L).

Additionally, attacks can be categorized as direct or
reflection. Direct attacks are the ones directly launched to IoT
devices (i.e., L-D or W-D). For instance, “ARP Spoofing (L-
D)’ is an attack launched to the IoT device (i.e., D) from the
local network (i.e., L). Reflection attacks (i.e., L-D-L, W-D-
W, and L-D-W) are the ones that reflect off of the IoT device
and target a destination. For instance, “SNMP (W-D-W)” is
an attack coming from the Internet (i.e., W) to the IoT device
(i.e., D), then the device reflects it and targets a system on the
Internet (i.e., W). In the reflection attacks, the adversary sends
fake requests by sticking the victim’s IP address in the source
IP address field. After the reflector IoT device, in this case,
receives the packet the device responds to the packet using
the source IP address of the packet. The victim system ends
up receiving a large volume of response packets it never had
requested. While an IoT device is a victim in the direct attacks
it is utilized as an intermediate tool (reflector) in reflection
attacks to target the servers. In the rest of the paper, we refer
to this dataset as Volumetric attacks.

IV. EVALUATION

In the evaluation of LSADI, we divided traffic data into flows
of 1 minute and used 100 random benign flows to generate the
signatures of each device. These signatures are then used to
detect anomalies in IoT network traffic. To identify the type
of anomalous traffic flow, we used 100 random signatures for
each kind of attack. Anomaly detection in network traffic is
evaluated in terms of true-positive rate (i.e., TPR = TP /(TP+
FN)) and false-positive rate (i.e., FPR = FP/(FP + TN)).
Identification of the type of anomalous traffic is evaluated in
terms of precision (i.e., TP/(TP+ FP)), recall (i.e., TP/(TP+
FN)), and fl-score (i.e., 2/(1/precision + 1/recall)), where
TP, TN, FP, and FN stand for true positive, true negative, false
positive and false negative, respectively.

The overall performance of the LSADI for each dataset is
summarized in Table 2. We present results for one-minute
traffic of the device with an average false-positive rate of
5%. We selected these values for direct comparison with
the [1]. Overall we observe that LSADI can achieve an
accuracy above 90% in both detecting and identifying the
type of malicious traffic flows, except for the Aposemat data.
As detailed below, we observed that in the Aposemat data,
LSADI performs poorly in detecting command & control
(C&C) communication of some malware.

A. EVALUATION ON ANOMALY DETECTION AND
IDENTIFICATION

The overall performance of the LSADI for each malware
in the Aposemat dataset is summarized in Table 3. LSADI

VOLUME 12, 2024



B. Charyyev, M. H. Gunes: Identifying Anomaly in loT Traffic Flow

IEEE Access

TABLE 2. Average performance of LSADI on all three datasets.

Detection Identification
Dataset
TPR | FPR | Precision | Recall | Fl-score
Aposemat data 88% 5% 99% 99% 99%
Kitsune data 96% 5% 94% 98% 95%
Volumetric attacks | 98% 5% 99% 99% 99%

TABLE 3. Results for individual attacks on Aposemat data.

Attack Detection Ic?e.ntification
TPR Precision | Recall
Mirai 70% 99% 99%
IRCBot 90% 100% 100%
Hajime 98% 99% 98%
Kenjiro 90% 100% 100%
Okiru 91% 100% 100%

achieves high detection and identification accuracy except
for the cases noted with italic font. We observed that
LSADI performs poorly in detecting traffic flow generated
by C&C communications. LSADI detects malicious flows
with a true-positive rate of 100% when Mirai makes a port
scan or conducts a denial of service attack, however, for
C&C it achieves 10% of true positive value. In terms of
attack identification, some of the Hajime traffic is predicted
as belonging to Mirai and some of the Mirai traffic is
predicted as IRCBot and Kenjiro. The reason for this
misclassification could be due to similarities in the traffic
patterns and behaviors of Hajime, Mirai, IRCBot, and Kenjiro
malware, leading to overlapping features that confuse the
detection algorithm. Overall, on average, LSADI achieves
both precision and recall above 90% for all attacks in the
Aposemat dataset.

For the second dataset (Kitsune data), we observed that
our system detects and identifies attacks with an accuracy
of around 94-95% for all cases. The only lower results are
observed in the detection of Video_Injection attacks and
identification of SSL_Renegotiation and SYN_DoS attacks.
In volumetric attacks, we observed that LSADI can detect and
identify most of the attacks with an average accuracy of 98-
99%. Howeyver, in some cases when devices generate a high
volume of traffic in the benign state and the ratio of malicious
traffic is lower compared to benign flow, there is a little drop
in the performance of LSADI.

B. IMPACT OF THE ATTACK RATE

In general, devices are impacted differently by the attack rate.
Devices generating high volumes of traffic are less affected
by low-rate attacks, whereas simpler devices like smart plugs
are more susceptible and may become even non-functional as
the attack rate increases. Consequently, the performance of
LSADI may vary depending on the attack rate and the traffic
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FIGURE 6. Detection and identification accuracy of LSADI for different
attack rates.

rate generated by the device. For instance, in Volumetric
attacks for devices similar to Chromecast Ultra that have
a high traffic rate, it becomes difficult to detect low-rate
attacks (e.g., ARP Spoofing (L-D)) because there is a slight
difference in the signatures of the benign and malicious flows
as the volume of malicious traffic is low.

We evaluated LSADI with different attack rates, low:
1 packet-per-second (pps), medium: 10 pps, and high:
100 pps. The performance of LSADI in detecting attacks
with different traffic rates is shown with a bar graph in the
primary y-axis (i.e., TPR score) of Figure 6. The performance
of LSADI in identifying the type of attack is shown as a
line graph in the secondary y-axis (i.e., f1-score). For high-
rate attacks (100 pps), LSADI mostly achieves a TPR score
of around 99%, the lowest TPR (90%) observed in ARP
Spoofing (L-D) attacks. For medium-rate (10 pps) attacks
LSADI mostly achieves a TPR score of around 95%, the
lowest TPR (80%) again observed in ARP Spoofing (L-D)
attacks, and similar observation is also observed in low-rate
attacks (1 pps) as well. Detailed analyses showed that LSADI
performance drops for low-rate attacks on devices with
high traffic rates such as the WeMo Motion Sensor, WeMo
Power Switch, and Chromecast Ultra. Note that, for other
devices, LSADI still can achieve a high detection accuracy of
around 90% even in low-rate attacks. In terms of attack type
identification, we observed that LSADI can identify high and
medium-rate attacks with accuracy nearly equal to 100%. For
low-rate attacks, the average identification accuracy is 95%.

C. IMPACT OF THE FPR AND WINDOW-SIZE

Tolerance to the false-positive rate (FPR) can vary across
different networks. LSADI controls the FPR through the
threshold value T (i.e., the average similarity of the benign
signatures for the device). The similarity score of the flows
lower than the 7' value is considered as an anomalous flow.
Thus, decreasing the 7 will increase the FPR by being
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Detection
Time(s)
FPR(%) 10 20 30 40 50 60
1 56 64 83 87 87 88
2 61 69 87 88 89 89
3 68 73 90 91 92 93
4 75 76 92 95 95 96
5 78 78 94 95 96 98
6 80 80 94 96 97 98
7 81 81 95 97 97 98
8 82 83 95 97 97 98
9 84 85 95 97 97 98
10 87 87 96 97 98 98
Identification
Time (s) 10 | 20 30 40 50 60
Precision 89 96
Recall 98

FIGURE 7. Average detection (TPR(%)) and identification accuracy of
LSADI for different time-window and FPR(%) values.
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FIGURE 8. Comparison of LSADI with one-class classifiers EE, LOF, IF,
OCSVM on the Aposemat dataset.

less restrictive on the similarity of the benign signatures.
However, it will also decrease the TPR by labeling malicious
flows as benign. Another important parameter that also
impacts the TPR is the time window size used to detect and
identify anomalies. Here window size represents the delta
time during which traffic data is captured to detect malicious
activities.

Figure 7 presents the average TPR for attack detection and
average precision and recall for attack identification under
different window size and FPR values. We can observe that,
it is possible to reduce the window size to 30 seconds and
still achieve an acceptable detection accuracy. In terms of
attack identification, we can achieve both average precision
and recall of around 90% with 10 seconds of network traffic.
Overall, both attack detection and identification accuracy
increase with increasing the window size. While a high FPR
value also increases the detection accuracy (i.e., TPR) it
may not be acceptable for some networks. Thus, to decrease
the FPR value while achieving high detection accuracy,
network administrators can increase the window size and
decrease the threshold value of 7. Note that increasing the
window size has a negligible impact on the time required to
generate the hash of the traffic flow, as generating the digest
is a lightweight operation (discussed in overhead analysis
section IV-E).
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FIGURE 9. Comparison with Kitsune, EE, LOF, IF, OCSVM, and other
anomaly detection systems on the Kitsune dataset.

D. COMPARISON WITH PREVIOUS STUDIES

In this section, we compare LSADI with one-class classifiers
as previous studies [2], [3], [7] use these classifiers to detect
anomalies in IoT traffic. We also compare LSADI with other
intrusion detection systems Kitsune [4] and MUD-Engine [1].

1) COMPARISON WITH ONE-CLASS CLASSIFIERS

One-class classifiers such as one-class SVM (OCSVM),
Local Outlier Factor (LOF), Isolation Forest (IF), and Elliptic
Envelope (EE) are widely utilized to detect anomalies in
network traffic [2], [3], [7]. These classifiers are trained
on benign flows of the device and suspicious flows are
recognized as an outlier. We used the implementation
of the one-class classifier from the scikit learn package
(https://scikit-learn.orqg) in Python. We tuned
the parameters by trying all possible combinations of the
parameters obtained from the scikit learn documentation.
As input features to the machine learning classifiers, we used
the number of packets in a flow (i.e., one minute traffic),
sum, mean, and variance of the packet length, and inter-arrival
time of packets — features suggested in [8] and [21] to detect
anomaly in IoT network traffic.

Figure 8 shows the comparison of LSADI with one-class
classifiers in detecting the malicious flows in the Aposemat
data. LSADI achieves equal or better true positive value in
detecting three attacks out of five. While LSADI achieves
better performance on Mirai and IRCBot attacks, one-class
classifiers outperform on Kenjiro and Okiru attacks. Among
the machine learning models, Isolation Forest (IF) performs
the worst, achieving a TPR value nearly equal to zero in four
of the attacks.

2) COMPARISON WITH AUTOENCODER BASED KITSUNE
Autoencoders are also employed to detect anomalies in IoT
network traffic [2], [4], [32]. Autoencoder is an artificial
neural network that can be used for purposes such as
dimensionality reduction, information retrieval, and image
processing.

To detect anomalies in network traffic, autoencoders
are first trained on the benign network traffic and then
reconstruction error is used to detect anomalies in live
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FIGURE 10. Comparison with MUD-Engine and one-class classifiers (OCSVM, EE, LOF, IF) on volumetric attacks.

flows. If a new instance of data is benign, autoencoders
will give a low reconstruction error. On the other end,
if traffic data belongs to malicious activity, it will have a high
reconstruction error.

Figure 9 shows the comparison of the LSADI with the
autoencoder based Kitsune intrusion detection system [4],
one-class classifiers, and other intrusion/anomaly detection
methods that include incremental Gaussian Mixture Models
(IncGMM) [18], pcStream [19] and Suricata [20]. Incremen-
tal GMM is a statistical method based on the expectation-
maximization algorithm, pcStream is a stream clustering
algorithm that uses Mahalanobis distance of new instances to
known clusters to determine whether the instance is an outlier
or not. Suricata is an open-source signature-based network
intrusion detection system similar to Snort and configured to
use 13,465 rules from the Emerging Threats repository [33].
Since [4] provides results in terms of area under the curve
(where AUC = (1/2){TP/(TP + FN) + TN /(TN + FP)}),
we use AUC for performance comparison. We observe
that LSADI outperforms Kitsune on SSL_Renegotiation,
SYN_DoS, and Video_Injection attacks. Compared to other
methods, LSADI performs better at least three out of five
attacks. Overall, LSADI achieves an AUC above 95% on all
attacks except the Video_Injection for which it achieves 92%.

3) COMPARISON WITH MUD-ENGINE

MUD-Engine utilizes a one-class SVM with the Markov
Chain model to detect volumetric attacks on IoT devices [1].
Figure 10 presents a comparison of the LSADI with the
MUD-Engine and one-class classifiers on Volumetric attacks
with low, medium, and high rate attacks. Overall, LSADI
performs better or equal on ten out of fifteen attacks. MUD-
Engine has higher accuracy on five attacks, namely, ARP
Spoofing (L-D), Ping of Death (L-D), Fraggle (L-D), TCP
SYN (L-D), and TCP SYN Ref (L-D-L). The reason might be
due to the small size of ARP, ICMP, TCP, and UDP packets
used in these attacks compared to larger packets used for
attacks such as SNMP and SSDP. For example, in low-rate
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ARP Spoofing attacks, the size of the benign traffic increases
by 10%, whereas, for SNMP flooding attacks, it increases by
85% to 125%. Since the ratio of malicious traffic is smaller in
low-rate attacks, the performance of the LSADI deteriorates.
MUD-Engine utilizes traffic features extracted from packets
through a learning process. Thus, it can detect unique
characteristics of the low rate attacks. Similarly, with TCP
SYN and TCP SYN Ref attacks, LSADI achieves an accuracy
of almost 100% in high-rate attacks and 95% in medium-
rate attacks, but its performance degrades with low-rate
attacks. These results indicate that LSADI performs better
with high-volume attacks as it relies on locality-sensitive
hashing and the impact of an attack to benign traffic is
smaller with low-volume attacks. Overall, we observe that
both LSADI and MUD-Engine generally outperform other
machine learning classifiers. Isolation Forest (IF), Elliptic
Envelope (EE), and one-class SVM (OCSVM) achieve higher
accuracy than MUD-Engine in SNMP attacks while LSADI
performs similarly to IF, EE, and OCSVM.

E. PROCESSING OVERHEAD
We analyzed the processing overhead (shown on Table 4)
of the LSADI in terms of the model size (i.e., size of
the signature database), feature size (i.e., size of the hash
generated from traffic flow), the response time (i. e., the
time required to identify the flow). We run experiments on
an Intel Core i5-7200U @2.50 GHz CPU with 15.2 GB of
available memory and compare results with MUD-Engine
on Volumetric attacks. The signature database contains
100 signatures for each device and attack type. As there exist
nine devices and fifteen different attack types we generate a
total of 900 (i. e., 9 x 100) signatures for attack detection and
1,500 @i. e., 15 x 100) signatures for attack identification.
The size of one Nilsimsa signature is 0.10 KB, TLSH
signature is 0.11 KB, and SSDEEP signature is 0.14 KB. Note
that the size of a signature is fixed in each of the hashing
algorithms. Thus, for Nilsimsa the size of the signature
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TABLE 4. Processing cost.

Feature Size Peteclion Idénlificalion

Model Size  Response t | Model Size ~ Response t
Nilsimsa 0.10 KB 0.09 MB 4.4 ms 0.15 MB 62.30 ms
TLSH 0.11 KB 0.10 MB 0.1 ms 0.17 MB 1.17 ms
SSDEEP 0.14 KB 0.13 MB 0.2 ms 0.21 MB 3.62 ms
LSADI 0.35 KB 0.32 MB 4.4 ms 0.53 MB 62.30 ms
Kitsune 4.83 KB 0.33 MB 7.3 ms - -
MUD Engine 3.56 KB 149 MB 13.0 ms

database for attack detection is 0.09 MB and for attack
identification is 0.15 MB. Similarly, for TLSH, these values
will be 0.10 MB and 0.17 MB. For SSDEEP, the size of
the signature database for attack detection is 0.13 MB and
attack identification is 0.21 MB. Since LSADI utilizes all
three hashing algorithms, it will have a total size of 0.32 MB
for the attack detection database and 0.53 MB for the attack
identification database. These values are lower than the
Kitsune and the MUD-Engine.

Nilsimsa processes input at a rate of 3.3 x 10° bytes/second.
The processing speed for TLSH is 1.1 x 108 bytes/second and
SSDEEP is 1.25 x 108 bytes/second. The processing speed
of all locality-sensitive hashes is considerably higher than the
IoT traffic rate. For instance, from the dataset, we observe that
Chromecast Ultra with a high rate of SSDP (W-D-W) attack
has the highest traffic rate of 4.5 x 10* bytes/second. The
high processing speed of all locality-sensitive hashes enables
LSADI to generate the hash of traffic flow with negligible
overhead.

To detect malicious flows, LSADI compares the hash of
traffic with the benign signature of the device. The time
required for this operation is 4.4 ms for Nilsimsa, 0.1 ms
for TLSH, and 0.2 ms for SSDEEP. Since the comparison
of hashes can be performed in parallel, LSADI response
time depends on the slowest hash function, i.e., Nilsimsa.
Thus, the response time of LSADI in detecting the malicious
flow is 4.4 ms whereas the response time of Kitsune and
MUD-Engine are 7.3 ms and 13.0 ms respectively. Similarly,
to identify the malicious traffic, LSADI compares the hash
of the traffic flow with signatures of the known attacks in
a database. The time required to compare signatures of the
known attacks and select the attack type with the highest
similarity is 62.30 ms for Nilsimsa, 1.17 ms for TLSH, and
3.62 ms for SSDEEP. Since Nilsimsa is the slowest hash
function, the time requirement for LSADI to identify the
malicious flow is 62.30 ms.

V. RELATED WORK

In this section, we present prior works on machine
learning-based network traffic fingerprinting for anomaly
detection. We also provide previous studies that use
locality-sensitive hashing for various problems. Finally,
we present how our study differs from previous studies.

A. ONE-CLASS CLASSIFIER BASED ANOMALY DETECTION
One-class classifiers are widely utilized to detect anomaly
in network traffic. Sven et al. employ the Local Outlier
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Factor, One-Class SVM, and Isolation Forest to detect
anomalous traffic and IoT botnets [3]. Amaal et al. use the
Grey Wolf Optimization swarm intelligence algorithm to
optimize the hyperparameters of the One-Class SVM and
find features that best describe the IoT anomalous traffic [7].
They use One-Class SVM, Isolation Forest, and Local
Outlier Factor classifiers for anomaly detection. Hamza et al.
analyze the compliance of IoT devices with the MUD
behavioral profile and detect volumetric attacks such as DoS,
direct and reflective TCP/UDP/ICMP Flooding, and ARP
spoofing attacks using machine learning algorithms [1]. The
MUD-engine system first learns expected MUD compliant
behavior for each device with One-Class SVM and Markov
Chain, then measures network traffic of devices to detect
suspicious behavior.

B. AUTOENCODER BASED ANOMALY DETECTION

N-BaloT uses deep autoencoders to construct the signature
of the devices from the device’s benign network traffic
and detect anomalous traffic [2]. The authors evaluate the
N-BaloT on nine devices infected with Mirai and Bashlite and
compare results with machine learning algorithms such as
Local Outlier Factor, One-Class SVM, and Isolation Forest.
Similarly, Kitsune uses autoencoders to detect compromised
devices [4]. Kitsune is evaluated with OS scan, man in the
middle, Mirai, and denial of service attacks. Additionally,
orthogonal matching pursuit uses a greedy sparse recovery
algorithm for the autoencoding the network traffic and detect
anomaly in it [34]. Deris et al. evaluate the Snort open-source
network intrusion detection system to detect TCP FIN
flood attacks on IoT devices [35]. However, evaluation
by Hamza et al. [1] showed that Snort misses most of the
volumetric attacks on IoT devices. DIOT utilizes a federated
learning approach for anomaly and intrusion detection [36].

C. ATTACK IDENTIFICATION

Anthi et al. [13] employs a J48 decision tree with 121 traffic
features to classify the type of network attack. They evaluate
the proposed system on a testbed consisting of 8 devices
with 12 attacks. Shaikh et al. [14] use the Center for
Applied Internet Data Analysis (CAIDA) dataset to classify
malicious IoT traffic. They collect IP addresses of about
3 million IoT devices from Censys and Shodan databases
and then compare them to the source IP addresses collected
by the network telescope at CAIDA. Authors train Gradient
Boosting classifier with nine network traffic features and
observe that the classifier can achieve precision and recall
of 99.88% in classifying the type of malicious IoT traffic
such as port scanning, network scanning, stealth scanning,
backscatter or misconfigured.

D. LOCALITY-SENSITIVE HASHING

Previous studies showed the effectiveness of locality-sensitive
hashing for spam detection [25], [37], malware clas-
sification [38], genome assembling [39], video content
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analysis [40], [41], electronic identification [42], and for
biometric information identification [43]. In a preliminary
study [15], we showed that locality-sensitive hashing can also
be employed to identify IoT devices.

Compared to previous studies on anomaly detection in
IoT traffic discussed in previous subsections V-A and V-B
of related works, our study proposes a new approach to
detect anomaly in [oT traffic using locality-sensitive hashing,
rather than relying on machine learning algorithms such
as one-class classifiers and autoencoders. Our approach
also enables identifying the type (ARP Spoofing, Fraggle,
etc.) of anomaly observed in the network traffic. Compared
to previous studies on attack identification (discussed in
subsection V-C) our approach does not require feature
selection and extraction from network traffic data as it
relies on locality-sensitive hash of the data. Compared to
previous studies on locality-sensitive hashing provided in
subsection V-D, our article focuses on completely different
domains, which are anomaly detection and identification
(classification of anomaly) in the network traffic of IoT
devices.

VI. CONCLUSION

In this paper, we present Locality Sensitive Anomaly Detec-
tion and Identification (LSADI), a method to detect and
identify anomaly in IoT network traffic flows. The proposed
approach employs a locality-sensitive hash of the traffic flow.
Thus, it does not require feature selection and extraction
from the data, a process needing considerable computations
and fine-tuning by an expert. The evaluation was performed
on three different datasets that contain 25 attacks ranging
from volumetric attacks to different IoT malware. LSADI
achieved an average detection accuracy of 98% on volumetric
attacks and an accuracy above 90% on most of the IoT
malware, using only 1 minute of IoT traffic. In terms of attack
identification, LSADI, on average, achieves both precision
and recall above 94%. Overall, LSADI has negligible
processing overhead and performs the same or better than
the state-of-the-art machine learning approaches (including
one class classifier-based MUD-Engine and neural network-
based Kitsune) in detecting malicious traffic.
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