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ABSTRACT Community detection is crucial for analyzing the structure of social networks and extracting
hidden information from them. The goal is to find groups of nodes (communities) with high intra-group
and low inter-group communications. This problem is NP-hard, and most existing algorithms are global
with high computational complexity, especially for large networks. Recently, local methods with acceptable
computational complexity have been developed, but many have low accuracy and are non-deterministic.
This paper introduces a new local algorithm, LCD-SN, which identifies communities based on first- and
second-degree neighbor nodes. Unlike other local algorithms, LCD-SN is highly accurate, definitive, and
not dependent on initial seed nodes. Additionally, a new index is proposed to determine the importance
of network nodes using their local characteristics (first- and second-degree neighbors). Using this index,
LCD-SN first identifies important nodes, forms initial communities with these nodes and their first-degree
neighbors, and then obtains final communities through post-processing. Experiments show that LCD-SN is

effective in identifying communities in social networks.

INDEX TERMS Community structure detection, modularity, nodes ranking, social network analysis.

I. INTRODUCTION
Many existing systems can be modeled using graphs. In math-

ematics, a graph is shown as G = (V,E), where V =
{vi,va,...,v,} is a set of |V| = n vertices (nodes) and
E C V x Visasetof |[E| = m edges. For example, in a

social network graph, nodes show people, and edges show
connections between them. All nodes connected to the vertex
v; are called its neighborhood set and are denoted by I'(v;) [1].

The identification of communities is one of the main prob-
lems in the field of social network analysis. Identifying com-
munities makes it possible to extract hidden information in
the network and obtain information about people or entities.
The community structure detection problem aims to identify
groups of nodes so that there are relatively more connections
within each group and relatively fewer connections between
the groups [2], [3]. So far, many criteria have been proposed
to evaluate the structure of the community. One of the most
well-known evaluation criteria is the modularity criterion
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presented by Girvan Newman [4]. The community structure
detection problem can be defined as a modularity optimiza-
tion problem. It has been proven that modularity optimization
is an NP-hard problem [2].

The existing algorithms for discovering the community
structure are divided into global and local categories. Global
algorithms are more accurate, but due to the need to access
complete network information, their time complexity is high
and cannot be used in large networks. In contrast, local
algorithms have less time complexity due to limited informa-
tion [5], [6]. However, local algorithms have disadvantages,
such as their dependence on predefined parameters, instabil-
ity, and low quality.

In recent years, the use of clustering algorithms to detect
communities in social networks has attracted researchers’
attention. Due to the lack of access to complete informa-
tion on social networks, local methods are used to increase
efficiency and speed in large-scale networks. In most local
methods, communities are determined by selecting important
nodes as the core of communities. Most existing works have
disadvantages, such as low accuracy due to inappropriate
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core selection, lack of scalability, and uncertainty in the
results. In the proposed algorithm, a new index is proposed
to calculate the importance of network nodes based on the
structural characteristics of the network. The proposed index
reflects the real position of the nodes by considering the first-
and second-degree neighbors. After determining the impor-
tance of nodes, important nodes are considered as the core
of communities. Initial communities are formed around the
core nodes based on the structural characteristics of the net-
work. Finally, after post-processing, the final communities
are obtained. In addition to having the advantages of existing
local methods, the proposed algorithm solves the issues of
local methods, including the dependence of communities
on core nodes, uncertainty, and low quality. The results of
experiments show that the proposed algorithm performs bet-
ter than the compared algorithms in most cases. The main
contribution of this article is as follows:

o A new ranking index called IMP is presented. The IMP
index is a local index that determines the importance of
nodes based on the first- and second-degree neighbor-
hood.

o A new local algorithm called LCD-SN is presented,
which can identify communities with high accuracy
using the IMP index.

o The generalized Leicht-Holme-Newman similarity
index assigns overlapping nodes to a single community.

o The results of experiments in synthetic and real-world
benchmark networks show that the introduced algorithm
performs better than other algorithms.

The remainder of this article is organized as follows:
Section II reviews some related works. The introduced
method is provided in Section III. Section I'V includes experi-
mental results and compares the presented method with some
known methods. Finally, Section V consists of the conclusion
and summary of the article.

Il. RELATED WORKS

In a general classification, existing community structure
detection algorithms are divided into global and local cat-
egories. Global algorithms are more accurate, but due to
the need to access complete network information, their time
complexity is high and cannot be used in large networks.
In contrast, local algorithms have less time complexity due
to the use of limited information. However, local algorithms
have disadvantages, such as their dependence on predefined
parameters, instability, and low quality. The following section
has reviewed some of the most well-known global and local
algorithms.

A. GLOBAL COMMUNITY STRUCTURE DETECTION
ALGORITHMS

The methods based on graph partitioning are among the first
global methods for detecting the structure of communities.
These methods divide the graph of a social network into k pre-
defined parts (communities) so that the sum of edges between
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communities is minimized. Graph partitioning methods are
inappropriate for discovering communities in large networks
due to high computational complexity. The Kernighan-Lin
method is one of the most famous algorithms for this cate-
gory [7].

Hierarchical clustering methods are divided into agglomer-
ative and divisive categories, among other global community
detection methods. Divisive hierarchical clustering methods
cluster the graph by identifying and removing inter-cluster
edges. The algorithm of Girvan-Newman [4], [8] is one of the
most popular divisive hierarchical algorithms. This method
identifies and removes inter-cluster edges using the edge
betweenness centrality. An edge with the highest amount of
betweenness is a bridge between communities. This algo-
rithm’s time complexity is O(n3). In [9], communities have
been identified using the agglomerative hierarchical method
based on modularity criterion and cosine similarity index.
These methods are only applicable in small networks due to
high time complexity.

In [10], a modularity-based heuristic method called Lou-
vain has been introduced. In this method, each node is ini-
tially considered an independent community. Then, during
an iterative process, those nodes whose merging increases
the modularity criterion are merged. The merging of nodes
continues until no improvement in modularity is achieved.
After forming initial communities, a new graph is created
in which each node corresponds to a community of initial
communities, and the edge weight between two nodes is equal
to the number/sum of the weights of the edges between the
two communities corresponding to them. The above steps
(merging and forming a new graph) are repeated on the new
graph. Merging and creating a new graph continues until no
improvement in modularity is achieved.

In [11] and [12], a genetic algorithm named GACD and
GATB has been proposed for community discovery. These
algorithms are according to modularity optimization. In these
algorithms, locus-based adjacency coding is used to represent
a graph partition. Locus-based adjacency coding for commu-
nity detection has the following benefits: (1) its search space
is smaller than string coding, (2) the community number is
automatically specified in the decoding process, and (3) the
decoding process is very efficient. Crossover and mutation
operators do not lead to invalid solutions in this coding.

In [13], three algorithms named MEM-net, OMA-net, and
GAOMA-net have been introduced to detect community
structures in complex networks. These algorithms do not
require previous information, such as the community number,
and identify communities dynamically. In the GAOMA-net
algorithm, which is the main algorithm introduced in this
paper, the Object Migration Automata (OMA) and genetic
algorithm are combined as a single framework, and the algo-
rithm of MEM-net is utilized as a heuristic to generate a part
of the initial population. This combination accelerates the
algorithm convergence and prevents it from falling into the
local optimum.
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In [14], a chaotic memetic algorithm (CMA) has been
introduced to identify communities. In the CMA algorithm,
a combination of dedicated local search and genetic algo-
rithm (global search) has been utilized to search the solution
space. In addition, this article uses chaotic numbers instead of
random numbers. Chaotic numbers preserve the diversity of
the population and avoid the algorithm falling into the local
optimum.

In [15], a chaotic cellular learning automata-based evo-
lutionary model (CCLA-EM) was presented to discover
communities in complex networks. CCLA-EM algorithm
combines an evolutionary algorithm with cellular learning
automata. In this algorithm, the individuals of the population
are distributed over the cells of a cellular learning automata.
Each individual cooperates and communicates with the indi-
viduals of the neighboring cells to achieve the global opti-
mum. Individual distribution over cells in cellular learning
automata causes the parallel implementation of the presented
model. In addition, this method uses chaotic numbers instead
of random numbers. Using chaotic numbers instead of ran-
dom numbers causes a complete search in the search space
and prohibits the algorithm from getting trapped in the local
optimum.

B. LOCAL COMMUNITY STRUCTURE DETECTION
ALGORITHMS

Label Propagation Algorithm (LPA) [16] is one of the most
famous local community discovery algorithms proposed by
Raghavan. In this algorithm, first, each node is given a unique
label. Then, each node label is updated by majority voting on
the labels of its neighbors. The node labels update process
continues until no change occurs in the node labels. The
most significant advantage of LPA is its linear computational
complexity, and one of its disadvantages is its uncertainty.
In [17], the problem of indeterminacy and randomness of the
LPA has been overcome using the propagation of the label
from the least important node.

In [18], using label propagation and MinHash, an
algorithm called WLPA has been presented for community
detection in unsigned and signed networks. In the WLPA
algorithm, communication intensity is also considered in
addition to communication. In this method, the similarity of
all adjacent nodes is determined using MinHash. Therefore,
each edge is given a weight equal to the similarity of its
end nodes. The weight given to each edge indicates the
intensity of the connection between its end nodes. Finally,
the community structure is specified through the propa-
gation of weighted labels. The results of the experiments
show that using the WLPA algorithm is effective and effi-
cient for discovering communities in signed and unsigned
networks.

In [19], a four-step method has been presented for extract-
ing communities. In the first step, important nodes are found
by extracting global and local structures and using game
theory. In the second stage, with the propagation of the
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label, primary communities are formed. In the third stage, the
obtained communities are integrated. Finally, in the fourth
step, the final communities are extracted by ensuring the
correct allocation of nodes. This method has low accuracy
in detecting communities in real-world networks.

In [20], a three-step method has been presented for local
community detection in social networks. These three steps
include (1) determining the importance of nodes and form-
ing primary communities, (2) extending primary communi-
ties, and (3) merging primary communities to obtain final
communities. In the first stage, the importance of network
nodes is calculated using an index called RDC. Then, initial
communities are formed, including several important nodes.
In the second stage, the initial communities are extended
using a local similarity measure so that each network node
becomes a community member. The extracted communities
are investigated in the third stage, and small communities are
merged with other communities.

In [21], a two-stage local community discovery algorithm,
RTLCD, based on community expansion and core detection,
has been presented. Local community discovery algorithms
have two common challenges and issues: (1) seed-dependent
problem, meaning whether the seed node location affects the
quality of the detected local community or not, and (2) the
invalid core problem, which means that some local algo-
rithms cannot ensure the core node participates in the final
community. This article used the criteria of node relation
strength and node mass (node similarity and local indices for
node centrality), as well as community relationship strength,
to solve the two mentioned problems.

In [22], a three-stage local community detection algo-
rithm called Three-Stage (TS) has been presented based on
global and local information. These steps include central node
recognition, label propagation, and community integration.
Central nodes are determined based on the distance between
them (greater than the average distance). Label propagation
means labeling nodes with identical colors when they reach
maximum similarity. The integration of communities is done
if the modularity increase is positive and at its maximum
level.

In [23], a local three-stage algorithm called LCDPC has
been presented for community detection, which identifies
local communities based on exploring potential communities.
In this algorithm, first, an appropriate node is found to replace
a particular node as a seed by determining the similarity
and importance of the node. Then, the initial community is
formed by the composition of the seed and its appropriate
potential community. Eventually, the eligible nodes are cho-
sen by comparing the similarity between expanding nodes
and potential communities to add to the initial community.
This algorithm has a good speed in detecting communities,
but the quality of the extracted communities is similar to other
algorithms.

In [24], a novel approach to community discovery is pro-
posed by considering each node’s importance score and mem-
bership degree. Nodes with higher importance scores can
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become the core of communities, forming communities with
a reasonable number of nodes.

In [25], a group clustering algorithm based on influen-
tial nodes has been introduced to improve the detection of
communities in complex networks. Considering the diverse
attributes of the network, the proposed approach searches
to find shared interests among users and their behaviors to
identify the most appropriate communities. Initially, a group
of influential nodes are recognized as community centers.
Then, initial communities are created based on the deter-
mined centers. Finally, the initial communities are reclustered
to form the final communities.

In [26], a novel approach called Deep Semi-Supervised
Community Detection (DSSC) has been presented for com-
plex network clustering. DSSC utilizes a semi-autoencoder
(SeAE) with a pair-wise constraint matrix based on
point-wise mutual information (PMI) to learn distinctive fea-
tures and enhance clustering accuracy.

In [27], a new method called modified DeepWalk has
been proposed by combining deep learning and random walk.
It employs a modified Random Walk with Restart to cap-
ture k-order structural and attribute information, enabling the
modeling of interactions between network structure and high-
order proximities.

In [28], an extension of Symmetric Nonnegative Matrix
Factorization (SNMF) called Weighted Symmetric Nonneg-
ative Matrix Factorization (WSNMF) is designed to address
challenges encountered in attributed graph clustering. While
SNMF has shown promise in graph clustering, it lacks con-
sideration for attributed information, geometric data point
structures, and the ability to discriminate irrelevant features
and outliers.

In [29], arapid and precise community detection method in
large networks based on locally balanced label propagation is
proposed. A novel local similarity measure is also presented
to assign importance to nodes. This method demonstrates fast
convergence speed along with stable and accurate results.

lll. THE PROPOSED ALGORITHM

In this section, a new index called IMP has been presented
to determine the importance of nodes. Then, using the IMP
index, a local algorithm called LCD-SN has been presented
to determine communities in social networks. The flowchart
of the proposed method is illustrated in Figure 1. In addition,
the notations used in presenting the proposed algorithm are
listed in Table 1.

A. IMP IMPORTANCE INDEX

This subsection presents a new index called IMP to determine
the importance of nodes according to the nodes’ first- and
second-degree neighbors. In the IMP index, structural and
local characteristics of nodes have been used to determine
their importance. The law of continuity of electric current in
electric circuits inspires this index. According to the continu-
ity law of electric current, the totality of currents entering a
node equals the totality of currents leaving that node. In other
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Determine the importance of all nodes using
Eq. 3)

Is the
initial community ofall
nodes specified?

No

.

Choose the most important node that is notin| Yes
any community

v

Create a new community that contains the
chosen node and its first-degree neighbors

v

Determine the status of overlapping nodes
(explained in subsection I1I-B-2)

v

Post-process communities (merge small/weak
communities with large/strong communities)
(explained in subsection III-B-3)

FIGURE 1. Flowchart of the LCD-SN algorithm.

words, for each node of an electric circuit, we have

Zlin — Zlout (1)

The graph of a directed and weighted social network can
be considered as corresponding to an electrical circuit where
(a) each of its nodes corresponds to a node of the electrical
circuit and (b) the importance of a node is equal to the sum
of the weighted incoming/outgoing electric currents to/from
that node. Considering that in real-world networks, the impor-
tance of a node is affected by the nodes that have a link to it
and the intensity of the link (connection weight) between the
nodes, Eq. (2) can be used to determine the importance of a
node

mp o = Y M TR0 @
jery !
In Eq. (2), Ff” is the set of nodes linked to i, Wj; is the directed
edge weight from node j to node i, and W is the sum of
the outgoing edge weight from node j. For example, consider
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TABLE 1. Notations used in the proposed algorithm.

Notation Description
IMP (i) Importance of node i
re The set of nodes linked to i
Wi The directed edge weight from node j to node i
wi The sum of the weight of outgoing edges from node j
« Influence of the first-degree neighbors on the importance
of a node
; Influence of the second-degree neighbors on the
importance of a node
The maximum number of iterations for calculating the
14 importance of nodes
N il'z The set of first- and second-degree neighbors of node i
C; i™ community
En Number of edges inside i community
pout Number of edges from i community to other
t communities
m, The integration coefficient of the communities
A The element of i™ row and j" column of the adjacency
v matrix A
P The expected value of the number of edges between two
i

nodes i and j

Figure 2, which represents a portion of a social network
graph. Suppose the importance of nodes x, y, and z equals 10,
20, and 30, respectively. According to Eq. (2), the importance
of node i is equal to

2x10 1x20 2x30 4
5 T2 TTe T
Considering that we initially do not know the importance of

nodes, the initial importance of all nodes is assumed to be the

same. There may also be nodes whose importance is mutually
dependent (nodes i and x in Figure 2). Therefore, calculating
the node’s importance is repeated until either the importance
of the nodes converges or the process of calculating the node’s

importance is repeated a maximum of y times. The Eq. (2)

is defined only according to the first-degree neighbors of the

nodes. To increase the accuracy, in addition to the first-degree
neighbors, second-degree neighbors can also be considered.

In this case, Eq. (2) will be generalized as

IMP (i) = Z

jery

IMP (i) =

Wi x IMP(j)
o i X AY)

Wi x IMP(k)
o Z gL
J

Wout
kerir k
J

3)

In Eq. (3), @ and B indicate the influence of first- and
second-degree neighbors on the importance of node i and I’f"
is the set of nodes linked to i.

In Table 2, using IMP, PageRank [30], and Degree [31]
indices, the importance of the Figure 3 network nodes has
been presented. As observed, nodes 4, 12, 2,9, and 11 were
the five nodes with the highest rank in all three indices.
This shows that the IMP index aligns with other important
indices in the literature, such as PageRank and Degree index.
Nodes 4, 12, and 2 (the three nodes with the highest rank
using the IMP index) could be used as seeds in the proposed
algorithm to form initial communities.
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FIGURE 2. A part of the graph of a directed and weighted social network.
According to Eq. (2), the importance of node i/ depends on the importance
of nodes x, y comma and z.

FIGURE 3. An example network having 12 nodes and three communities.

TABLE 2. Ranking of network nodes in Figure 3 using IMP, PageRank, and
degree criteria.

IMP PageRank degree
Rank Value Rank Value Rank Value
4 2.5250 4 0.1227 4 5
12 2.1233 2 0.0985 2 4
2 2.0833 9 0.0936 9 4
9 2.0183 11 0.0936 11 4
11 2.0183 12 0.0935 12 4
6 1.7167 3 0.0793 3 3
7 1.7017 8 0.0792 6 3
8 1.6683 6 0.0779 7 3
3 1.5933 7 0.0779 8 3
10 1.4850 10 0.0721 10 3
5 1.2083 1 0.0559 2
1 1.1333 5 0.0558 5 2

B. LCD-SN ALGORITHM FOR COMMUNITY STRUCTURE
DETECTION

In this subsection, an algorithm called LCD-SN has been
presented to discover community structure in social networks.
The LCD-SN algorithm consists of three phases: (1) forming
initial communities, (2) determining the status of overlapping
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nodes, and (3) merging communities. In the following, each
of these phases has been explained in detail.

1) THE FIRST PHASE: FORMATION OF INITIAL COMMUNITIES
In this phase, the network nodes are first ranked using the
Eq. (3). Then, initial communities are formed using the fol-
lowing procedure
(1) The node with the highest rank value, which is not
already in any community, is selected as the commu-
nity’s core. Suppose the selected node is k.
(2) Node k, along with its first-degree neighbors, is con-
sidered a community.
(3) Steps 1 and 2 are repeated until the initial community
of all nodes is determined.

In this phase, some nodes may be members of several com-
munities. In other words, initial communities may overlap.
By applying this phase on the Karate network (Figure 4(a)),
four initial communities C1 = {1, 2, 3,4, 5,6, 7, 8,9, 11,
12, 13, 14, 18, 20, 22, 32}, C2 = {34, 9, 10, 14, 15, 16, 19,
20, 21, 23, 24, 27, 28, 29, 30, 31, 32, 33}, C3 = {26, 24, 25,
32}, and C4 = {17, 6, 7} are obtained. These communities
are shown in various colors in Figure 4(b). Note that nodes 6,
7,9, 14, 20, 24, and 32 overlap and are shown in black.

2) SECOND PHASE: DETERMINING THE STATUS OF
OVERLAPPING NODES

In this phase, overlapping nodes are placed only in one of the
communities and are removed from the rest of the communi-
ties. For this purpose, the similarity of each overlapping node
with all the communities to which it belongs is calculated.
The overlapping node is placed within the community with
the most similarity. In this article, the Generalized Leicht-
Holme-Newman (GLHN) similarity index [32] is used to
calculate the similarity of a node to a community. In GLHN,
to identify the similarity of two nodes, in addition to the first-
degree neighborhood, their second-degree neighborhood is
also considered. This index has been given in Eq. (4).

‘Nil,z mle,z)
GLHN (i,j) = T2 ool “)
2] o

In Eq. (4), Nil’2 represents the set of first- and second-degree
neighbors of node i. Using Eq. (4), the similarity of node i to

community C is defined as Eq. (5).

sim (i, C) = Z GLHN (i, j) 5)
jeC,
JeT;

By applying this phase to the output of the first phase
(Figure 4(b)), the state of the nodes and communities of
Zachary’s karate club will be as shown in Figure 4(c).
As observed, overlapping nodes 6,7,14, and 20 are assigned to
community C 1, and the rest (nodes 9, 24, and 32) are assigned
to community C2.
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3) THE THIRD PHASE: INTEGRATION OF COMMUNITIES
Considering that some of the communities obtained in the
previous phase may be too small or weak, in this phase, the
communities obtained in the previous phase are merged in
two stages so that the final communities are obtained: (1) the
integration of small communities with large communities,
and (2) the integration of weak communities with strong
communities. In merging small communities with large com-
munities, first, small communities (communities with less
than three nodes) are identified. Then, each node of them is
transferred to one of the large neighboring communities that
is most similar to it. It should be noted that Eq. (5) is used to
calculate the similarity of a node to a community.

0 [
oi/ ¥ o, 9
s | o
02 &2 25 o2
@ g2 26 | SR
932 70 018 @32 o @18
@28 » ‘9298 o @ o r72 1 o
oz 02 OO o 0% s @5 g0
@30 334 @31 ®30 &ga @31
@27 [ g
L 25 @10 o5 @10
1 19,
L4 9.1@.15.21 L .15.‘5021
17 o7
{ O { O
o o7 o1, o7
|, &l ), o
@12 o2
125
%6 02 pe AN % £ 7
. 26. o
\ 32 76 V@8 32 g X —@18
N W I N - I
[ 7 0 Oy — O ° 05 o @ g O
Ve 1 24 g
e ——o7 G0 ==
[ 214 7 @7
..2/3 ®10 o5 ®10
19, |
16g)15 ®21 o 1615 @21

FIGURE 4. (a) Zachary’s karate club network and (b)/(c)/(d) the result of
the first/second/third phase of the proposed algorithm on it.

Some extracted communities may not be of good quality.
To increase the quality of communities, weak communities
should be integrated with strong communities. In this paper,
a group of nodes is considered a weak community if the
cqndition Eii” < me X E;’“’ is satisfied. In this equation,
E™", Ei”’” , and m,, respectively, indicate the edge number
inside the community, the edge number outside the commu-
nity, and the integration coefficient of the communities. The
process of merging weak communities with strong communi-
ties continues until there are no weak communities. A weak
community’s nodes are transferred to a strong neighboring
community that are most similar to it. It should be noted that
two communities are said to be neighbors if there is at least
one edge between them. We can use Eq. (6), a generalization
of Eq. (5), to calculate the similarity of the two communities.
It should be noted that integration is carried out if it leads
to increased modularity. Based on the experimental results,
by choosing m, = 4, the final community structure will have
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Algorithm 1 LCD-SN (Local Community Detection in Social Networks)

Input: G: Social Network Graph

a: Influence of first-degree neighbors on the importance of a node
B: Influence of second-degree neighbors on the importance of a node
y: Maximum number of iterations for calculating the importance of a node

Output: Community structure of the input graph G
/I First Phase: Formation of Initial Communities

Calculate the importance of all nodes of the input graph G using Eq. 3;

repeat

1
2
3 L Choose the most important node that is not in any community;
4

Create a new community that contains the chosen node and its first-degree neighbors;

5 until the initial community of all the nodes is determined,
// Second Phase: Determining Status of Overlapping Nodes

6 foreach overlapping node v do

// Third Phase: Integration of Communities
// Merge small communities with large ones

Place node v in the community that is most similar to it;

7 L Calculate the similarity of node v with all the communities it belongs to using Eq. 5;

9 L < nodes of small communities (communities with less than 3 nodes);

10 repeat
11 v < Select a node from list L;
12 Merge node v with the neighboring community that is most similar to it (Calculate the similarity of a node to a

community using Eq. 5);
13 untillist L is empty;
//Merge weak communities with strong ones
14 foreachcommunity C; do

15 if El.i” < m¢ x E"(C; is a weak community) then
16 Move the nodes of community C; to the neighboring community that is most similar to it (Calculate the
similarity of two communities using Eq. 6);

a favorable quality.

sim (Cy, Cy) = 2:

ieC,
jeCjeT;

GLHN (i, j) (©6)

By applying this phase to the output of the second
phase of the proposed algorithm (Figure 4(c)), the only
remaining member of community C4 (node 17) is merged
with community C1, and the remaining nodes of com-
munity C3 (nodes 25 and 26) are merged with commu-
nity C2. It should be noted that two large communities
will be formed after the integration of small communi-
ties (Figure 4(d)), none of which could meet the condi-
tion of a weak community, so the third phase is com-
pleted. The pseudocode of the proposed algorithm is given in
Algorithm 1.

C. COMPUTATIONAL COMPLEXITY ANALYSIS

The LCD-SN algorithm consists of three phases: (1) the
formation of initial communities, (2) determining the status
of overlapping nodes, and (3) the integration of communities.
Suppose n indicates the number of network nodes and k
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indicates the average degree of nodes. Also, we know that the
time complexity of calculating the similarity between all pairs
of connected nodes using the GLHN index is 6 (nk> log, k).
The time complexity of the first phase is n (k* + &%) +
nlogon + nk € O (nk3), where n (k2 + k3) is the time
complexity of calculating the importance of nodes, nlog, n
is the time complexity of sorting nodes’ importance, and nk
is the time complexity of forming initial communities (lines
1 to 5 of Algorithm 1). The time complexity of the second
phase is O (nk> log, k) (lines 6 to 8 of Algorithm 1). The time
complexity of the third phase is nk?log, k + nk>log, k €
o (nk3 log, k), where the first term is the time complexity of
merging small communities with large ones, and the second
term is the time complexity of merging weak communities
with strong ones (lines 9 to 16 of Algorithm 1). Finally, the
total time complexity of the LCD-SN algorithm is O (nk?) +
O (nk>log, k) + O (nk? log, k) € O (nk> log, k). The degree
distribution follows the power-law in scale-free networks
such as social networks. This means that most nodes have
a relatively low degree. Therefore, k will be a small constant
value. Thus, the time complexity of the LCD-SN is approxi-
mately O(n), which is linear in terms of n.
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TABLE 3. Parameters used in different algorithms.

Algorithm Parameter Value
Population size 100
Crossover rate 0.8
Mutation Rate 0.2
CMA [14] Elitism rate 0.05
Max generations 100
Local search rate 0.1
Logistic map parameter 4
Population size 100
Recombination rate 0.8
Mutation rate 0.2
GAOMA-net [33] Elitism rate 0.05
Max generations 100
Object migrating automaton type Tsetlin
Actions memory depth 5
Population size 100
Crossover rate 0.8
SR Mutation rate 0.2
Max generations 100
Population size 100
Crossover rate 0.8
Mutation rate 0.2
Initial rate 0.6
GATB [12] Elitism rate 0.1
Clean rate 0.5
Clean threshold 0.7
Max generations 100
Inflation power 4
Cutoff threshold 0.1
Ll Conditional update coefficient 0.7
Max Iterations 50
LBLD [29] - -
CSLPR [17] - -
a 0.7
LCD-SN B 0.3
y 6

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the efficiency of the introduced algorithm
is evaluated on real-world and synthetic benchmark net-
works and is compared with CMA [14], GAOMA-net [33],
GACD [11], GATB [12], LabelRank [34], LBLD [29], and
CSLPR [17] algorithms.

A. PARAMETER SETTING

The proposed and compared algorithms are implemented
using MATLAB R2022a and run on a personal computer
with a core 19-13900K 3.00 GHz processor and 64GB of
RAM. Table 3 gives the values of parameters used in different
algorithms.

B. EVALUATION CRITERIA

To evaluate and compare the algorithms, two measures of
Q (modularity) [4] and NMI (Normalized Mutual Infor-
mation) [35] are utilized. The modularity criterion is used
when the ground-truth community structure is not attainable,
and the NMI criterion is utilized when the structure of the
ground-truth community is available. Modularity is a mea-
sure for calculating the quality of dividing nodes into different
communities. Due to its simplicity and effectiveness, this
criterion has become the most widely used quantitative cri-
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terion for comparing different community structure detection
algorithms. The modularity measure compares the number of
edges within the communities with the null model. The null
model is a random graph (edges are located randomly among
the nodes) with the same size and degree distribution as the
desired graph. If the edge number within the communities
of the found community structure is more than the edge
number of the corresponding clusters in the null model, the
modularity value will be positive and, otherwise, negative.
The modularity criterion is defined as Eq. (7).

1
0= ; (Aj — Pi)8(Ci.C)) )

where m is the number of edges, A is the adjacency matrix,
P = % is the expected value of the number of edges
between two nodes i and j, C; is the community of node i,
and the function § is defined as Eq. (8).

I x=y

8(x,y) = ®)

0 otherwise

The modularity criterion is in the range of [—0.5,1], and
larger values show that the edge density within communities
is higher than the null model.

The NMI criterion is based on the information the-
ory, which compares the community’s quality in terms
of its compatibility with the ground-truth community.
Assuming to have the found community structure A =

{C1, Ca, ..., Ca}, and the ground-truth community structure
B ={Cy{,C}, ..., Cg}, the NMI criterion then will be defined
as Eq. (9).
|A] |B| nn
=220 2= mijlog (n,_jnj)
NMI (A4, B) =

Zl'ill n;. log (%) + Z;l'i‘l njlog (%)

The NMI measure is based on the confusion matrix. The
confusion matrix rows are related to the ground-truth commu-
nities, and its columns are related to the found communities.
The element n;; of the confusion matrix shows the number
of common nodes in the ground-truth community i and the
found community j, and n; (n ;) represents the sum of the i row
(j column) elements of the confusion matrix. The NMI crite-
rion is in the range [0,1]. Larger values show that the found
community structure is more consistent with the ground-truth
community structure.

C. DETERMINING THE OPTIMAL VALUE «, 8, AND y
PARAMETERS

In this subsection, to determine the optimal value of «, S,
and y parameters, the proposed algorithm with different
combinations « = {0.1,0.2,...,1}, 8 = 1 — « and
y = {1,2,...,10} in Eq. (3) has been applied to various
real-world and synthetic benchmark networks. The results of
the experiments show that the introduced algorithm performs
better for values of « = 0.7, 8 = 0.3, and y = 6.
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TABLE 4. The results obtained from the proposed algorithm for the Q criterion in real-world benchmark networks for « = 0.7, 8 = 0.3, and different

values of the y parameter.

Network y=1 y=2 y=3 Yy=4 y=5 Yy==6 y=17 y=28 Yy=9 y=10
Karete 03715 03715 0.3715S 03715 03715 03715 03715 03715 03715 0.3715
Dolphins 0.5087  0.5187  0.5005  0.5005  0.5005  0.5005  0.5005  0.5005  0.5005  0.5005
PolBooks 0.5240  0.5240  0.5240  0.5240 0.5240 0.5240  0.5240  0.5240  0.5240  0.5240
Football 0.5962  0.5815  0.6056  0.6056 0.6056  0.6056  0.6056 0.6056  0.6056  0.6056
SFI 0.6918  0.6918 0.6918  0.6918  0.6918  0.6918  0.6918  0.6918  0.6918  0.6918
NetScience 0.8434  0.8432  0.8435 0.8435 0.8435 0.8435 0.8375  0.8375 0.8375 0.8375
Email 0.5257  0.5297  0.5279  0.5279  0.5266  0.5284  0.5258  0.5354  0.5354  0.5354
PowerGrid 09146  0.9101 09123 09140 09137 09159 09122 09124 09114  0.9107
PGP 0.8584  0.8578  0.8588  0.8626  0.8625  0.8629 0.8624  0.8619  0.8621 0.8620
GrQc 0.8270  0.8244  0.8252  0.8246  0.8257  0.8277 0.8252  0.8268  0.8258  0.8250
ca-AstroPh 0.5567  0.5574 0.549 0.5542  0.5527  0.5629  0.5563  0.5560  0.5557  0.5557
ca-HepTh 0.7255  0.7289  0.7330  0.7311 0.7287  0.7331 0.7323  0.7269  0.7340  0.7333
ca-HepPh 0.6074  0.6124  0.6052  0.6085  0.6090 0.6138 0.6129  0.6130 0.6130  0.6130
Condmat-2003  0.6821 0.6872  0.6807  0.6809  0.6857  0.6776  0.6758  0.6751 0.6785  0.6780
Condmat-2005  0.6425  0.6315  0.6385  0.6441  0.6382  0.6311 0.6276  0.6236  0.6176  0.6277
Email Enron 0.5349  0.5466  0.5352  0.5390  0.5299  0.5244  0.5132  0.5351 0.5357  0.5353
Collaboration 0.7914  0.7944  0.7995 0.8012  0.8027 0.7967  0.7972  0.8011 0.7982  0.7948
Internet 0.5497  0.5315  0.5010  0.5004  0.4983  0.4981 0.4981 0.4981 0.4981 0.4981

TABLE 5. The results obtained from the proposed algorithm for the NMI criterion in LFR synthetic benchmark networks for « = 0.7, 8 = 0.3, and different

values of the y parameter.

u Y= y=2 Y= y=4% Y= y=6 y=7 y=8 y=9 vy=10
0.00 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
0.05 0.9902 09920  0.9914 09909  0.9914 09922  0.9915  0.9915 09922  0.9928
0.10 09831 09814 09794 09788  0.9798 09805  0.9800 09800  0.9783  0.9783
0.15 0.9652 09698  0.9691 09697  0.9738  0.9744  0.9744  0.9744 09729  0.9729
0.20 0.9520 09535  0.9519 09552  0.9561  0.9569  0.9569  0.9569  0.9569  0.9569
0.25 0.9278 09278  0.9258 09257  0.9257 09257  0.9257 09257  0.9257  0.9257
0.30 0.9044 09067  0.9067  0.9078  0.9078  0.9078  0.9078  0.9078  0.9078  0.9078
0.35 0.8352  0.8473  0.8462  0.8485  0.8487  0.8487  0.8487  0.8487  0.8487  0.8487
0.40 0.7494  0.7388  0.7340  0.7346  0.7345  0.7345  0.7345  0.7345  0.7345  0.7345
0.45 0.6147  0.6098  0.6168  0.6196  0.6196  0.6196  0.6196  0.6196  0.6196  0.6196
0.50 04678  0.4556  0.4725 04566  0.4538  0.4533  0.4533 04533 04533 04533

Therefore, in the results stated in the rest of this article,
the values of 0.7, 0.3, and 6 have been considered for «,
B, and y parameters, respectively. For example, in Tables 4
and 35, the results of the introduced algorithm for « = 0.7,
B = 0.3, and various values of the y parameter are given in
real-world and synthetic benchmark networks, respectively.
As you observe, the introduced algorithm performs better
when y = 6.

D. EVALUATION WITH REAL-WORLD BENCHMARK
NETWORKS

In this section, the efficiency of the introduced algorithm is
evaluated in real-world benchmark networks and is compared
with CMA [14], GAOMA-net [13], GACD [11], GATB [12],
LabelRank [34], LBLD [29], and CSLPR [17] algorithms.
The information on the real-world benchmark networks
is given in Table 6. The Q criterion is used to evaluate
and compare different algorithms because the ground-truth
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community structure is not attainable in most real-world
networks. The average modularity obtained from different
algorithms is given in Table 7. In the non-deterministic
algorithms (CMA, GAOMA-net, GACD, and GATB), each
data is the average of 10 runs. The largest modularity value
obtained for each network is written in bold. The LCD-SN has
obtained the highest modularity value in PolBooks, Football,
PowerGrid, PGP, GrQc, AstroPh, ca-HepTh, ca-HepPh, and
Collaboration networks. CMA in the Dolphins and Internet
networks, GAOMA-net in the Karete network, GACD in the
Karate and SFI networks, LBLD in the NetScience, Email,
Condmat 2003, and Condmat 2005 networks, CSLPR in the
Email Enron network have obtained the highest modularity
value.

In addition, Table 8 shows the results of the Friedman
test for ranking different algorithms in real-world networks.
As you can see, the Friedman test statistic value (p-value =
0.001) is less than 0.05. Therefore, with a probability of 0.95,
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TABLE 6. Real-world benchmark network information. These networks can be downloaded from https://networkrepository.com,

https://snap.stanford.edu/data, http://konect.cc/networks, and https://www.cise.ufl.edu/research/sparse/matrices/list_by_id.html websites.

Network Description Node Edge
Karate Zachary's karate club network [36] 34 78
Dolphins Dolphins social network [33] 62 159
PolBooks Books about US politics [37] 105 441
Football American college football network [8] 115 613

SFI Santa Fe Institute network [8] 118 200
NetScience Co-authorship of scientists in network theory [38] 379 914
Email URYV email network [39] 1,133 5,451
PowerGrid US power grid network [40] 4,941 6,594
PGP The LCC in the graph of PGP users [41] 10,680 24,316
GrQc Collaboration network of Arxiv General Relativity [42] 5,242 14,496
ca-AstroPh Collaboration network of Arxiv Astro Physics [42] 18,772 198,110
ca-HepTh Collaboration network of Arxiv High Energy Physics Theory [42] 9,877 25,998
ca-HepPh Arxiv High Energy Physics paper citation network [43] 34,546 421,578
Condmat-2003 Collaboration network, preprints in condensed matter archive [44] 31,163 240,058
Condmat-2005 Collaboration network, preprints in condensed matter archive [45] 40,421 351,382
Email Enron  Email communication network from Enron [46] 36,692 183,831
Collaboration Collaboration network, preprints in high-energy physics [47] 8,361 15,751
Internet Structure of Internet routers as of July 22, 2006 [48] 22,963 96,872

TABLE 7. Average obtained modularity by different algorithms in real-world benchmark network.

Network CMA GAOMA-net GACD GATB LabelRank LBLD CSLPR LCD-SN
Karate 0.4188 0.4198 04198 04127 0.3600 03710 03715  0.3715
Dolphins 0.5272 0.5267 0.5265  0.5263 0.3735 0.3780  0.4780  0.5005
PolBooks 0.5266 0.5222 0.5265  0.5265 0.4946 0.4560  0.4990  0.5270
Football 0.5908 0.5936 0.5602  0.5836 0.5918 0.5800  0.5860  0.6056
SFI 0.7482 0.7489 0.7503  0.7428 0.7227 0.7200  0.6578  0.6918
NetScience 0.8287 0.8243 0.8021  0.8318 0.8144 0.9400 0.9240  0.8435
Email 0.4326 0.4639 0.3502  0.4606 0.0000 0.5400 0.2990  0.5284
PowerGrid 0.7497 0.7423 0.7073  0.7647 0.5046 0.8200  0.8190  0.9159
PGP 0.6994 0.7146 0.6601  0.7578 0.2394 0.8200  0.8190  0.8629
GrQc 0.7503 0.7105 0.7063  0.7462 0.4361 0.7900  0.7940  0.8277
AstroPh 0.2931 0.2448 0.2529  0.3990 0.0773 0.5000  0.4528  0.5629
ca-HepTh 0.5727 0.5270 0.5348  0.5862 0.1730 0.7000  0.7060  0.7331
ca-HepPh 0.4425 0.4597 0.3823  0.5434 0.1440 0.4900 04726  0.6138
Condmat-2003  0.4898 0.4911 0.4610  0.5696 0.1010 0.7000 0.6640  0.6776
Condmat-2005 0.4337 0.4877 0.4069  0.4069 0.0763 0.6600 0.6320  0.6311
Email Enron 0.3310 0.2887 0.3030  0.3478 0.0786 0.5500  0.5750  0.5244
Collaboration ~ 0.6838 0.6531 0.6427  0.7036 0.2306 0.7900  0.6251  0.7967
Internet 0.5283 0.5028 0.5075  0.3983 0.0050 0.4900  0.4128  0.4981

TABLE 8. The average rank of various algorithms in real-world
benchmark networks.

to the average ranks, the LCD-SN algorithm won first, and the
LBLD and CMA algorithms won second and third, respec-
tively. In summary, it can be said that the LCD-SN algorithm
is effective for discovering community structure in real-world

E. EVALUATION WITH SYNTHETIC BENCHMARK

In this section, the efficiency of the introduced algorithm
is evaluated in LFR synthetic benchmark networks and is

Mean Rank
CMA 4.83
GAOMA-net  4.47 benchmark networks.

GACD 3.53
Test Statistics GATB 4.72

N 18 LabelRank  1.56 NETWORK
Chi-Square ~ 48.751 LBLD 5.50
df 7 CSLPR 4381
Asymp. Sig.  0.001 LCD-SN  6.58

it could be mentioned that the average ranks in real-world
networks had statistically significant differences. According
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compared with CMA [14], GAOMA-net [13], GACD [11],
GATB [12], LabelRank [34], LBLD [29], and CSLPR [17]
algorithms. LFR synthetic benchmark networks are presented
in [49] and are more suitable with the characteristics of
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TABLE 9. NMI value obtained by various algorithms in LFR synthetic benchmark network.

n CMA GA;?::/IA GACD GATB Iﬁzl:il LBLD CSLPR LCD-SN
0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 0.9988 0.9994 0.9267 1.0000 1.0000 1.0000 0.9846 0.9902
0.10 0.9604 0.9814 0.7335 0.9955 0.9997 1.0000 0.9708 0.9831
0.15 0.8568 0.9811 0.6293 0.9689 0.9576 1.0000 0.9537 0.9652
0.20 0.7271 0.9299 0.5134 0.9317 0.9010 0.9412 0.9382 0.9520
0.25 0.6197 0.7237 0.4207 0.8773 0.7337 0.9127 0.9125 0.9278
0.30 0.4928 0.6333 0.3203 0.8150 0.6493 0.8626 0.8847 0.9044
0.35 0.4084 0.4758 0.2352 0.6014 0.5063 0.8117 0.8132 0.8352
0.40 0.3076 0.3819 0.1966 0.3251 0.4835 0.7159 0.7071 0.7494
0.45 0.2369 0.1977 0.1674 0.2187 0.2000 0.4437 0.5921 0.6147
0.50 0.1717 0.1321 0.1205 0.1528 0.0927 0.4105 0.4414 0.4678

real-world networks. In LFR networks, node degrees distri-
bution and community sizes distribution follow the power
law distribution with exponents 71 and 17, respectively. The
robustness of the community structure is related to the mixing
parameter p. The mixing parameter represents each node’s
average connections to other communities. The benchmark
networks with a smaller mixing parameter have a significant
community structure. The values used for different parame-
ters of LFR networks are given below. In the experiments, the
network size is set to 500, the maximum and average degree
of nodes are set to 50 and 25, respectively, the values of 1
and 1, are set to 2 and 1, respectively, and the maximum
and minimum size of communities are set to 100 and 50,
respectively. The mixing parameter p is considered from
0.00 to 0.50. Considering that the ground-truth community
structure is known in LFR synthetic benchmark networks,
the NMI criterion is utilized to evaluate the performance of
different algorithms. The average NMI obtained from differ-
ent algorithms is given in Table 9. In the non-deterministic
algorithms (CMA, GAOMA-net, GACD, and GATB), each
data is the average of 10 runs. The largest NMI value
obtained for each network is written in bold. The LCD-SN
has obtained the highest NMI value in all networks except
for u = {0.05,0.10, 0.15}. In these networks, LBLD has
obtained the highest NMI value. For further comparison, the
results of Table 9 are given as a plot in Figure 5. As it is
observed, by increasing the value of the mixing parameter p,
since the network’s community structure becomes ambigu-
ous, all algorithms’ efficiency decreases. This reduction in
the LCD-SN, CSLPR, and LBLD is far less than that of other
algorithms.

In addition, Table 10 shows the results of the Fried-
man test for ranking different algorithms in the LFR syn-
thetic networks. As you can see, the Friedman test statis-
tic value (p-value < 0.001) is less than 0.05. Therefore,
with a probability of 0.95, it could be mentioned that
the average ranks in LFR synthetic networks had statis-
tically significant differences. According to the average
ranks, the LCD-SN algorithm won first, and the LBLD and
CSLPR algorithms won second and third, respectively. In
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summary, it can be said that the LCD-SN algorithm is effec-
tive for discovering community structure in LFR synthetic
benchmark networks.

TABLE 10. The average rank of various algorithms in LFR synthetic
benchmark networks.

Mean Rank
CMA 2.95
GAOMA -net 3.86
GACD 1.41
Test Statistics GATB 495
N 11 LabelRank 4.23
Chi-Square  45.450 LBLD 6.59
df 7 CSLPR 532
Asymp. Sig.  <0.001 LCD-SN 6.68

F. RESOLUTION LIMIT
In [50], Lancichinetti et al. have shown that methods based on
modularity optimization may fail to determine communities
smaller than a specified scale, which is related to the total net-
work size and interconnectedness of the communities. This
problem is known as resolution limitation. In this section,
the resolution limit of the introduced method is investigated.
Consider the network in Figure 6. This network comprises
54 nodes and two communities, C; and C,, with 50 and
4 nodes, respectively. A node in any community is connected
to all other nodes of the same community. In other words,
each community is a fully connected graph. The only edge
connecting two communities is between node u in the com-
munity C; and node v in community C,. The modularity
value of the community structure in the network is 0.0097.
However, modularity optimization-based approaches assign
node u to the community C, because this network partition
has a larger value of 0.0101 for modularity. This phenomenon
is exactly because of the resolution limitation of modularity
optimization.

LCD-SN algorithm, along with CMA, GAOMA-net,
GATB, GACD, LabelRank, CSLPR, and LBLD algorithms,
have been executed 100 times in the test network of Figure 6,
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FIGURE 5. NMI value obtained using various algorithms in LFR synthetic benchmark
network.

FIGURE 6. Sample network with 54 nodes to investigate the resolution
limit.

and the results are reported in Table 11. Since CMA,
GAOMA-net, GACD, and GATB algorithms are based on
modularity optimization, in most cases, they wrongly assign
node u as a member of the community C». It should be noted
that the LabelRank algorithm identifies the entire network as
a community in all runs. LCD-SN algorithm has correctly
identified communities C; and C; in all runs. Therefore,
our algorithm effectively solves the problem of resolution
limitation.

G. DISCUSSION

This subsection explains the reasons behind the introduced
algorithm’s performance compared to other algorithms.
As mentioned, the proposed algorithm first ranks the network
nodes. In determining the rank of a node, its second-degree
neighbors are also considered, in addition to its first-degree
neighbors. Then, starting from the higher-rank nodes, initial
local communities consisting of the corresponding node and
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its first-degree neighbors are formed. This is what happens in
community formation in real-world networks. In real-world
networks, different nodes usually form a community around
important node. In short, the introduced algorithm identifies
meaningful communities by fully using the network’s struc-
tural information.

TABLE 11. The resolution limit of different algorithms.

The percentage of times that

Algorithm communities C1 and C2 are
correctly identified

CMA 53%

GAOMA -net 1%

GACD 22%

GATB 0%

LabelRank 0%

LBLD 46%

CSLPR 31%

LCD-SN 100%

V. CONCLUSION AND FUTURE WORKS

This article presents a new method called LCD-SN to detect
communities in social networks. The proposed method is
a local method based on node ranking. LCD-SN algorithm
consists of three phases. In the first phase, network nodes
are ranked using a new criterion called IMP, and initial local
communities are formed around high-ranked nodes. In the
second phase, overlapping nodes are assigned to a single
community using the GLHN similarity measure. In the third
phase, the obtained communities in the previous phase are
improved by post-processing (removing small communities
and merging weak communities with strong ones). Among
the advantages of the proposed algorithm its dependence on
the minimum number of input parameters, its locality and no
need for the information of the entire network, not having
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the problem of resolution limit, and most importantly, its
certainty could be mentioned. In this article, single-layer and
unsigned networks are considered. The generalization of the
proposed algorithm to identify the community structure in
multi-layer, signed, and weighted networks could be the focus
of our next work.
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