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ABSTRACT This paper presents the novel Stochastic decoding-convolutional neural network (SD-CNN)
structure, with the goal of enhancing 5G LDPC code’s decoding efficiency in the presence of correlated
noise of the channel. Applying the stochastic approach acts as an alternate technique to fixed-point LDPC
decoding to enhance the decoder’s hardware efficiency. In order to improve the efficacy of the decoder,
we adopted deep learning method such as Convolutional neural network (CNN). CNNs can be employed
for denoising purposes in communication systems, where signals may be compromised by diverse forms of
noise while being transmitted, with the aim of enhancing signal quality and dependability. The SD-CNN
architecture combines a trained CNN with a stochastic decoder of 5G LDPC codes, thereby utilizing the
CNN’s capability to accurately estimate channel noise and, consequently, enhance the error correction
capabilities of the decoder. The generated output of the trained CNN is then fed back into the stochastic
decoder, creating an iterative process between the SD and CNN that ultimately leads to superior decoding
performance. For 5G LDPC code word length N = 3808, with a base code rate R = 1/3, the suggested
SD-CNN architecture achieves a BER of 10−6 at 0.6 dB of SNR per bit in the strong correlation of channel
noise condition, in comparison to SD, which achieves a BER of 10−6 at 3.5 dB of SNR per bit. The results
demonstrate that there is a 2.9 dB improvement.

INDEX TERMS Channel coding, convolutional neural network (CNN), fifth generation (5G) wireless
technology, stochastic decoding (SD), low density parity check codes.

I. INTRODUCTION
Because of their superior error correction capabilities near
Shannon’s limit [1], [2], LDPC codes [3], [4] [5] have
emerged as a crucial channel codes in numerous commu-
nication standards. The standards, including 5G New radio
(NR) technology [6], IEEE 802.16e (WiMax) [7], 802.11
(WiFi) [8], and DVB-S2 [9]. It is recommended in the 5G
New Radio (NR) standards that Quasi-Cyclic (QC) LDPC
codes be used for data channels so that they can have high
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throughput and low latency [10]. To accommodate different
coding rates, these QC LDPC codes use two Base Graph
Matrices (BGMs)which are BGM-1 (Hb1) and BGM-2 (Hb2),
as well as 51 expansion factors [10]. TheHb1 can handle code
rates between 1/3 and 8/9, and it has 68 block columns and
46 block rows. With a size of 52 block columns and 42 block
rows, theHb2 is capable of supporting code rates ranging from
1/5 to 2/3.

In the context of 5G standard, a binary LDPC code is
defined by the null space of the parity check matrix (PCM)
H , which has dimensions of M × N over GF(2). A bipartite
Tanner graph is another graphical representation of the PCM.
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FIGURE 1. A Tanner graph of the LDPC code (6, 2).

Each row of H is made up of M check nodes in the Tanner
graph, and each column of H is made up of N variable
nodes. The process of decoding LDPC codes is carried
out iteratively on its bipartite Tanner graph utilizing the
message-passing algorithm such as Sum-product algorithm
(SPA) and Min-sum algorithm (MS). Figure 1 displays the
PCM H and associated Tanner graph for an example (6,
2) LDPC code. Two different types of nodes make up a
Tanner graph. One is the parity or check nodes (CNs),
which are represented by the nodes cn1, cn2, cn3, and cn4.
Another is the bit or variable nodes (VNs) are vn1, vn2,
vn3, vn4, vn5, and vn6. Depending on the number of ones
that are present in the PCM H of the code, these nodes are
connected to one another via bidirectional edges. The 5G
QC LDPC code’s PCM H is built and represented by its
BGM Hb. 5G New Radio (NR) specifications demonstrate
that the BGM-1 Hb1 is capable of supporting a variety of
coding rates, ranging from 1/3 to 8/9. However, the irregular
degrees and diverse connections between the nodes of these
BGMs create a more complex inter-node routing network
in traditional decoders based on the MS algorithm [12]
and SPA [11]. This problem is further aggravated by using
multi-bit representation of the Logarithmic-Likelihood Ratio
(LLR) symbol messages Lvs , which requires high hardware
resources. An alternative approach involves transforming
channel probability values Pvs into stochastic bit sequence
representations using stochastic approach to decoding [13],
[14]. This method simplifies the implementation of logic
units and decreases the complexity of inter-node routing [16]
in the stochastic decoders. The error correcting capabilities
of these stochastic decoders are on par with those of
conventional fixed-point decoders [14].
For the purpose of determining the inter-node routing

complexity [15], the number of node-interconnects (nI ) of a
decoder is computed using (1) expressed as

nI = 2 × N × e× wv. (1)

The length of the codeword is N , the extrinsic message
length is e, and the column weight is wv. As an illustration,
SPA and SD based decoders are used to decode a 1/3-rate,
N = 3808 LDPC code with an average column weight wv =

4.56. For SPA based decoders, 138,916 node-interconnects
of routing are needed, and for SD, 34,729 are needed.
The four-fold decrease in node-interconnects in SD can
be attributed to extrinsic message length variation in these
decoders. While SD uses an extrinsic message length of e =

1 due to bit-wise computations in the SD, SPA based LDPC
decoders require an e = 4.
Stochastic decoding (SD) reduces the inter-node routing

complexity compared with Belief propagation(BP) algo-
rithms like MS and SPA. However, using CNN will
significantly raise the complexity. Nevertheless, the hardware
complexity of SD-CNN is lower than that of the combined
SPA and CNN design. The SD-CNN model exclusively
employs basic arithmetic operations such as additions,
multiplications, and ReLU operations. In contrast, a BP
technique incorporates more complex nonlinear operations
such as tanh, arctanh, exponential, and logarithms. It would
be interesting to do more study in the future on a full
complexity comparison based on FPGA and ASIC design.

A. URGENCY OF DEALING WITH COLORED NOISE
In the field of signal processing and communication system
related areas, the term ‘‘colored noise’’ is used to describe
a signal or process that has a power spectrum which is not
uniform. This means that the signal has varying levels of
energy at different frequencies. Colored noise significantly
affects error patterns in transmitted and received signals
in communication systems using Low-Density Parity-Check
(LDPC) codes. Addressing colored noise is crucial for system
performance and reliability.

The satellite communication system faces issues with
low-frequency noise due to atmospheric and ionospheric
influences. To correct this, adaptive LDPC codes are used.
This method dynamically modifies parameters based on
real-time channel spectral analysis. For noisy frequencies,
a lower code rate is used, while cleaner frequencies require
a higher code rate for increased throughput. Wireless
sensor networks detect colored noise from machinery and
electronic equipment in industrial settings, affecting various
electromagnetic spectrum portions. Real-time monitoring
adjusts the LDPC coding rate to accommodate fluctuating
intensity and spectral properties of industrial noise, ensuring
efficient noise detection and management.

5G networks face challenges in addressing colored noise
due to high data rates, diverse channel conditions, and
advanced modulation techniques. Maintaining accuracy in
these conditions is challenging, especially under non-ideal
noise conditions. The technology is used in urban and rural
areas with dense signal clutter, potentially leading to various
forms of colored noise. Accurate noise modeling is crucial
for effective decoding in 5G networks.
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FIGURE 2. A Simplified communication system model.

Noise correlation in communication systems often arises
from filtering, oversampling, and device noise. This phe-
nomenon is evident in digital systems, where pink noise is
generated by clock jitter [17] and phase noise. LDPC codes
face performance degradation when subjected to colored
noise, which poses a challenge due to its inherent complexity.
One potential solution is the application of whitening,
a technique that converts colored noise into white noise.
However, this approach necessitates matrix multiplication,
which becomes burdensome for lengthy LDPC codes.

Researchers are exploring deep learning techniques on
digital communication issues, like channel coding. The
development of an SD-CNN architecture to optimize the
decoding capability of 5G LDPC codes is inspired from [18].
The architecture combines a trained Convolutional neural
network (CNN) with a standard Stochastic decoder, with
received symbols processed iteratively between the two. The
Stochastic decoder processes the received symbols to acquire
the initial decoding results, including the estimated channel
noise. This noise passes into a CNN to reduce estimation
errors of the SD and get better noise estimation. Iterating
between the SD and CNN gradually enhances the SNR per
bit Eb/No and results in improved decoding.

Our Contributions:

• The key contribution of this work is the proposal of
a new Iterative SD-CNN architecture for 5G standard
LDPC codes. This design was developed for code word
length N = 3808, with code rates of R = 1/3, 2/5, 1/2,
2/3, 3/4, 5/6, and 8/9 for BGM-1.

• The effects of various loss functions of CNN on our
proposed design were also investigated.

• We integrated the field of channel decoders with
contemporary deep learning techniques to achieve a
2.9 dB improvement.

The structure of this document is as follows. The
foundational ideas of stochastic decoding, colored noise, and
the 5G NR LDPC code’s Base graph matrix (BGM) are
presented in Section II. The suggested design is the main
topic of Section III. Results of implementation are given in
Section IV. Section V concludes with a note.

II. PRELIMINARIES
A. SIMPLIFIED COMMUNICATION SYSTEM MODEL
The simplified communication system model in the context
of channel coding is shown in Fig. 2. In which, the message
block vector m, consisting of K bits, is encoded to obtain
the codeword c. This codeword is a vector of N bits,
achieved by appending (N − K ) parity bits to the message
block. By utilizing Binary Phase Shift Keying (BPSK)
modulation, the modulator generates the modulated symbol
vector x. Subsequently, this vector is transmitted over the
communication channel and transformed into the received
signal vector y = x + n by adding the noise vector n.
The channel noise vector n, which has a length of N . The
LDPC decoder block is enlarged and shown as a stochastic
decoder in Fig. 2. It is made up of comparators (comp)
at the stochastic variable nodes (SVN), stochastic check
nodes (SCN), and a routing network that connects the
nodes.
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B. COLORED NOISE
In the context of correlated noise such as colored noise,
an Auto-regressive (AR) process of order 1 is used to model
noise, where each value in the series is a combination of its
previous value and a white noise term. This results in noise
with a spectral density that is not flat. In this process, each
noise value ns is defined as

ns = C × ns−1 + ws, (2)

where ns is the noise value at time s, C is the correlation
coefficient between consecutive noise samples, with 0 <

C < 1, and ws is the white noise at time s with zero mean
and variance σ 2

w.
In this process, the variance σ 2

n , assuming the process
is stationary variance, and the covariance between any two
samples ni and nj is given by

σ 2
n =

σ 2
w

1 − C 2 , (3)

Cov(ni, nj) = C |i−j|
× σ 2

n . (4)

Thus, the entire sequence n = [n1, n2, . . . , nN ]T also
forms a Gaussian column vector, characterized by its mean
and covariance matrix. The covariance matrix is defined by

Xij = C |i−j|
× σ 2

n . (5)

The equation (5) describes how the correlation between
any two noise values ni and nj depends exponentially on the
distance |i− j| between their time indices, modulated by the
correlation coefficient C .

When the diagonal elements has indices i = j, then
Xii = σ 2

n . This represents the variance of each noise sample
ni, which is σ 2

n , since it includes the entire variance of the
white noise added at that step. For off-diagonal elements has
indices i ̸= j, the terms Xij demonstrate how the correlation
decreases as the distance |i − j| increases. Specifically, the
correlation coefficient raised to the power of the distance
between the indices determines the strength of the correlation.
If C is close to 1, the correlations decay slowly, implying
that past values have a substantial influence on future values.
Conversely, if C is close to 0, the correlations decay rapidly,
making ni and nj almost independent when they are far apart.

The covariance matrix X is always positive definite if
|C | < 1. This ensures that the matrix can be inverted,
which is essential for various statistical and signal processing
applications, such as computing the likelihoods needed for
LLR calculations. X is symmetric (Xij = Xji), a property
inherent to covariance matrices. This symmetry simplifies
mathematical manipulations and computational methods, like
Cholesky decomposition, used in simulations and analyses.
Since each off-diagonal element depends only on the distance
between indices and not on the indices themselves, X is a
Toeplitz matrix. This structure allows for efficient algorithms
in matrix computations, which can be exploited in signal
processing and machine learning tasks. For the 4-sample

scenario, the covariance matrix X4 is represented as

X4 =


σ 2
1 C σ1σ2 C 2σ1σ3 C 3σ1σ4

C σ1σ2 σ 2
2 C σ2σ3 C 2σ2σ4

C 2σ1σ3 C σ2σ3 σ 2
3 C σ3σ4

C 3σ1σ4 C 2σ2σ4 C σ3σ4 σ 2
4

 ,

where σ 2
1 , σ

2
2 , σ

2
3 , and σ 2

4 are the variances of the four noise
samples, andC represents the correlation coefficient between
consecutive samples. Assume the case C = 0.5, and the
variances of the noise samples σ 2

1 = σ 2
2 = σ 2

3 = σ 2
4 =

σ 2
= 1, and the covariance matrix is simplified as

X4 =


1 0.5 0.25 0.125
0.5 1 0.5 0.25
0.25 0.5 1 0.5
0.125 0.25 0.5 1

 .

For anAR(1) process, the covariancematrixX is a Toeplitz
matrix given by

X = σ 2
n


1 C C 2

· · · C N−1

C 1 C · · · C N−2

C 2 C 1 · · · C N−3

...
...

...
. . .

...

C N−1 C N−2 C N−3
· · · 1

 ,

where N is the size of the noise series.

C. LLR CALCULATION IN THE PRESENCE OF COLORED
NOISE
The received signal at time s when transmitting BPSK
symbols xs ∈ {+1,−1} is given by

ys = xs + ns. (6)

The LLR for symbol xs is calculated by

Lvs = log
P(xs = +1/ys)
P(xs = −1/ys)

. (7)

Assuming that the noise ns follows the AR(1) process, and
following the Gaussian probability distribution functions as

P(ys/xs = ±1) =
1

√
2π det(X )

× exp
(

−
1
2
(ys ∓ 1)TX−1(ys ∓ 1)

)
. (8)

Computing the LLR as

Lvs = −
1
2

[
(ys − 1)TX−1(ys − 1)

]
+

1
2

[
(ys + 1)TX−1(ys + 1)

]
. (9)

By simplifying this expression as

Lvs = −
1
2

[
yTs X−1ys − 2yTs X−11 + 1TX−11

]
+

1
2

[
yTs X−1ys − 2yTs X−11 − 1TX−11

]
. (10)
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TABLE 1. An illustration of the generation of stochastic bit sequence.

Thus, the LLR is

Lvs = 2yTs X−11,

where X−1 is the inverse of the covariance matrix of the
AR(1) noise process, and 1 is a column vector of ones.

D. STOCHASTIC DECODING
In [19], a stochastic method for decoding of LDPC codes
was presented. During this decoding procedure, the channel
probability values that have been received at each node
are transformed into an equivalent stochastic bit sequence.
Typically, the LLR of the s-th symbol xs of x can be
determined by utilizing the y at the stochastic variable node
SVNs, which is represented as Lvs . The probability of this
symbol is calculated as Pvs .

At the initial stage of decoding, the value of P equivalent
of Pvs is compared with the Pseudo-Random Number (PRN)
U of the Comparator [20] and produces the stochastic bit
sequence as shown in Fig. 3. If P is greater than U , then
the Comparator will output 1 at that clock cycle; otherwise,
it will output 0. For instance, consider the Pvs = 0.3125 is
denoted as P = 0101, which is four-bit fractional symbol.
A new four-bit PRN U is generated at each clock cycle
by a PRN generator made up of a Linear Feedback Shift
Register (LFSR) [21]. The comparator is used to compare
P = 0101 with newly generated U with every clock
cycle. The Comparator produces the stochastic bit sequence
01101000, which corresponds to P = 0.3125, as indicated in
Table 1. This output is obtained after eight clock cycles. With
a mean value of 3/8, this sequence is in close proximity to
Pvs = 0.3125 [22]. The generated stochastic bit sequence
is bitwise exchanged between the stochastic check nodes
(SCN) and the stochastic variable nodes (SVN) throughout
the decoding process, continuing until either the desired
codeword is discovered or themaximum decoding cycle (DC)
limit is reached [23].
In Table 2, an implementation and performance com-

parison between the SD and alternative LDPC decoders
based on normalised min-sum (NMS) and combined min-
sum (CMS) is presented. It has been demonstrated that
the SD design greatly reduces the complexity of the
decoder architecture. With respect to the reported decoders,

FIGURE 3. Schematic of comparator.

TABLE 2. A comparison of results.

the SD design [28] shows an area efficiency gain of
26% over [27], 62% over [26], 51.11% over [25], and
77.36% over [24].

E. THE BASE GRAPH MATRIX (BGM) OF 5G NR LDPC
CODE
The BGM Hb [29] is utilized to represent and construct the
PCM H of the 5G LDPC code. The dimensions of H and Hb
areM×N andmb×nb respectively. Both the dimensions are
related as N = nb × zc and M = mb × zc. The lifting size,
denoted as zc, is used to expand the entries ofHb inH using a
zc×zc square sub-matrix. There are three types of entry values
such as ‘−1’, ‘0’, and non ‘−1’ values are present inHb. InH ,
a zero matrix of size zc × zc takes the place of the entry value
‘−1’ fromHb, and the Identity matrix of size zc×zc takes the
place of the value ‘0’. In H , the circulant permutation matrix
I (si,j) is used in place of the non ‘−1’ entry value ofHb, which
is also called the shift value and ranges from 1 to zc for all
values of si,j. The entry’s row and column indices are denoted
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FIGURE 4. Proposed SD-CNN design.

TABLE 3. Parameters and their values of BGM-1.

by the subscripts i and j, respectively. All rows of the identity
matrix are given a right-shift value of si,j positions to make
the sub-matrix I (si,j). Based on the chosen BGM and the set
index iLS , the value of si,j is extracted from Tables 5.3.2-2
and 5.3.2-3 of the 5G-NR standards 3GPP TS 38.212 [10].
The BGM-1 was built in this study using LDPC code with
dimension 46×68. Themessage block length was set at 1232,
the code word length was set at 3808, and the code rate was
set at 1/3. According to Table 3, the BGM-1 parameters and
their values are detailed, and Table 4 displays the constructed
BGM-1.

The proposed design incorporates a Rate matching unit
to generate the desired coding rate for LDPC codes. Rate
Matching Techniques allow the decoders to handle punctured
(rate-increased) or shorted (rate-decreased) versions of the
mother code without significant loss in decoding perfor-
mance. This involves algorithms that can reconfigure based
on the presence or absence of bits. The suggested SD [28]
has runtime flexibility and the capability of decoding received
messages corresponding to the set of seven code rates R =

1/3, 2/5, 1/2, 2/3, 3/4, 5/6, and 8/9 and codeword length
N = 3808 for QC LDPC code compliant to the 5G NR
standard. It has been observed that the BER performance
improves at lower code rates such as 1/3 and 2/5. Conversely,
this performance declines for higher code rates such as 5/6
and 8/9.

III. PROPOSED DESIGN
This section explains the process of the proposed SD-CNN
design, as shown in Fig. 4. It also describes the structure of
the CNN architecture and the role of the custom cost function
in CNN.

A. A FLOW CHART FOR SD-CNN DESIGN
The flow chart of the SD-CNN design process is shown
in Fig. 5, which starts at the communication system
receiver side. After receiving the signal y, the LLRs and
their corresponding probability values of the symbols are
calculated as

P(1)vs = P(xs = +1/ys) =

[
eL

(1)
vs

eL
(1)
vs + 1

]
. (11)

Similarly, all symbol’s calculated values are provided as input
to the Stochastic decoder to estimate the symbol vector x̂.
Due to decoding errors, the estimated channel noise n̂ does
not precisely match the actual channel noise n. The estimated
channel noise is determined as

n̂ = n + e. (12)

Here, e is the error vector of noise. The estimated channel
noise n̂ is fed into trained CNN to generate output as n̂c.
The CNN utilizes the correlation property of the channel
noise n, which can be regarded as a feature and effectively
suppresses the error e to estimate the accurate channel noise.
After obtaining CNN output n̂c and subtracting it from the
received signal y, the new vector ŷ is calculated as

ŷ = y − n̂c = x + n − n̂c = x + rc, (13)

where rc = n − n̂c is residual noise. After that, the updated
vector ŷ is sent through the stochastic decoder again, and
another round of decoding is carried out. Prior to the second
round of decoding iterations, the following LLR values must
be updated as L(2)vs . The superscript (2) of Lvs indicates
the LLR’s value after it has been processed by CNN. The
properties of rc will have an impact on the computation
of updated LLR values and their consequent impact on
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TABLE 4. Base graph matrix.

the efficiency of the following Stochastic decoding process.
Hence, it is imperative to train the CNN in a manner that
facilitates to accurate estimation of the channel noise by
effectively suppresses rc by adopting a custom cost function
T as shown in (17).

B. STRUCTURE OF CNN FOR NOISE ESTIMATION
The proposed SD-CNN design has utilised a 1-D CNN.
It is a variation of the standard CNN designed to process
one-dimensional data. The Fig. 6 illustrates the CNN’s
architecture, which is specified by the number of layers,
kernel or filter sizes, and feature maps within each layer.
Before beginning the training of the network, certain param-
eters need to be decided. In most CNN designs, the fully
connected, dropout, and max pooling layers are essential.
In our architecture, these layers are not taken into account,
because the output of the CNN’s representation remains at a
low level, and its size is the same as that of the CNN input.

The adopted CNN has five convolutional layers. The
operation of a 1-D convolutional layer in a network involves
the application of kernels to the input data. The input to a
1-D convolutional layer is a one-dimensional sequence of
data. After stochastic decoding, the estimated channel noise

n̂ is applied as the input of CNN, a 1-D vector of dimension
3808× 1. The convolutional layer contains a set of learnable
kernels or filters. Each kernel is a small segment of weights
slid across the input data. The filter is convolved, which is
element-wise multiplication and summation with the input
sequence. This operation is performed by sliding the filter
along the input data. The result of the convolution operation
is a single value that represents the presence of a particular
pattern or feature in the input data. This result is then
placed in a new array called the ‘‘feature map’’. In practice,
a convolutional layer typically has multiple filters. Each filter
can detect a different feature or pattern in the input data. The
β-th feature map of α-th layer fα,β is calculated as

First layer : f1,β = ReLU(k1,β ∗ n̂+ b1,β ), (14)

Mid layers : fα,β = ReLU(kα,β ∗ fα−1 + bα,β ), (15)

Last layer : n̂c = kL ∗ fL−1 + bL . (16)

The terms kα,β , bα,β are β-th kernel and bias of the α-
th layer. Following the convolution process, non-linearity is
introduced element-by-element using an activation function
such as the Rectified Linear Unit (ReLU) [30]. The output
of the convolutional layer is a set of feature maps, one for
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FIGURE 5. SD-CNN flowchart.

FIGURE 6. Proposed CNN structure.

each filter applied to the input. Each feature map represents
the presence of a specific pattern or feature. The process
described above is repeated for each filter in the layer,
producing a variety of feature maps that each obtain a
distinctive aspects of the input data.

1) CUSTOM COST FUNCTION
Custom cost functions refer to functions that the user
defined to address specific requirements in a learning task.
These functions evaluate the dissimilarity or error between
predicted outputs and actual target values during the training

89880 VOLUME 12, 2024



S. Prasad Tera et al.: CNN-Based Approach for Enhancing 5G LDPC Code Decoding Performance

process. In the proposed design, CNN is employed to
estimate the channel noise, and its output has an impact on
the performance of Stochastic decoding in the subsequent
iteration. Consequently, it is crucial to carefully select an
appropriate cost function by thoroughly considering the
relationship between CNN and the subsequent Stochastic
decoding. The newly defined cost function is denoted as

T =
||rc||2

N
+ ρ

(
S2 +

1
4
(C − 3)2

)
, (17)

where ∥rc∥2 is the squared norm of the residual noise, rc =

n − n̂c is residual noise, n is actual channel noise, n̂c is the
estimated noise by the CNN, N represents the length of the
codeword, ρ is a scaling factor that balances the importance of
the noise reduction term against the distribution shape terms,
and S, C are the skewness and kurtosis of the training data,
respectively.

The initial term in equation (17) measures the power
of the residual noise, while the second term, borrowed
from the Jarque-Bera test [31], functions as a normality test
to assess the extent to which a given data set follows a
Gaussian distribution. The scaling factor ρ is employed to
strike a balance between these two objectives. We adopted
a custom cost function that includes terms for skewness (S)
and kurtosis (C) of the training data. The cost function aims
to minimize not only the residual noise but also adjusts the
distribution of estimated noise to closely match a normal
distribution by considering its skewness and kurtosis. The
Squared Norm of Residual Noise term ( ∥rc∥2

N ) aims to
minimize the average power of the residual noise across all
observations, pushing the network towards accurate noise
estimation. The regularization term ρ

(
S2 +

1
4 (C − 3)2

)
adds a penalty for deviations from the normal distribution
characteristics. The Skewness Squared (S2) term penalizes
asymmetry in the noise estimates. The Excess Kurtosis
Squared ( 14 (C−3)2) penalizes deviation from the normal level
of tailedness. The steps to implement this cost function in the
training of a CNN are

• Compute residual noise rc: Calculate the difference
between actual and estimated noise for each sample.

• Calculate Skewness and Kurtosis: Utilize statistical
functions to compute the skewness and kurtosis of the
estimated noise over the training batch.

• Combine in Cost Function: Use the defined cost function
T to compute the loss during each training step.

• Optimize: Use an optimization algorithm (like SGD or
Adam) to minimize rc across training epochs, adjusting
the network weights accordingly.

Skewness measures the asymmetry of a data distribution
around its mean. It is typically calculated using the following
formula:

S =

1
N

∑N
i=1(ri − r)3(

1
N

∑N
i=1(ri − r)2

)3/2 , (18)

where ri are the individual observations, and r is the
mean of the observations. This formula takes the cube
of each observation’s deviation from the mean (measuring
asymmetry), normalizes it by the cubed standard deviation
(to make it dimensionless), and averages it across all
observations.

Kurtosis measures the tailedness of the distribution,
focusing on the tails relative to the rest of the data. The
formula for kurtosis used in many statistical applications is:

C =

1
N

∑N
i=1(ri − r)4(

1
N

∑N
i=1(ri − r)2

)2 . (19)

This formula measures how much of the data is in the tails:
a higher kurtosis indicates heavier tails (more outliers), and a
lower kurtosis indicates lighter tails.

2) CHANNEL NOISE IN TRAINING
Both the estimated noise n̂ data from the results of stochastic
decoding and the channel noise n data are required to
ensure the network is trained effectively. We focus on the
receiver-recognized noise correlation functions of channel
models [32]. This allows us to produce adequate channel
noise samples for use in training the network. These samples
are produced as a result of the below relationship.

n = X
1
2 ng, (20)

where ng is a vector of Gaussian random variables with
a standard distribution that are independent and identically
distributed (i.i.d).

3) CONVOLUTION OPERATION IN CNNS
The convolution operation in a CNN applied to colored
noise data involves sliding a filter (kernel) across the input
noise vector. For each position of the filter, a dot product is
computed between the filter weights and the segment of data
it covers. Assume a filter with weights [g1, g2, . . . , gk ] of size
k , and a segment of the AR(1) series covered by the filter at
time t is [nt−k+1, . . . , nt ]. The convolution at this position is
calculated as

Vt = g1 · nt−k+1 + g2 · nt−k+2 + · · · + gk · nt . (21)

This result, Vt , is the output for that filter position,
contributing to one element of the feature map. After
computing the convolution, the ReLU (Rectified Linear Unit)
activation function is applied to the convolution output.
Applying ReLU to Vt yields

Rt = max(0,Vt ). (22)

The convolution operation combined with the ReLU
activation can effectively highlight regions of autocorrelation
in the time series. If the series is positively auto-correlated and
C is close to 1, successive values of the series are similar and
positive. Suppose the filter weights are designed to detect this
similarity (e.g., all positive). In that case, the convolution Vt

VOLUME 12, 2024 89881



S. Prasad Tera et al.: CNN-Based Approach for Enhancing 5G LDPC Code Decoding Performance

TABLE 5. CNN parameters.

at positions where Xt and Xt−1 are both positive will also be
positive and significant, thus surviving the ReLU activation.
ThismeansRt will be high in regionswhere the series exhibits
strong positive autocorrelation, effectively highlighting these
regions in the feature map.

IV. IMPLEMENTATION RESULTS
A. APPROACH
To validate the design, the 5G LDPC code word length
N = 3808 of BGM1 with base code rate R = 1/3 is used.
Google Colab, MATLAB, and Tensor Flow [33] are used to
build the simulation platform. A neural network’s weights
can be initialized [34] using a method called the He Normal
initialization. This method initializes the weights in such a
way as to facilitate the neural network’s capacity for efficient
learning. Prior to training the network on the training data,
it must be generated. To test the network cost function and
prevent possible over fitting, some validation data is also
generated, as is standard procedure in machine learning. The
training data are produced using a variety of signal-to-noise
power (SNR)s, including 0 dB, 0.5 dB, 1 dB, 1.5 dB, 2 dB,
2.5 dB, 3 dB, 3.5 dB and 4 dB. Each SNR’s data takes up
the same percentage of the total data. The network is trained
using a classic mini-batch gradient descent approach. There
are 1200 blocks of data in each mini-batch, and each SNR’s
data takes up the same amount of space. To find the gradient,
a fixed number of training samples, called a ‘‘mini-batch,’’
are picked at random in each iteration. When searching
for the optimal parameters for the network, we make use
of the Adaptive Moment Estimation (Adam) optimization
method [35]. Training is continued in our simulation until the
loss does not reduce over an extended length of time. The
CNN parameters and their values are described in the Table 5.
One measure of a system’s performance is its bit error rate
(BER). This measurement takes into account the channel’s
SNR Eb/No at a specified BER of 10−6, which is the

FIGURE 7. BER plot of various algorithms.

FIGURE 8. Relation between performance gain and correlation
coefficient.

decoder’s transmission energy efficiency. One hundred frame
errors per BER measurement is required by the simulations.

B. EVALUATION OF PERFORMANCE
The performance of the design depends on three parameters
such as the correlation coefficientC , the scaling factor ρ, and
the number of repetitions between SD and CNN.

1) THE CHOICE OF CORRELATION COEFFICIENT
This study focuses on three scenarios in which the correlation
coefficient of the channel noise C was either 0.9 indicating
a high correlation, 0.6 indicating a moderate correlation, or
0 indicating no correlation. Simulation results focused on
the suggested one-iteration of the SD-CNN decoder (SD-
CNN)1. As shown in Fig. 7, when C = 0.9, the decoding
performance of SD-CNN improved by about 2.9 dB at a
BER of 10−6. The performance gain is smaller when the
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FIGURE 9. BER plot of (SD-CNN)1 for all tested ρ values.

correlation is moderate C = 0.6. It demonstrates that when
the correlation is weaker, using a CNN has less impact. When
C = 0, the proposed design works similarly to standard
stochastic decoding (SD), in which the noise samples are i.i.d.
The results lead us to conclude that the iterative SD-CNN
decoding method works well across various of correlation
coefficients, with performance gains that vary adaptively
depending on the correlation of the noise. The performance
gain improves steadily as correlation level C , as expected,
because a higher C allows CNN to extract the correlation of
noise as a feature. The performance gain of proposed decoder
increases when there is increase in correlation coefficient of
the channel noise C as shown in Fig. 8.

2) THE SELECTION OF SCALING FACTOR
The study presents a custom cost function T that measures
normality component and power of residual noise rc. The
value of ρ in T , plays a significant role in achieving a
balance between the power of rc and its distribution. From
simulations, it has been observed the very little values of ρ

are unable ensure a Gaussian distribution for the rc, while
extremely high values of ρ are unable tominimise the residual
noise power. Therefore, an appropriate selection of ρ affects
the performance of SD-CNN.

The results of adopting various values of the scaling factor
ρ at two distinct channel correlation coefficients C = 0.9 and
0.6, using an architecture of (SD-CNN)1, are shown in the
Fig. 9. The Table 6 displays the results for two different
values of C . When C is 0.9, a Bit Error Rate (BER) of 10−6

is reached at ρ = 0.1. On the other hand, when C is 0.6,
a BER of 10−6 is achieved at ρ = 10. The value ρ = 0.1 is
performing best for high correlation case C = 0.9 and ρ =

10 for moderate correlation case C = 0.6. The smaller ρ of
T is preferred for high correlation coefficient C which makes
residual noise distribution approximately follow the Gaussian

TABLE 6. BER values of (SD-CNN)1 for all tested ρ values.

distribution. On the other hand, when correlation weakens
and input elements become more independent, it is preferable
to have a larger ρ to better address residual noise distribution.

3) IMPACT OF NUMBER OF REPETITIONS BETWEEN CNN
AND SD
Previously, the simulation results focused on the suggested
one-iteration of the SD-CNN decoder, which is represented
as (SD-CNN)1. In order to further improve the performance
gain, we may naturally do many iterations between CNN
and SD. At BER = 10−6, the decoding performance may be
improved by 0.5 dB using four iterations between CNN and
SD, which is represented as (SD-CNN)4 compared to (SD-
CNN)1 as shown in Fig. 10. From Table 7, the performance
increase also becomes negligible beyond four iterations of the
SD-CNN. It is due to the CNN having hit its limit and being
unable to reduce the remaining noise power any more.

C. IMPACT OF VARIOUS LOSS FUNCTIONS
Loss functions are broadly divided into two types: regression
loss and classification loss. In our design results are regres-
sion like predicting the continuous values. Here, regression
loss is applied. When assessing the efficiency of ML models,
especially for regression tasks, two popular metrics are Mean
Absolute Error (MAE) and Mean Squared Error (MSE) [36].

VOLUME 12, 2024 89883



S. Prasad Tera et al.: CNN-Based Approach for Enhancing 5G LDPC Code Decoding Performance

TABLE 7. Estimation of SNR (dB) at BER of 10−6 from various repetitions between CNN and SD.

FIGURE 10. BER plot of various iterations between SD-CNN design when
C = 0.9, ρ = 0.1.

These metrics assist in determining how well the predictions
match the actual data points by measuring the difference
between the predicted and actual values. The Mean Squared
Error (MSE) is a measure of how close an estimate is to the
true value, or how far off it is. It is calculated by averaging
the squares of all of the errors. The formula for MSE is

MSE =
1
N

N∑
i=1

(ni − n̂µ)2, (23)

where ni is the ith element in the noise vector, n̂µ is the sample
mean, and N is size of the coded block. MSE is sensitive
to outliers as squaring the errors amplifies the effects of
these points on the error metric. MAE measures the average
magnitude of the errors in a set of predictions, without
considering their direction (i.e., it takes the absolute value of
each error). The formula for MAE is

MAE =
1
N

N∑
i=1

|ni − n̂µ|, (24)

where |ni− n̂µ| is the absolute error between the actual values
and the predicted values, N is size of the coded block. MAE
is particularly useful because it provides a direct average
error magnitude from the model predictions. We considered
three main types of loss functions, such as Mean Squared
Error (MSE), Mean Absolute Error (MAE), and the proposed
Custom cost function T . The proposed cost function is a

FIGURE 11. BER plot of (SD-CNN)1 design of various loss functions.

technique used to maintain the balance between power and
distribution of residual noise. The study involves training of
the (SD-CNN)1 model using three different loss functions.
The simulated results are then observed in a Fig. 11, using a
scaling factor of ρ = 0.1, channel correlation coefficient C =

0.9, and one iteration between SD and CNN. From Fig.11,
the performance gain improved by 0.3 dB by considering the
custom cost function T when compared other loss functions.

V. CONCLUSION
To address channel correlated noise, we have developed a
unique SD-CNN decoding architecture in this study. The
suggested architecture consists of iterating between a CNN
and a stochastic decoder once they have been sequentially
concatenated together. The purpose of the stochastic decoder
is to make an estimate of the bits that have been coded as well
as an indirect estimate of the channel noise. By understanding
the noise correlation, the CNN will be able to eliminate the
channel noise estimation mistakes of the stochastic decoder.
Extensive simulations were performed to demonstrate the
efficacy of the proposed SD-CNN decoder.

ABBREVIATIONS AND ACRONYMS
5G NR Fifth Generation New radio
AWGN Additive White Gaussian Noise
BER Bit error rate
BGM Base Graph Matrix
BPSK Binary Phase Shift Keying
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CMS Combined min-sum
CNN Convolutional neural network
Eb/No Signal-to-noise ratio per bit
i.i.d independent and identically distributed
LDPC Low density parity check codes
LFSR Linear Feedback Shift Register
LLR Logarithmic-Likelihood Ratio
MAE Mean Absolute Error
MS Min-sum algorithm
MSE Mean Squared Error
NMS Normalised min-sum
PCM Parity check matrix
PRN Pseudo-Random Number
QC Quasi-Cyclic
SCN Stochastic check nodes
SD Stochastic decoding
SNR Signal-to-noise ratio
SPA Sum-product algorithm
SVN Stochastic variable nodes
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