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ABSTRACT The integration of heterogeneous and unstructured data in Industry 4.0, poses a significant
challenge, particularly with advanced manufacturing techniques. To address this issue, Knowledge Graphs
(KGs) have emerged as a pivotal technology, yet their deployment often encounters the problem of
incompletion due to data diversity and diverse storage formats. This study tackles the challenge of KG
completion by applying and evaluating state-of-the-art KG embedding models–ComplEx, DistMult, TransE,
ConvKB, and ConvE–within a football manufacturing production line context. Our analysis employs two
principal metrics of Mean Reciprocal Rank (MRR) and Hits@N (Hits@10, Hits@3, and Hits@1) to
comprehensively assess model performance. Our findings reveal that TransE significantly outperforms its
counterparts, achieving an average accuracy of 91%, closely followed by ComplEx and DistMult with
accuracies of 87% and 84%, respectively. Conversely, ConvKB and ConvE exhibit lower performance levels,
with accuracy values of 79% and 76%. Through rigorous statistical testing, including t-tests, meaningful
differences in MRR values across the models have been observed, with TransE leading in MRR and ConvE
at the lower end of the spectrum. Our research not only sheds light on the efficacy of various KG embedding
models in managing tree-like structured datasets within the manufacturing domain but also offers insights
into optimising KGs for improved integration and analysis of data in production lines. These contributions
are valuable both from academic research in KG completion and industrial practices aiming to enhance
production efficiency and data coherence in advanced manufacturing settings.

INDEX TERMS Industry 4.0, knowledge graph completion, link prediction, smart manufacturing.

I. INTRODUCTION
KnowledgeGraphs (KG) have attracted a lot of attention from
the research community over years. They are currently being
adopted in many domains, such as question-answering sys-
tems, information retrieval and recommendations in different
domains, for instance, the supply chain system [1], the surface
mounting process system [2], the automotive industry [3] and
industries on the immediate list of industry 4.0. Knowledge
graphs enable the integration of many data sources by
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establishing a unified and interconnected framework [4].
They differ from typical data fusion techniques by utilising
semantic linkages and ontologies to present data in a more
significant manner. This technique not only consolidates
information from multiple sources but also improves the
understanding and retrieval of data through extensive con-
textual associations. It facilitates the discovery of concealed
connections and patterns among diverse information, result-
ing in enhanced precision and comprehensiveness of insights.
The knowledge graphs facilitate the integration of diverse
data sources by offering a shared semantic framework that
enhances data quality and interoperability [5]. The authors
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in [6] reports on the capacity of KGs to depict connections
and enable sophisticated data retrieval and examination was
emphasised. The features of knowledge graphs make them
an efficient instrument for integrating and analysing data in
many fields.

Industry 4.0, also known as I4.0, is transforming the man-
ufacturing industry by integrating modern technologies into
production methods, resulting in substantial improvements in
efficiency, adaptability, and product excellence [7].
Manufacturers are advancing their production lines by

integrating technologies, for example, robots, advanced
machines embedded with software, the Internet of Things
(IoT), sensors, and so on [8], [9]. As a result, the employed
technologies are producing vast amounts of data. However,
the data entities are often stored in diverse data formats on
different storage platforms and locations and are difficult
to integrate [10]. Such heterogeneous and unstructured data
need integration by using KG that can give a unified view
of some technologies [11]. KGs are some of the emerging
techniques [12] in I4.0. Industries such as Bosch [13],
[14], Siemens [15], Valeo Vision Systems [16] and For-
ward Group [17] are working towards knowledge-based
manufacturing systems that use semantic web technologies
such as constructing ontologies1 to build KGs. This is
to facilitate the development of smart applications such
as digital factories, production line automation, predictive
maintenance, re-configurable manufacturing, data search,
data inspection, system diagnostics, and building information
summaries on top of the ontology.

As reported in the literature, the current research on
I4.0-basedKG is carried out in two dimensions: (i) techniques
for building KGs [19], [20], [21], and (ii) applications of
KGs [22], [23], [24]. To be more specific, regarding the first
dimension, the current techniques used to build KGs focus
on integrating data from heterogeneous sources, but most of
the time, this results in imperceptible missing links between
the graph entities [4]. As a consequence of the missing links
within the KGs, it cannot be exploited for the aforementioned
applications in conjunction with other powerful tools such
as those for predictive maintenance, the prediction of the
remaining useful life of complex systems, and product quality
monitoring, among others. Moreover, the I4.0 data-based
KGs are mostly prone to missing links [25]. Analyzing and
predicting the missing links in such KGs is nearly impossible
with human heuristics, and is highly dependent on the power
of using relevant algorithms. [26].

The term ‘‘link prediction’’ refers to determining the
likelihood of identifying pairs of nodes in a graph that
will form a link or will not establish a link in the future.
Graph-based link prediction research area has witnessed a
number of models proposed using different architectures and

1Here, we give a brief introduction to ontologies and refer readers to [18]
to bring the artificial intelligence (AI) and digital twin (DT) technology
on board. An ontology is the formal specification of an area of interest to
describe a set of concepts, for example, Machine, MachineParts and
the relationships (hasPart(Machine, MachineParts)) between them.

approaches [27]. The proposed models are based on learning
the features of KGs to predict links better than the previous
ones [28]. Moreover, every model is built on different
relational features such as relations, path information, and
substructure information for training to improve the link
prediction [29].

This study aims to explore state-of-the-art link prediction
models such as TransE, DistMult, ComplEx, ConvKB,
and ConvE on industrial data-based KGs. The topology
of these KGs is different from the benchmark datasets
commonly used. Our investigation has two key objectives:
a) Academically, we aim to compare the performance of
the link above prediction models and identify the best
performance indicators for KG with a tree-like topology.2

Identifying such indicators can help researchers and prac-
titioners select the optimal learning model from similar
KG. We employed standard evaluation metrics such as
Mean Reciprocal Rank (MRR), and Hits@10, Hits@3 and
Hits@1 to compare the performance of the different models.
b) Industrially, our study has the potential to suggest
missing links that have a high potential impact on the
description of the entire production line knowledge model.
Identifying missing links can support decision-making in
production [30]. Moreover, our study can better understand
how information flows through the production line, which can
alternatively support process optimisation and quality control
efforts. Below, we summarise the major contributions of our
research:

1) To construct a knowledge graph(KG)-based dataset
from the football manufacturing production line. The
dataset comprises entities and relations relevant to
the production process, enabling the analysis of the
interrelationships among different components of the
production line.

2) To train the state-of-the-art embedding models on
the so obtained KG-based dataset. This will help
analyze how the embedding models can capture the
relationships between different entities in the simple
KG, and to earn latent features that can be used to
predict missing links.

3) To perform extensive experiments through datasets to
evaluate the performance of embedding models. Using
the standard metrics of MRR, and Hit@N (Hits@10,
Hits@3 and Hits@1) to assess their ability to predict
missing links in different manufacturing contexts.

A. PROBLEM FORMULATION
It is assumed that a manufacturing production line represents
relationships between various nodes, such as material and
manufacturing machines as shown in Figure 2. Nodes in the
KG correspond to the machines, manufacturing processes,

2KG with a tree-like topology are hierarchical data structures that display
nodes and their relations as branching trees. Such topology efficientlymodels
parent-child relationships into taxonomies for effective data retrieval and
insights.
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FIGURE 1. Data acquisition in football manufacturing production line. The black arrows shows the process flow in the production line and the
blue arrows shows data flow from the sensors to the monitoring unit. 1⃝ In a single process, the TPU roll is feed into Laser Cutting Machine. 2⃝
Laser Cutting Machine converted the TPU roll into patches. 3⃝ Patches are printed via squeegee by the oval printing machine. 4⃝ Printed patches
are cut into panels. 5⃝ Back sides of panels and cores are sprayed with glue. 6⃝ Glued panels and cores are pass by the heated conveyor to form
moulding machine. 7⃝ Cores and panels are moulded. 8⃝ Balling shaping machine gives football shape to the moulded cores and panels. 9⃝ The
gaps between the panels are seal with glue via Ball seam glue machine.

materials, and their attributes while edges connect pairs of
nodes representing some attributes that label the relationship,
such as ‘‘Machines hasInputMaterials Materials’’. On this
basis, a KG can be defined as a labelled directed graph
G = (Ve, E , T ), such that Ve, and E are a set of nodes and
labels representing entities and relations, and T represents the
triples accordingly [31]. In the example scenario, an instance
of a machine, Machine_3, is connected to an instance of
a WorkStation, WorkStation_2, through the ‘‘hasMachine’’
relation in the KG. However, despite sharing common
information and being instances of the same class,Machine_4
is not linked to WorkStation_2. Moreover, Table 4 includes
some of the predicted triples by the trained models in the
unseen data.

The rest of the paper is organized as follows. Section II
presents the literature review. Section III explains the use case
while Section IV provides an overview of the KG embedding
models. Section V gives the details of the experiments and
explains the results. Section VI provides the discussion.
Finally, section VII concludes the paper and suggests possible
future work.

II. RELATED WORK
KG has proved to be very efficient, therefore they have been
extensively used in several downstream tasks such as rec-
ommendation systems [32], [33], question and answer [34],
[35], natural language processing [36], [37], information

extraction [38], [39], and many more. As KGs have been
widely implemented and applied in a wide range of domains,
and as a result an extensive amount of literature has been
produced, especially about its completion. However, KGs
suffer from incompleteness because of improper design and
heterogeneous descriptions of entities, resulting in incorrect
query results. However, link prediction studies in KG
completion can help identify and fill the missing links or
relationships between different entities which eventually help
in the KG completion. In this section, (1) Link Prediction
Models (i) Link prediction overview in general, (ii) Linked
Prediction in I4.0-based KG), and (2) the datasets used for
link prediction tasks are described.

A. LINK PREDICTION MODELS
An overview of the link prediction models for KG completion
is presented below.

1) LINK PREDICTION MODEL OVERVIEW IN GENERAL
The main idea is that the learned embeddings should be
able to generalize and assign high values to true facts that
are not visible in the graph adjacency matrix, assuming
that the model does not overfit the training set. In practice,
the embeddings are learned as usual by optimizing the
scoring function for all training facts, and the score of each
fact is computed using that combination of the particular
embeddings associated with that fact.
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The first category among the link prediction models
is the geometric-based (aka translation) model. It uses a
spatial transformation for relation embeddings in the latent
space. Provided a fact, a spatial transformation is used to
represent the head embeddings where the values of relation
embeddings are parameterized. Distance functions such as
the L1 norm and L2 norm are employed to compute an
offset between the resulting head and tail vectors. The
additional constraints3 in spatial transformation make the
geometric models uniquely different from those of Tensor
decomposition. Some of the examples of geometric models
are RotateE [40], TransE [41], STransE [42], CrossE [43],
TorusE [44]. Additionally, another approach that contributes
to our understanding of complex relationships in multi-view
data processing is introduced. A low-rank tensor regularized
graph fuzzy learning (LRTGFL)method focuses on capturing
nonlinear relationships and high-dimensional information
through Jensen-Shannon divergence and tensor nuclear norm.
[45]. Although this method is primarily aimed at multi-view
clustering, its techniques can provide valuable insights into
improving link prediction models by effectively capturing
complex relationships within the data.

Deep learning models are the second category of link
prediction models. These models consist of several architec-
tures, such as convolutional neural networks (CNNs), recur-
rent neural networks (RNNs), transformers, and generative
adversarial networks (GANs), among others. Various models
are appropriate for specific applications, including image
recognition, natural language processing, and data production
[46]. They employ convolutional neural networks (CNN) to
learn features using weights and biases as estimators. These
estimators are then combined with the input facts to extract
features of significant importance. There are several different
CNN architectures reported in literature [47]. However, their
fundamental components are very similar. A CNN consists of
three basic layers, namely, convolutional, pooling, and fully
connected layers. The input feature set is represented in the
convolutional layer, which consists of several convolution
Kernels that are used to calculate various feature maps. Each
neuron in a feature map is specifically linked to an area of
nearby neurons in the layer underneath it. In the previous
layer, this area is known as the neuron’s receptive field.
By first convolving the input with a learnt kernel and then
using the convolutional results to apply an element-wise
nonlinear activation function, the new feature map may
be produced. The Kernel is shared by all spatial locations
of the input to generate similarly produced feature maps.
Several different Kernels are used to create the entire feature
maps [47]. The final feature map is passed through a fully
connected layer to compute the fact score. ConvE [48],
ConvKB [49], ConvR [50], CapsE [51] are some of the deep
learning models proposed on the aforementioned notion.

3For example, the rotation performed by model RotatE can be expressed
as a matrix product, but the rotation matrix must be diagonal and contain
elements with modulus 1 [40].

TABLE 1. Datasets used in link prediction tasks.

Deep learning has recently been applied to graph-
structured data. Many existing algorithms use graph con-
volution neural network [52], which is a recursive creation
of graph representation. GNN outperforms the conventional
approaches based on off-the-shelf features as it allows for
automatic and customized feature extraction from graphs and
increases predictive performance [52].

In deep learning models, neural networks are utilized to
learn features such as weights and biases that are grouped
with the input facts to determine important patterns.

2) LINKED PREDICTION IN I4.0-BASED KG
In recent years, manufacturing industries have been moving
towards adopting KGs in order to utilize properly their
data [53]. A growing amount of research is being conducted
on building and implementing KGs for use in manufacturing
production lines. Ontologies are thus being proposed by
researchers from industries to build KGs.

According to the literature, machine learning models
such as Naive Bayesian, Random Forest, Decision Tree and
Logistics Regression are analysed to predict missing links
in the manufacturing production line KGs [25]. Thus, the
KG-based embedding models such as ComplEx, Distmult,
TransE, ConvKB and ConvE for predicting missing links in
the manufacturing industries seem to have been overlooked.

B. DATASETS USED FOR LINK PREDICTION TASKS
The benchmark datasets used for the link prediction task have
utilized for KG completion are being discussed in this section.
The benchmark datasets are collected by sampling the
real-world KG and provided in three file sets; train, validation
and test. So far, the most commonly used benchmark datasets
are listed in Table 1 and described as follows.

1) FB15K AND FB15K-237
FB15k is so far the most extensively used benchmark dataset
for the link prediction tasks [27]. The FB15k dataset is
created from the FreeBase4 that containsmore than 1.1 billion
facts with 80 million entities [41]. Bordes et al. extracted
around 592,213 facts that consisted of 14,951 entities and 1,
345 relations with a random split between training, validation
and test set data. Toutana et al. [54] observed that FB15k
suffers from test leakage, which occurs when models see
test data during training time. This issue in FB15k dataset
has been due to the presence of inverse or near-identical
relations. Toutana et al. demonstrated that a basic model

4https://dbpedia.org/page/Freebase_database#
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FIGURE 2. The figure depicts a snippet of the football manufacturing production line KG. The green arrow represents the semantic-based connectivity
between instances while the blue arrow represents the connectivity between ontology classes (See Figure 6 in the appendix A to get a detailed high level
understand of the ontology used in this work). The black arrows connect the instances to classes.

with observable features can easily achieve state-of-the-art
performance on the FB15k. In regards to overcoming this
issue of inverse or identical relations, the FB15k-237 has been
constructed which contained facts from FB15k including
237 relationships.

2) WN18 AND WN18RR
WN18 is extracted fromWordNet as a benchmark dataset and
it contains 40943 entities and 18 relations [41]. WordNet5

is a linguistically rich ontology with KG designed to serve
as a dictionary/thesaurus to help NLP and automatic text
analysis. The entities and relations in WordNet represent the
synsets and their lexical connections, respectively. Likewise
the FB15k, and the WN18 also have suffered from the test
leakage that is caused by the inverse relationships between
entities as reported by the authors in [48]. The authors built
WN18RR by employing a similar methodology as that of
FB15k-237. The WN18RR contains the same number of
entities as that of WN18 and 11 relations by eliminating the
inverse.

The link prediction task is highly applied to social
network analysis where the focus is to improve the accu-
racy of the models as discussed earlier. There is a lack
of publicly available industry datasets to enhance link
prediction. The industry KG is simple but has a huge
variety of data. Moreover, the current embedding models
are performed on real-world case data from social network
analysis.

Several strategies have been put forth to enable data-driven
pipelines that turn industrial data into useful knowledge in
smart manufacturing [55]. A smart factory can enable the
semantic description and alignment of ‘‘similar’’ products as
knowledge graphs that represent nodes and relations among
them and their classification according to existing frame-
works. Finding alignments across I4.0, however, necessitates

5https://wordnet.princeton.edu/

the encoding of domain-specific knowledge expressed in
standards of various kinds and standardization frameworks
designed with various industrial objectives. To embed
significant linkages and aspects of the I4.0 ecosystem and
to empower interoperability in smart factories, we rely
on cutting-edge knowledge representation and discovery
technologies. However, we address the issue of missing
relationships between the nodes of the production line
knowledge graphs.

III. USE CASE
A. FOOTBALL PRODUCTION LINE KG
This work is motivated by the inquiry of whether it is possible
to predict new facts by utilizing a football manufacturing KG.
In the process of KG-based data integration, data from various
sources are integrated and harmonized into manufacturing
settings. The example scenario in Figure 2 demonstrates
the elements necessary for semantic data integration and
harmonization to create a KG. Although the harmonization of
data offers significant benefits, the KG also provides a means
of discovering new relations or links between data. These
links can be created automatically based on the semantics
encoded in the KG, allowing missing information to be
completed. However, these links are often manually created
and maintained, which is a time-consuming task.

B. DATASET ANALYSIS AND PREPARATION
This study investigates the possibility of using a football
manufacturing KG to predict new facts. In the process of
KG-based data integration, data from various sources is
integrated and harmonised into manufacturing settings. The
example scenario in Figure 1 demonstrates the elements nec-
essary for semantic data integration to create a KG. Although
the integration of data offers significant benefits, the KG
also provides a means of discovering new relationships or
links between data. These links can be created automatically
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based on the semantics encoded in the KG, allowing missing
information to be completed or restored.

The I40KG has a hierarchical structure where the nodes at
the top are loosely connected. In state-of-the-art datasets, the
nodes are somehow tightly connected due to the node types.
The size of the football manufacturing production line KG is
comprised of a total of 180701 entities and 35 relations that
make 386905 triples. Among these, 9955 nodes are pendants
that represent entities that are not highly connected in the KG.
The KG has a density [56] of 2.369×10−5, which represents
the KG’s connectivity that is calculated using equation (1).

d =
m
n2

(1)

where d represents the density, m is the number of edges,
and n is the number of nodes. This metric indicates the
overall connectivity of the KG. Furthermore, the KG has
a mean degree centrality of 2.20 × 10−5. The degree of
centrality of a node is defined as the number of edges
it has in the graph, normalised by the maximum possible
number of edges. In addition to the KG’s degree of centrality,
the node Heat_conveyor_operation has a maximum
degree of centrality, which is 5.53×10−6. This indicates that
even the most connected node in the graph has a relatively
low number of connections, again in comparison to the
maximum possible. Moreover, the KG has a mean network
eigenvector centrality of 0.143. This number indicates the
average influence of a node in the graph. Unlike degree
centrality, eigenvector centrality considers the significance of
the nodes to which a node is connected. A mean network
eigenvector centrality of 0.143 indicates that the nodes in
the network have a certain level of influence. In the context
of our dataset, this value suggests that while there are some
highly connected nodes, most nodes are moderately well-
connected. This balance implies that the network does not
have extreme centralization around a few nodes, but rather
a more distributed influence across the network.

IV. KNOWLEDGE GRAPH EMBEDDING MODELS
To predict the missing links, we choose the five well-known
models, that is, ComplEx, DistMult, TransE, ConvKB, and
ConvE. About the aforementioned embedding models (see
Table 2), we start with the TransE model’s working process
followed by the rest.

A. TransE
TransE is one of the most popular state-of-the-art embedding
models. The training set S is made up of triplets (e1, r, e2),
where e1, e2 ∈ E (the set of entities) and r ∈ L (the set
of relationships). TransE learns how to embed entities and
relationships into these triplets. These embeddings belong to
Rk (k is a model hyperparameter) and are represented by
boldface letters. The main concept of the TransE is that if
the triplet (e1, r, e2) does not hold (i.e., e1 and e2 are not
connected by the relationship r), then e1 + r should be far
away from e2 in the embedding space. This is an essential part

of the TransEmodel, ensuring that the embeddings accurately
reflect both the presence and absence of relationships. When
the relationship r does not hold between e1 and e2, the
model aims to maximize the distance between e1 + r
and e2, thus correctly representing non-connected nodes.
Furthermore, using an energy-based framework, the energy
of a triplet equals d(e1 + r, e2) for a dissimilarity measure
d , which is chosen by TransE to be either the L1-norm or
L2-norm. To obtain embeddings, TransE utilises a margin-
based ranking criterion that is minimised over the training set,
as given in Equation 2.

L =

∑
(e1,r,e2)∈S

∑
(e′1,r,e

′

2)∈S
′(e1,r,e2)

[γ + d (e1 + r, e2)

−d
(
e′

1 + r, e′

2
)]

+
(2)

where [x]+ represents the positive features of x, γ > 0 is a
margin hyperparameter.

S ′ (h, r, t) = {
(
h′, r, t

)
|h′

∈ E} ∪ {
(
h, r, t ′

)
|t ′ ∈ E} (3)

To construct a set of corrupted triplets according to
Equation 3, each training triplet is modified by replacing
either the head or tail entity with a random entity, but not
both at the same time. This strategy is effective because the
loss function Equation 2 is designed to assign lower energy
values to training triplets compared to corrupted triplets.
By doing so, the loss function encourages the model to learn
the embeddings that satisfy the intended criterion, and this
happens naturally during the training process. It is worth
noting that the embedding vector for a given entity is the
same whether the entity appears as the head or the tail
of a triplet. The optimisation process is conducted using
stochastic gradient descent in minibatch mode over the
possible e1, r , and e2 values.

B. DistMult
DistMult aims to learn the representations of entities and
relations in a KG so that valid triplets receive high scores.
Given a KG that is represented as a list of relation triplets
(e1, r, e2) denoting a relationship r between entities e1 and
e2. In order to learn the embeddings, a two-layer neural
network is used. The first layer projects the input entities
to low-dimensional vectors, and the second layer combines
these vectors using a scoring function with relation-specific
parameters to produce a scalar for comparison.

In relation to embedding learning, DistMult associates
each input entity with a high-dimensional vector that can be
either a ‘‘one-hot’’ index vector or an ‘‘n-hot’’ feature vector.
The input vectors for entity e1 and e2 are denoted as xe1
and xe2 , respectively. Additionally, the first layer projection
matrix is denoted byW.
After passing the input vectors through the neural network,

the model learned entity representations ye1 and ye2 . These
representations can be expressed through Equation 4.

ye1 = f (Wxe1 ), ye2 = f (Wxe2 ) (4)
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TABLE 2. Overview of scoring functions ψr (es,eo) utilised by various link prediction models, detailing their relation-dependent parameters.

where f is a function that can be either linear or non-linear
and is applied element-wise to the result of the matrix
multiplication betweenW and xe1 or xe2 .
Furthermore, DistMult utilises a basic bi-linear scoring

function Equation 5.

gbr (ye1 , ye2 ) = yTe1Mrye2 (5)

DistMult’s scoring function is a modified version of the
Neural Tensor Network (NTN) scoring function. The NTN
scoring function typically involves a non-linear layer and
a linear operator. However, DistMult differs from NTN by
removing the aforementioned components and utilizing a
2-dimensional matrix operator Mr ∈ Rn×n instead of a
tensor operator. Moreover, other matrix factorization models
have also utilised the bilinear formulation of DistMult’s
scoring function, along with various forms of regularisation.
To simplify the model and reduce the number of relation
parameters, DistMult imposes a constraint on Mr such that
it must be a diagonal matrix. This straightforward approach
has been shown to be both simple and effective.

C. ComplEx
Let R and E denote the sets of relations and entities present
in a KG. The ComplEx model aims to recover the matrices
of scores Xr for all relations r ∈ R. Given two entities e1 and
e2 ∈ E , the log-odds of the probability that the fact r(e1, e2)
is true can be expressed in Equation 6.

P(Yr,e1,e2 = 1) = σ (ϕ(r, e1, e2;2)) (6)

where ϕ is a scoring function and is based on observed
relations factorization, and 2 represents the correspond-
ing model’s parameters. Although the entire X matrix is
unknown, it is assumed that there exists a set of partially
observed adjacency matrices for different relations, denoted
as {Yre1e2}r(e1,e2)∈� ∈ {−1, 1}. These matrices consist of
true and false facts for the observed triples in the KG, where
� ⊆ R×E×E is the set of observed triples. The objective is to
determine the likelihood of whether entries Yr ′,e′1,e′2 are true or
false, where the triples r ′(e′1, e

′

2) are targeted and unobserved,
i.e., r ′(e′1, e

′

2) /∈ �.
The scoring function adopted by the ComplEx model is

given in Equation 7.

σ (ϕ(r, e1, e2;2)) = Re(⟨wr , e1, e2⟩) (7)

where wr ∈ CK and represents a complex vector. The
functionRe(⟨wr , e1, e2⟩) in Equation 7 represents the real part

of the complex dot product between the relation r embedding
and the embeddings of entities e1 and e2.

D. ConvKB
ConvKB represents the dimensionality of embeddings as
k , such that each embedding triple (ve1, vr, ve2) is seen
as a matrix Ai ∈ Rk×3, with Ai ∈ R1×3 indicating
the i-th row of A. And utilise a filter ω ∈ R1×3

within the convolution layer. The purpose of ω is not only
to investigate the global relationships between identical
dimensional entries of the embedding triple (ve1, vr, ve2),
but also to capture the transitional features in transition-
based models. We repeatedly apply ω over each row of A to
ultimately produce a feature map v = [v1, v2, . . . , vk ] ∈ Rk

is given in Equation 8.

vi = g(ω · Ai + b) (8)

where b ∈ R represents a bias term, and g denotes an
activation function, for instance, the Rectified Linear Unit
(ReLU).

ConvKB employs different filters ∈ R1×3 to produce
distinct feature maps. Denote the collection of filters as �
and the total number of filters as τ , such that τ = |�|.
This leads to the generation of τ feature maps. These τ
feature maps are then merged into a single vector in Rτk×1,
which is subsequently calculated with a weight vector w ∈

Rτk×1 through a dot product, yielding a score for the triple
(e1, r, e2). Equation 9 presents the scoring function that has
been adopted by ConvKB.

f (e1, r, e2) = concat(g([ve1 , vr , ve2 ] ∗�)) · w (9)

where � and w represent shared parameters that are not
dependent on e1, r , or e2; the symbol ∗ signifies a convolution
operator; and the term ‘concat’ denotes a concatenation
operator. The ConvKB model training loss is minimised via
using Adam optimiser with L2 regularization on the weight
vector was shown in Equation 10.

L =

∑
(e1,r,e2)∈{G∪G′}

log(1 + exp(l(e1, r, e2) · f (e1, r, e2)))

+
λ

2
∥w∥

2
2 (10)

where l(e1, r, e2) is a function that assigns labels to triples,
and G′ represents a set of invalid triples created by altering
valid triples found in G.
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E. ConvE
ConvE utilises a neural link prediction model that leverages
convolutional and fully-connected layers to model the
interactions between input entities and the relationships. The
key feature of the ConvEmodel is that the score is established
through a convolution performed over embeddings shaped in
2D. ConvE defines the scoring function as follows.

ψr (e1, e2) = f (vec(f ([e1;rr ] ∗ ω)) · W) · e2 (11)

where the relation parameter, rr ∈ Rk , in the Equation 11
depends on r . Additionally, e1 and rr are subject to 2D
reshaping, denoted as e1 and rr respectively. Specifically,
if both e1 and rr are elements ofRk , then their reshaped forms
e1 and rr ∈ Rkw×kh , where k is equal to kw × kh.
During the feed-forward pass, the model conducts a

row-vector lookup operation on two embeddingmatrices: one
for entities, represented as E |E |×k , and another for relations,
denoted as R|R|×k ′

. Here, k and k ′ are the dimensions of
entity and relation embeddings respectively, and |E | and |R|

represent the number of entities and relations respectively.
The model concatenates e1 and rr and uses the resulting
vector as input to a 2D convolutional layer with filters ω.
This layer produces a feature map tensor T ∈ Rc×m×n,
where c is the number of 2D feature maps and m and n
are their dimensions. The tensor T is then reshaped into
a vector vec(T ) ∈ Rcmn, which is subsequently projected
into a k-dimensional space via a linear transformation that
is parameterised by the matrix W ∈ Rcmn×k . Finally,
this projection is matched with the object embedding, eo,
through an inner product. It is important to note that the
convolutional filter parameters and the matrix W parameters
are independent of the parameters used for the entities e1 and
e2, as well as the relationship r . Equation 12 represents the
binary cross entropy function that is used to minimise the
model loss.

L(p, t) = −
1
N

∑
i=1

(ti · log(pi) + (1 − ti) · log(1 − pi))

(12)

where t represents the label vector and pi represents the
predicted probability.

V. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETUP
1) DATASET AND TRAINING
The data pre-processing used for the training the embedding
models consists of several steps. Initially, the dataset is
filtered for removing irrelevant predicates from the Football
Production dataset. These triples are then subsequently reor-
ganized in training and testing data. The data is then loaded
to undergo text tokenization. Following this, a vocabulary
is constructed and tokens are converted into indices. This
pre-processed data is then fed into the selected embedding
models for validation.

The dataset used for training and testing is 70% and 30%,
respectively. Section IV-B summarises the dataset used in
this research. The hypermeters are chosen by trying different
values and observing their impact on model performance.
Additionally, a learning rate of 0.0001 and latent feature
dimensions k of 200 are chosen to train the state-of-the-art
model. The number of negative triplets is set to five during
training for each positive triplet. With a batch count of 100,
the models are trained over 50 epochs. The loss function is
minimised using the Adam algorithm.

The missing links are generated by creating corrupted
triples, where either the head or tail of a valid triple is replaced
with a random entity, but not both at the same time. During
evaluation, for each test triple, the model computes and ranks
the dissimilarities of these corrupted triples after replacing
the head and tail with each entity from the dictionary, in turn,
to determine the rank of the correct entity. The performance
is then measured using metrics like mean rank and Hits@N,
which reflect the proportion of correct entities ranked in the
top 10, 3 and 1 predictions. Moreover, the ranking method
involves evaluating test triples against all other candidate
triples not present in the training, validation, or test sets. This
is achieved by substituting either the subject or the object of
a test triple with every entity in the knowledge graph, thereby
generating candidate triples.

2) EVALUATION METRICS
An overview of the evaluation metrics employed to evaluate
the accuracy of the rankings generated by these models
is discussed. We use two main assessment metrics: Mean
Reciprocal Rank (MRR) and Hits@N.

Mean Reciprocal Rank (MRR) calculates the average of
the reciprocal ranks of the true (or correct) triplets. The
reciprocal rank is the multiplicative inverse of the rank (that
is, 1/rank) Equation 13.

MRR =
1
N

N∑
i=1

1
Ri

(13)

MRR is sensitive to how well the model ranks the
highest-ranked true triplet, and a higher MRR indicates better
performance. MRR ranges from 0 to 1, with 1 being the best
possible score.

Hits@N (Equation 14) computes the percentage of true
triplets that appear within the top N positions in the ranked
list. We have used Hits@1, Hits@3 and Hits@10 for the
model evaluation. A higher Hits@N value indicates better
performance, as it means a larger proportion of true triplets
are ranked within the top N positions.

Hits @ N =
1
Q

Q∑
i

δ(ranki ≤ N ) (14)

where Q is the count of positive and negative triples, ranki is
the rank of the positive triples within these triples, and δ is an
indicator function that is 1 if ranki ≤ N , and 0 otherwise.
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FIGURE 3. Performance comparison of five KG embedding models on
unseen test data from the football manufacturing KG.

By comparing these metrics across different models, it can
be determined which model performs better in ranking true
triplets.

B. RESULTS
1) OVERALL RESULTS
The effectiveness of several KG embedding models, includ-
ing ComplEx, DistMult, TransE, ConvKB, and ConvE,
is thoroughly assessed. The experiments are carried out
five times (named as five tests) and evaluated the models
using the Mean Reciprocal Rank (MRR), Hits@10, Hits@3,
and Hits@1 metrics shown in Table 3. It is observed from
the overall results that the TransE model outperforms the
other models for all test scenarios for football manufacturing
production data in terms of MRR, Hits@10, Hits@3, and
Hits@1. Additionally, ConvKB showed competitive out-
comes, but none of the evaluation metrics saw it outperform
TransE.

2) MODEL PREDICTION RESULTS
The models described in Section IV are used to predict the
relationships between entities based on the known triples in
the KG.

The prediction results (Figure 3) on unseen test data from
the football manufacturing KG show that the models have
achieved varying average accuracy levels between 0 and
1. TransE outperforms the other models with an average
accuracy of 0.91, closely followed by ComplEx at 0.87 and
DistMult at 0.84. The ConvKB and ConvE models have
lower accuracies, with 0.79 and 0.76, respectively. The
better performance of the TransE is due to its strategy
of modelling the relationships as translations in the entity
embedding space. This approach works well for hierarchical
data, as entities in a hierarchical structure often have simple
and direct relationships. On the other hand, ConvKB and
ConvE are based on convolutional neural networks (CNNs),

FIGURE 4. Comparison of mean reciprocal rank (MRR) for link prediction
models i.e., ComplEx, DistMult, TransE, ConvKB, and ConvE on a football
manufacturing dataset. The p-values from pairwise t-tests are annotated
above the bars.

which are better suited for capturing complex and non-linear
patterns in the data. As the manufacturing production line KG
has a simple hierarchical structure, the convolutional layers in
ConvKB and ConvE could not provide significant results in
this case. Table 4 shows the accuracy achieved by five trained
models, ComplEx, DistMult, TransE, ConvKB, and ConvE,
for example, triples of unseen data.

3) STATISTICAL RESULTS
Significance tests, such as the t-test, are fundamental tools in
statistics used to determine whether the differences observed
between groups or models in an experiment are statistically
significant or merely due to random chance. The p-values
indicate the level of significance [59].We performed pairwise
t-tests between the MRR values of all potential model pairs
to statistically evaluate the performance of these models.
To evaluate the importance of the variations in MRR values
between the models, the resulting p-values were computed
from Table 3. Higher p-values imply that the difference
between the compared models is not statistically significant,
whereas lower p-values show a statistically significant
difference between the compared models. Figure 4 represents
the mean MRR values of the models, along with the pairwise
p-values, highlighting the differences in their performance.
The chart reveals that TransE outperforms the other models,
while ConvE has the lowest mean MRR. Furthermore, the
statistical analysis using t-tests shows significant differences
between several model pairs, as indicated by the low p-values.
Our research shows that the TransEmodel on the Hierarchical
KGs such as the manufacturing football dataset performs best
in terms of MRR.

4) TRAINING TIME ANALYSIS OF THE MODELS
The time analysis of training the models on the football KG
dataset is explained in this section. Our study has analysed
the training times of five state-of-the-art KG embedding
models (ComplEx, DistMult, TransE, ConvKB, and ConvE)
for 50 epochs. The training times for each model have been
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TABLE 3. Comparative evaluation of KG embedding models ComplEx, DistMult, TransE, ConvKB, and ConvE across five test scenarios using mean
reciprocal rank (MRR), Hits@10, Hits@3, and Hits@1 as performance metrics.

TABLE 4. Performance comparison of KG embedding models on example triples from unseen data.

FIGURE 5. Training time for five models (50 epochs) - Tests 1 to 5.

recorded across five tests (see 5), and the results have been
converted to minutes for easier comparison. The hardware
used for experiments and implementation involved Nvidia
GeForce GTX 1180 (8 GB of RAM) and Ubuntu 18.04.3 LTS
(64-bit) operating system. The DistMult and TransE models

have been found to have had the shortest training times,
taking an average of eight (8) minutes and twenty six (26)
seconds and eight (8) minutes and 25 (tewnty five) seconds,
respectively to complete 50 training epochs. On the other
hand, the ConvE model requires the longest training time,
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FIGURE 6. High level representation of Reference generalized ontological model used to develop Football production line knowledge graph.

with an average of seventy (70) minutes and twelve (12)
seconds, indicating that it to be slowest model to train for the
same number of epochs. The ComplEx and ConvKB models
have had intermediate training times.

The analysis also have revealed some variation in training
times between the different tests, particularly for the ConvE
model, which has shown significant differences in training
times between tests. Despite this variation, the DistMult and
TransE models consistently have demonstrated the fastest
training times throughout all tests. Overall, the findings
suggest that the DistMult and TransE models are the most
efficient models in terms of training times for KG embedding,
whereas the ConvEmodel is the slowest. These results inform
the choice of KG embedding models in different settings,
particularly those where fast training times are crucial for
KGs.

VI. DISCUSSION
Table 3 presents the results for various KG embedding
models, offering critical insights into their interaction within
specific KG frameworks, especially in manufacturing pro-
duction lines. The varied performance among the models,
especially the notable efficacy of translation-based models
such as TransE compared to neural network approaches like
ConvE, highlights the crucial role of choosing the right
model based on the KGs’ unique features, including its
straightforward structure and sparse inter-entity connections.
These observations emphasise the necessity for customised
KG embedding strategies, indicating that models with a more
straightforward, direct approach may outperform others in

environments with less complex entity relationships. For
instance, the better performance of TransE on our dataset
can be attributed to several key properties of the data.
The dataset has a hierarchical structure, with entities such
as Machine4_motor_Speed_3987 linked to specific
value like 199RPM via the relationship smo:hasValue. Addi-
tionally, processes like Oval_Printning_Process_1
use tools such as Machine2_Bed_1 and Machine2_
Heater_1 through smo:useTool relationships. TransE
excels in this context because it models relationships as trans-
lations in the embedding space, effectively capturing these
simple and hierarchical relationships. The sparse connectivity
and straightforward nature of the relationships in the dataset
further enhance TransE’s performance. TransE’s ability to
model relationships as h + r ≈ tfits well with the data’s
characteristics, allowing it to efficiently optimize translations
without the need for complex computations. These findings
suggest that TransE’s performance would translate well to
other knowledge graphs with similar properties, such as orga-
nizational charts, taxonomies, and Industry 4.0 applications
where manufacturing processes are clearly defined. In these
scenarios, TransE can effectively model hierarchical and
straightforward relationships, ensuring robust performance
and efficiency. Thus, TransE is particularly suitable for
applications involving clear and direct relational data.

Moreover, these results require further exploration into
refining KG embedding techniques, stressing the need to
match model strengths with KG attributes for enhanced
performance. This qualitative assessment not only highlights
the existing constraints of current models but also paves the
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way for future research and the practical deployment of KG
to specific domains.

VII. CONCLUSION
In this study is evaluated the performance of five state-of-
the-art knowledge graph (KG) embedding models, namely
ComplEx, DistMult, TransE, ConvKB, and ConvE, on a
KG constructed from an industrial dataset of a football
manufacturing production line. The objective of the research
has been to assess the models’ effectiveness in order to
identify the most suitable ones for a tree-like KG topology.
The TransE model has performed better than the other
models in terms of KG completion for the football dataset.
Although rest of the models have delivered competitive
results, however, it did not outperform TransE in any of
the assessment metrics. The t-tests statistical analysis has
revealed significant differences between several model pairs,
with TransE achieving the best result in terms of mean
reciprocal rank (MRR). In summary, this study advances the
practical use of KGs, which facilitate improved production
decision-making, and fosters the creation of more robust link
prediction models for complex KGs.

APPENDIX A
See Figure 6.
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