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ABSTRACT The emergence of Convolutional Neural Networks (CNNs) and Vision Transformers (ViT)
has markedly transformed the field of image classification and analysis, especially within the realm of
computer vision. This advancement has significantly impacted various sectors, includingmedical diagnostics
and autonomous driving, while also fostering novel intersections with artistic exploration. Despite these
advancements, the challenge of seamlessly integrating art style classification with emotion prediction
remains. The complex interplay between an artwork’s style and the emotional reactions it triggers requires
a refined methodology to accurately encapsulate this dynamic relationship. Addressing this challenge, our
study presents a Unified Model for Art Style and Emotion Prediction (ASE), which adopts a multi-task
learning approach. This model is structured around three main elements: Artwork Style Classification,
Emotion Prediction for viewers of art, and a Task-Specific Attention Module. By incorporating a pre-trained
image encoder alongside a task-specific attention mechanism, our framework facilitates the concurrent
processing of multiple tasks, while honing in on specialized feature representations. The efficacy of our
model is validated through the Artemis dataset, demonstrating its proficiency in both precise art style
classification and the identification of emotional responses. This highlights its capability to navigate the
complex relationships present within artworks effectively.

INDEX TERMS Art analysis, multi-task learning, style classification, emotion detection, attention
mechanism.

I. INTRODUCTION
The advancement of Computer Vision, especially with the
development of Convolutional Neural Networks (CNNs)
[1], [2] and Vision Transformers (ViT) [3], has marked
a new era in image classification. This technological leap
has made these tools exceptionally proficient in extracting
intricate semantic content, revolutionizing fields like image
segmentation and target detection. Their applications extend
beyond traditional boundaries, significantly impacting areas
from medical diagnostics to autonomous driving systems,
demonstrating a profound shift in how computers process
visual data.

In the realm of art, these technological strides have created
a unique intersection between computational capabilities
and artistic exploration. Computer Vision tasks [4], [5],
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[6], [7], [8] such as style classification, emotion detection,
image restoration, and color analysis have become integral in
understanding and interpreting art. These tools have empow-
ered researchers and artists alike, offering new methods
for categorizing artistic styles, deciphering the emotions
conveyed through art, restoring aged or damaged artworks,
and analyzing the intricate color dynamics present in various
art forms.

The evolution in image classification and analysis not
only enhances our comprehension of visual data but also
introduces new prospects in the realm of multi-task learn-
ing [9], [10], [11], particularly in the art world. Here, the joint
training in tasks such as style classification and sentiment
prediction in artworks is a testament to the efficient utilization
and transfer of knowledge across different but related tasks.
This methodology promotes the development of a shared,
robust, and versatile representation, augmenting the model’s
proficiency in analyzing art images. It considers the intricate
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relationship between different aspects of art, like the interplay
of style and emotion, offering a comprehensive view of
artistic expressions.

Building on this concept, our research introduces a Unified
Model for Art Style and Emotion Prediction (ASE). This
model harnesses multi-task learning to address two key tasks
simultaneously: the classification of artwork style and the
classification of emotions in artwork viewers. Specifically,
our model comprises three main components: Artwork Style
Classification, Emotion Prediction for Artwork Viewers,
and a Task-Specific Attention Module. The Artwork Style
Classification component focuses on identifying the stylistic
attributes of the art, while the Emotion Prediction segment
is dedicated to discerning the emotional responses elicited
in viewers of the artwork. The Task-Specific Attention
Module is a critical element that integrates and optimizes the
learning process across these tasks, ensuring that each aspect
contributes to a comprehensive understanding of the artwork
in question.

The core of our experimental model lies in its unique archi-
tecture. Built on a pre-trained image encoder, it incorporates
a task-specific attention mechanism tailored for both style
classification and sentiment analysis. This design allows our
model to adeptly handle multiple tasks, learning specialized
feature representations unique to each. The attention mech-
anism plays a crucial role, harmonizing features from both
tasks and fostering adaptive learning, which enhances the
model’s multi-task capabilities.

To rigorously test and validate our model, we selected
the ArtEmis dataset [12] —a diverse and comprehensive
collection of artworks encompassing a vast range of styles
and emotional expressions. This dataset provides an ideal
testing ground, challenging our model to discern and
understand the nuanced interrelations between artistic style
and emotional response. Through this application, we aim
to showcase the model’s effectiveness in capturing these
complex relationships. The insights derived from applying
our model to this dataset have the potential to significantly
influence the fields of art history, curation, and creation,
offering novel perspectives on how we perceive and engage
with art.

In this paper, our contributions are as below:

• In this paper, we introduce a novel model that effectively
combines style classification and emotion detection
in artworks. This dual-focused approach marks a
significant advancement in understanding the intricate
relationship between an artwork’s style and the emotions
it evokes.

• Methodologically, our approach is distinguished by the
use of a pre-trained image encoder, enhanced with
a task-specific attention mechanism. This mechanism
is pivotal in handling the multi-task challenge of
simultaneously classifying style and detecting sentiment
in artworks.

• In the experiments, our method has been rigorously
evaluated using the ArtEmis dataset, which offers a

diverse array of artistic styles and emotional expres-
sions. Our results demonstrate the model’s proficiency
in accurately classifying styles and detecting emotions,
providing valuable insights for art historians, curators,
and creators.

This paper is structured to clearly present our research.
After this introduction, Section II reviews relevant literature
on Computer Vision in art analysis, contextualizing our
work within current technological advancements. Section III
details the architecture of our Unified Model for Art Style
and Emotion Prediction (ASE), explaining its key compo-
nents. Section IV describes our experimental methodology,
covering the dataset, training procedures, and evaluation
metrics, and presents our experimental results, highlighting
the effectiveness of ourmodel. Finally, SectionV summarizes
our main contributions.

II. RELATED WORK
A. IMAGE CLASSIFICATION
The introduction of AlexNet in 2012 catalyzed the wide-
spread adoption of convolutional neural networks (CNNs)
for image processing tasks [13]. This was followed by the
development of the Residual Attention Network in 2016,
whichmelded the depth of the VGG network with the compu-
tational efficiency of GoogLeNet [14], laying a foundational
stone for future frameworks. Enhancements such as ResNeXt
and ResNeSt models [1], [2] brought forward channel-wise
attention and multi-path representation, markedly boost-
ing the precision and efficiency of image classification.
A further innovation was seen with models incorporating
the Convolutional Block Attention Module (CBAM) [15],
which significantly augmented the network’s representational
capacity by adaptively refining feature maps through sequen-
tial channel and spatial attentionmechanisms. This has shown
superior performance in varied tasks, including Remote
Sensing Image Change Detection [16] and Recognition of Fly
Species [17], while also enhancing model interpretability—
a key aspect for sentiment prediction in our research.
Non-local blocks, as introduced by [18], have broadened
the application spectrum to include image restoration [19]
and semantic segmentation [20], excelling at addressing
long-range dependencies crucial for art image analysis.
Integrating attention mechanisms with strip pooling [21]
has further advanced scene analysis by effectively capturing
extensive contextual information without sacrificing local
detail fidelity. The Vision Transformer (ViT) continues
to demonstrate competitiveness in image classification.
Extensions like Transformer iN Transformer (TNT) [3],
which processes images into visual sentences and words
for finer detail extraction, and Query2Label [22], utilizing
cross-attention for feature aggregation, prove particularly
adept for multi-label art image classification.

B. ARTISTIC IMAGE STYLE CLASSIFICATION
Art images, with their subjective nature, complexity, and rich
semantic layers, present unique challenges for classification.
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Traditional methods falter due to the distinct textures
and color schemes of art compared to photographic
imagery. CNNs have shown utility, with transfer learning
approaches achieving significant accuracy improvements
in art image classification, as seen with ResNet50 and
Inception V1 networks pre-trained on ImageNet and applied
to artworks [4], [5]. The use of CaffeNet for style, genre,
artist, and nationality classification [23] and its adaptation
as a similarity feature extractor highlights the adaptability of
neural networks to art imagery. The transformer architecture,
with its self-attention capability, is particularly suited to
capturing the nuances of art images, facilitating tasks like
style transfer [24], [25]. Comparative studies of CNNs and
Vision Transformers (VTs) on datasets like the Rijksmuseum
Challenge highlight the superior performance of VTs in art-
related classifications [26], [27], emphasizing the efficiency
of VTs in handling complex image data. Our research
seeks to extend these methodologies by integrating multi-
task learning for joint style and emotion prediction in art
images, addressing the limitations of single-dimensional
classifications.

C. EMOTION PREDICTION
Emotion classification in art has traditionally been bifurcated
into negative and positive categories, employing both senti-
ment polarity and affective model-based classifications [6],
[7], [8]. The former utilizes classifiers to discern sentiment
levels, applying algorithms and techniques focused on color,
texture, and shape [28], [29], [30], [31]. The latter categorizes
emotions into affective states, leveraging sentiment models
for deep learning-based analysis [32], [33], [34], [35].
Multimodal sentiment analysis combines various data modal-
ities, enhancing the depth of sentiment analysis [36], [37].
Datasets like IAPS facilitate this with a broad range of
images and sentiment ratings [38]. Our approach utilizes
binary and multi-classification strategies for comprehensive
emotion analysis in art, employing metrics like accuracy,
precision, and recall for binary tasks and confusion matrices
for multi-classification tasks [39], [40].

D. MULTI-TASK LEARNING
Multi-Task Learning (MTL) has revolutionized the design
and training of deep neural networks by improving data
utilization, reducing overfitting, and enhancing model
efficiency [10], [41], [42], [43]. It has shown efficacy
in diverse computer vision applications, from hyper-
spectral image classification to malware detection and
fine-grained image analysis [44], [45], [46]. A signifi-
cant challenge in MTL is balancing task specificity with
shared learning. The Multi-Task Attention Network (MTAN)
addresses this by facilitating the automatic learning of
shared and task-specific features [47], [48]. Its architec-
ture, adaptable to various feed-forward networks, optimizes
feature selection and task weighting, proving its value
in applications like tumor segmentation and benchmark
datasets [49], [50].

III. METHOD
In this section, we provide a comprehensive overview of
the methodology employed for the joint classification of
emotions and artistic styles in art images. We propose a
Unified model for Art Style and Emotion prediction (ASE).
This approach employs multi-task learning to concurrently
address two pivotal tasks: Artwork Style Classification and
Emotion Prediction for Artwork Viewers. Specifically, the
model comprises three components: one for Artwork Style
Classification, another for Emotion Prediction for Artwork
Viewers, and a third for the Task-Specific Attention Module.

A. ARTWORK STYLE CLASSIFICATION
In the Artwork Style Classification process, we first consider
the input image as X . We use the visual coder fencoder to
perform feature extraction on the input image X to obtain the
feature map h. This can be expressed as:

h = fencoder(X ) (1)

Feature extraction is performed using pre-trained models
such as ResNet, MobileNet, etc. because of their excellent
performance on image classification tasks with strong feature
learning capabilities. The feature map h is subsequently
mapped to the category probability distribution of Artwork
Style through a linear layer gmlp. This can be expressed as:

P(S|X ) = softmax(gmlp(flatten(h))) (2)

where S is the category of Artwork Style, P(S|X ) is the
probability that Artwork Style is S given the input image X ,
and flatten(·) spreads the feature map into a one-dimensional
vector, which is then mapped through the linear layer gmlp.
Finally, the category probability distribution is obtained using
the softmax function. The extracted features are mapped
to the category probability distribution through a linear
layer. This is designed to learn the abstract representation
of the input image and get the probability of each category
by softmax function. The difference between the predicted
probability distribution and the actual labels is calculated
using the cross-entropy loss function:

Lossstyle = CrossEntropy(P(E|X ),GT ) (3)

where GT are the real category labels of the art style.
The cross-entropy loss function is chosen because it is a
commonly used loss function in classification tasks that
measures the difference between the probability distribution
of the model output and the actual labels.

The optimisation process uses Adam optimiser for
parameter updating with adaptive learning rate and weight
decay. Overall, the process is an image classification task
through transfer learning and end-to-end supervised learning,
which utilises the powerful representation learning capability
of deep learning models on images to achieve effective
classification of art styles.

B. EMOTION PREDICTION FOR ARTWORK VIEWERS
In the Emotion Prediction for Artwork Viewers process,
we also consider the input image as X and employ the visual
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encoder fencoder for feature extraction to obtain the feature
map e:

e = fencoder(X ) (4)

Similar to the Artwork Style Classification process, a pre-
trained visual encoder is employed for effective feature
learning. The feature map e is then mapped to the probability
distribution of emotion categories through a linear layer gmlp
with a sigmoid activation function:

P(E|X ) = softmax(gmlp(flatten(e))) (5)

Here, E represents the emotion category, and P(E|X )
signifies the probability of emotion being E given the input
image X . To measure the difference between the predicted
probability distribution and the actual emotion labels, binary
cross-entropy loss is utilized:

Lossemotion

= BCELoss(P(E|X ), ground truth emotion labels) (6)

The reason for choosing the binary cross-entropy loss
function is due to the fact that emotion prediction for artwork
images is a multi-label binary classification task.

For the final optimisation process we also used the Adam
optimiser to update the model parameters with a combination
of adaptive learning rates and weight decay.

C. JOINT LEARNING
In the Joint Learning process, We assign style classification
and emotional response analysis as Task 1 and Task 2,
respectively. We first consider the input image as X and
employ the pre-trained ResNet18 model fResNet18 to obtain
the feature vectors. For style classification:

x1 = fResNet18(X ) (7)

For emotion prediction:

x2 = fResNet18(X ) (8)

Our approach involves dedicated task-specific encoders for
both tasks. For Task 1, which focuses on image style
classification, the encoder architecture includes: Convo-
lutional Layer (Conv1): This layer further processes the
shared features extracted by the image encoder, capturing
distinctive patterns relevant to art styles. Batch Normal-
ization (BatchNorm1): Batch normalization is applied to
stabilize training and expedite convergence, ensuring that
the model effectively learns style-related features. Rectified
Linear Unit (ReLU1): We incorporate the ReLU activa-
tion function to introduce non-linearity, facilitating the
model’s ability to capture complex style patterns. Adaptive
Average Pooling (AdaptiveAvgPool1): This layer ensures
a consistent feature representation size, regardless of the
input image’s dimensions. For Task 2, we use the same
methodology and steps. The outputs for both tasks are
generated through a series of layers, including linear layers
and multi-layer perceptrons (MLPs). These architectural

choices enable the model to convert extracted features into
task-specific representations effectively. Specifically: For
Task 1, the output is generated by MLP1, providing the
final image style classification result. For Task 2, MLP2
generates the output for sentiment classification. To enhance
the model’s robustness, regularization techniques such as
dropout and batch normalization are applied within the
layers responsible for output generation. These techniques
mitigate overfitting and improve generalization, ensuring the
model’s effectiveness across diverse art images. An inno-
vative feature of our methodology is the inclusion of a
specific-task attention mechanism. This dynamic fusion
ensures that the model can adaptively emphasize shared
features, enhancing its ability to capture relevant information
for both style and sentiment classification. This attention
mechanism (in the case of Task1) first generates the attention
weight att1:

att1 = σ (W1 · [x1; x2]) (9)

where W1 denotes the weight matrix of self.attn1, [x1; x2]
denotes the splice of feature vectors x1 and x2, and σ

denotes the Sigmoid activation function. By concatenating
the features of Task 1 and Task 2 along the last dimension
in [x1; x2], we preserve task-specific information for each
task while providing a more comprehensive and enriched
representation. Multiplying the concatenated features with
the trained matrix W1 and combining it with the sigmoid
activation contributes to the model’s flexibility in learning
complex relationships between tasks. Applying the attention
weights to the features:

att1 = x1 ⊙ att1 + x2 ⊙ (1 − att1) (10)

where ⊙ denotes element-wise multiplication. att1 is the
weight learned from features x1 and x2, which determines
how to weight the fused features between the two tasks.
This mechanism plays a vital role in fusing features from
both Task 1 and Task 2, dynamically adjusting feature fusion
weights. Element-wise multiplication ⊙ allows the model to
apply different weights to the features of tasks 1 and 2 at
each position, the model can dynamically adjust the focus
on different position features. The term x2 ⊙ (1 − att1)
implements the opposite weighting for task 2 features,
ensuring that specific information from task 1 or task 2 is
not lost during fusion. This helps the model consider the
contribution of each task more comprehensively.

D. LOSS FUNCTION
1) LOSS FOR STYLE CLASSIFICATION
We adopted a multi-classification approach to categorize
images into different stylistic categories. In the loss func-
tion L1, C represents the number of categories for stylistic
classification. We use Y1ij to denote whether sample i belongs
to category j, typically taking values 0 or 1. P1ij represents
the model’s predicted probability that sample i belongs to
category j. The loss function L1 measures the performance

VOLUME 12, 2024 91773



C.-Z. Yin: Unified Model for Style Classification and Emotional Response Analysis

FIGURE 1. Overview of our method.

of the model in stylistic classification through cross-entropy
loss.

L1 = −
1
N1

N∑
i=1

 C∑
j=1

Y1ij · log(P1ij )

 (11)

2) LOSS FOR EMOTION PREDICTION
We employed a multi-label binary classification method to
assign multiple sentiment labels to each image. In the loss
function L2, M stands for the number of sentiment labels.
Y2ij indicates whether sample i has sentiment label j, typically
taking values 0 or 1. P2ij represents the model’s predicted
probability that sample i has sentiment label j. The loss
function L2 assesses the model’s performance in sentiment
classification through binary cross-entropy loss.

L2 = −
1
N1

N∑
i=1

(
M∑
j=1

(Y2ij · log(P2ij)

+ (1 − Y2ij ) · log(1 − P2ij))) (12)

We obtain the output probabilities for Task 1 and Task 2:

P(Task1output|X ) = softmax(gmlp1(flatten(att1))) (13)

P(Task2output|X ) = softmax(gmlp2(flatten(att2))) (14)

IV. EXPERIMENTS
A. DATASET
Building upon the publicly available WikiArt collection,
the ArtEmis dataset enriches this foundation with 80,031
carefully curated artworks from 1,119 artists, spanning
45 genres and 27 unique art styles [12]. Each artwork
in the ArtEmis subset of WikiArt has been annotated
by at least five annotators who have documented their
primary emotional responses and provided detailed justifi-
cations for these reactions. The comprehensive collection of
454,684 emotional responses and explanatory comments in
ArtEmis presents an invaluable resource for both training
and evaluation purposes. The dataset’s broad coverage across

a variety of artistic styles and emotional reactions enables
effective learning and inference by the model.

For our specific task, we utilize the 27 art style labels
and 9 emotion categories defined within the ArtEmis dataset.
The emotion labels encompass eight principal emotions
and an additional category labeled ‘‘something-else,’’ which
allows annotators to identify emotions not explicitly listed
or to explain the absence of a strong emotional reaction.
Furthermore, ArtEmis delves into the spectrum of emotions,
uncovering attitudes, moods, and abstract concepts such
as freedom and love. Annotators adeptly associate visual
features with psychological assessments, shedding light on
nuances in the depicted subjects. This is particularly bene-
ficial for our analysis of emotional responses. To enhance
training efficiency, all images used for training and validation
have been resized to 224 × 224. This modification reduces
computational complexity while preserving essential visual
information. Our model is designed to predict both the art
style and the emotional content from these resized images.

B. EXPERIMENTAL SETTING
For the art style classification task using ResNet18, we train
the model over 7 epochs with a batch size of 64 images.
Reproducibility is ensured through a fixed random seed
of 1234, and training stability is improved with a gradient
clipping threshold of 5.0. These settings—7 epochs, random
seed, and gradient clipping—are consistently applied across
all models. The learning rate is set to 1 × 10−5, and a
weight decay of 0.01 is applied during optimization with
the Adam optimizer. In the emotion analysis task using
ResNet18, the model adheres to the same hyperparameters
but with a reduced learning rate of 5 × 10−6. For the style
classification task employing MobileNetV2, the model is
trained with a batch size of 32 images, maintaining a learning
rate of 1 × 10−5 and a weight decay of 0.01, optimized
with the Adam optimizer. For MobileNetV2 in the emotion
analysis task, identical hyperparameters are used. For tasks
utilizing Our version of ResNet18, the model trains with a
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TABLE 1. Comparison of different methods on style classification.

batch size of 64 images and a learning rate of 5× 10−5, with
no weight decay. For tasks with Our version ofMobileNetV2,
the model trains with a batch size of 16 images, a learning rate
of 1 × 10−5, and no weight decay.

C. ARTWORK STYLE CLASSIFICATION
We detail the outcomes of our investigation into the
classification of artwork styles utilizing diverse deep learning
frameworks. Our primary objective is to assess the perfor-
mance enhancement offered by our innovatively proposed
model, labeled as ‘‘Our.’’ This model uniquely incorporates
both style and emotional content to elevate classification
efficacy. We juxtapose the performance of our approach
with several foundational models as depicted in Table 1.
The assessment criteria include validation accuracy (Val)
and test accuracy (Test), with the results of each model
meticulously documented. Notably, Our (MobileNetv2) reg-
isters a test accuracy of 58.53%, while Our (ResNet-18)
achieves the peak accuracy of 59.24%. These outcomes are
superior compared to the base architectures of MobileNetv2
and ResNet-18.

TABLE 2. Comparison of different methods on emotion analysis.

D. ARTWORK EMOTION ANALYSIS
The results from the artwork emotion analysis illustrate a
consistent improvement in performance when utilizing our
proposed models, compared to traditional baseline methods.
Specifically, we observe that ourmodifiedmodels, leveraging
the MobileNetv2 and ResNet-18 architectures, demonstrate
superior accuracy in emotion analysis tasks. The version of
our model that incorporates the MobileNetv2 architecture
achieved a remarkable accuracy of 71.67% on the test dataset,
while the ResNet-18-based variant registered an accuracy
of 71.29%. These outcomes highlight the effectiveness of our
novel approach, which integrates the dual learning objectives

FIGURE 2. Attention weight analysis.

of style and emotional content. This integration facilitates
a more accurate and nuanced identification of emotional
expressions in artwork.

E. DISCUSSION
The comparative analysis between Our (MobileNetV2)
and standalone MobileNetV2, as well as Our (ResNet18)
against ResNet18, highlights significant enhancements in
performance. This affirms the added value of integrating style
alongside emotional attributes into the classification schema.
Such results underscore our hypothesis that a synergist
approach to leveraging both stylistic and emotional elements
within artwork can markedly augment classification accuracy
in artwork style classification endeavors. The advance ments
demonstrated by our MobileNetV2 and ResNet18 based
models in emotion analysis suggest that the combined
learning of stylistic elements and emotional cues significantly
enhances the capability for emotion recognition across dif-
ferent model architectures. This underscores the potential of
our approach in pushing the boundaries of emotion analysis
within the realm of art. Overall, the superior performance of
our models in both style classification and emotion analysis
underscores the effectiveness of integrating stylistic and
emotional content. These findings suggest new avenues for
future research, particularly in exploring more complex and
nuanced models that can further enhance the classification
and analysis of artistic content. The results also highlight
the importance of a multidisciplinary approach, combining
insights from art theory and computational techniques to
achieve a more holistic understanding of artwork.

F. ATTENTION WEIGHT ANALYSIS
In conducting the analysis of attention weights, we uti-
lized sigmoid and mean operations on the image weights.
Figure 2 (left) depicts a painting embodying the Cubism style,
distinguished by its disassembly of objects into geometric
forms, the presentation of multiple perspectives concurrently,
and a pronounced focus on form and structure. The attention
weight for the style classification (Task 1) is significantly
high at 0.6130, illustrating that the model places a strong
emphasis on capturing features pertinent to style during the
learning process. The inherent stylized nature of Cubist art,

VOLUME 12, 2024 91775



C.-Z. Yin: Unified Model for Style Classification and Emotional Response Analysis

FIGURE 3. Case study.

with its unique amalgamation of geometric shapes and
multiperspective representations, aids the model in more
effectively comprehending and assimilating the distinctive
characteristics of the Cubism style. Conversely, the emotion
analysis (Task 2) registers at 0.4176, indicating the model’s
focus on the emotional content of the image. Given Cubism’s
focus on abstract expression through form and structure,
capturing emotional content in Cubist works may pose a
challenge. Here, Task 2 assumes a supplementary role,
honing in on features associated with the emotions elicited by
the geometric fragmentation (such as awe and amusement)
and facial expressions (including anger). This focus on
emotion-related features allows the model to achieve a fuller
understanding of the image’s content, incorporating potential
emotional aspects within the Cubism style. The collaborative
effort of both tasks through joint learning empowers the
model to attain a more holistic comprehension of artistic
images. Task 1 is dedicated to style, focusing on capturing
the intricate details of Cubism, whereas Task 2 zeroes in on
emotions, shedding light on potential emotional elements in
Cubist works. By integrating features from both tasks, the
model finds a more balanced learning approach, ensuring a
thorough understanding of the image without compromising
sensitivity to the nuances of Cubism style, and concurrently
acknowledging the embedded emotional information.

Figure 2 (right) showcases a painting in the New Realism
style. The analysis of Attention Weights yields a New
Realism style AttentionWeight of 0.4515 for Task 1, with the
Emotional Weight slightly higher at 0.4725 for Task 2. This
underscores a model preference for capturing emotionally
related features in this instance. New Realism art is charac-
terized by its precise and detailed portrayal of reality, often
encapsulating realistic scenes from everyday life and urban
environments, where emotional elements play a significant
role. The inclusion of emotional weights enhances the com-
prehension of style information, effectively highlighting New
Realism’s focus on accurate real-life depictions. In this case,
the imposing urban landscape invokes emotional responses
such as contentment, awe, and excitement. Consequently, the
elevated emotional weight likely mirrors the model’s focus
on these emotional aspects, fostering a more comprehensive
grasp of the image’s perceptual qualities and offering a richer
emotional perspective through the model’s lens.

Owing to the intricate, multi-dimensional, and rich essence
of artistic images, a singular task may not suffice to encap-
sulate all the information within an image. The introduction
of an additional task enables the model to explore and
concentrate on varied facets, culminating in a more profound
understanding of artistic images.

G. CASE STUDY
After training our enhanced ResNet18 model (hereafter
referred to as ‘‘Our ResNet18’’) alongside the standard
ResNet18, we selected four exemplar images for analysis.
The first image, shown in Figure 3, portrays a lion
consuming its prey within a verdant jungle, encapsulating
the raw essence of animal predation. The standard ResNet18
identified this image as embodying the Pointillism style,
whereas Our ResNet18 accurately classified it as Naive Art
Primitivism, recognizing its emotional content. This artistic
style is distinguished by its simplicity, elemental nature, and
ingenuous approach to representation, frequently utilizing
vibrant colors, straightforward geometric shapes, and direct
depictions of the natural world and life experiences [51]. The
image invokes feelings of sadness, awe, and fear; sadness
reflects the prey’s demise, awe and fear arise from the
dense jungle setting and the fundamental, instinctive act
of predation. These emotions resonate with the simplic-
ity, primordial aspect, and naïveté inherent to Naive Art
Primitivism.

The second image, depicted in Figure 3, showcases a
winter scene featuring a barn, interpreted by the standard
ResNet18 as Realism. Conversely, Our ResNet18 discerned
its Impressionist qualities, considering the emotional nuance.
Impressionist art is noted for its brisk, loose brushwork
that accentuates light and shadow interplay, capturing the
scene’s atmosphere—a stark contrast to Realism’s detailed,
meticulous portrayal of subjects [52]. The depicted winter
landscape conveys a sense of desolation, while the solitary
farmhouse amidst the chill evokes sadness. Yet, there’s a
sense of contentment in the harmonious coexistence of the
farmhouse with its wintry surroundings, reflecting Impres-
sionism’s dynamic expression of nature and environmental
moods. The alignment of conveyed emotionswith the artwork
enables a more precise stylistic classification.

The third image in Figure 3 illustrates the aftermath of
a thunderstorm, with vivid colors and lighting denoting the
potent force of nature, including elements like houses and a
lake, indicative of Fauvism. The standard ResNet18 associ-
ated the depicted emotions with contentment and excitement,
whereas Our ResNet18, by integrating stylistic insights,
accurately recognized feelings of contentment, amusement,
and excitement. The post-storm tranquility elicits content-
ment; the rejuvenated landscape post-deluge, excitement.
Fauvism’s hallmark vibrant colors and the dramatic contrast
in the post-storm sky also prompt amusement.

The fourth image, presented in Figure 3, reveals willows,
flowers, and a distant house, evoking an aura of peace
and the beauty of nature. Where the standard ResNet18
perceived contentment alone, Our ResNet18, through stylistic
integration, correctly identified feelings of contentment
and awe. The peaceful willow and water scene induces
contentment, while the Impressionist emphasis on lighting
and natural elements arouses awe. Thus, the joint learning
of style and emotional content facilitates a more accurate
anticipation of the viewer’s emotional response.
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FIGURE 4. Impact of training loss.

FIGURE 5. Error analysis.

H. TRAINING ANALYSIS
As depicted in Figure 4, the Loss1 curve demonstrates a
rapid decline from an initial value of 3.33 to 0.79 within
the first 6 epochs. This rapid decrease signifies the model’s
swift acquisition of stylistic knowledge, indicating an
effective comprehension and assimilation of style-related
characteristics in artistic images. The curve’s uniform
descent also points to a consistent and stable learning
process concerning style. Conversely, the Loss2 curve shows
more pronounced fluctuations within the same timeframe,
descending from 0.69 to approximately 0.54. This variability
suggests that the model encounters more difficulties in
learning emotional content, with challenges arising from
the nuanced and complex nature of emotional information.
These oscillations can be attributed to the diverse range
of emotional labels present in the dataset and the marked
differences in emotional content across samples. Despite
these differences, the general patterns and trajectories of
the Loss1 and Loss2 curves share similarities, indicating a
high degree of compatibility. Both curves display a marked
downward trend in the initial training phase, suggesting that
the model is adept at balancing the dual objectives of learning
style and emotion. This equilibrium highlights the model’s
capacity to effectively manage the integration of stylistic
and emotional information in a unified learning task. Such
a balanced approach underpins stable learning across the
training period and lays a robust foundation for the model’s
subsequent ability to classify artistic images based on both
style and emotion with relative stability.

I. ERROR ANALYSIS
We analyzed three artworks that were incorrectly classified
by our model, ResNet18. In Figure 5 (left), the depicted
painting portrays Jacob mourning for his son Joseph,

embodying the Symbolism style and expressing sadness. Our
model mistakenly identified the style as Mannerism Late
Renaissance and the emotion as awe. The distinction between
Mannerism Late Renaissance and Symbolism primarily lies
in Mannerism’s focus on exaggerated, diverse forms versus
Symbolism’s emphasis on expressing deep emotions and
meanings through symbolic elements [53], [54]. The model’s
incorrect prediction likely stems from its emphasis on
the visual form over the intricate emotions and meanings
conveyed, as Symbolism frequently employs deep symbolism
and abstract expression, presenting challenges in capturing
such complexity, hence leading to inaccuracies in emotion
prediction. The solemn attire and collective figures might
havemisled themodel into predicting awe instead of focusing
on the central emotion of sadness portrayed by the main
figure.

In Figure 5 (middle), we observe a misprediction involving
a Baroque-style painting that conveys awe and excitement,
related to the coronation of Maria de’ Medici. The model
incorrectly classified it as Early Renaissance style while cor-
rectly identifying the emotion as awe. Early Renaissance and
Baroque are both Renaissance period styles with overlapping
artistic elements, which may confound the model’s ability to
accurately distinguish between them [55]. Baroque is known
for its dramatic scenes, and although the model recognized
the awe emotion through the grandeur and attire, the low
resolution of the image and the multitude of figures impeded
a detailed analysis, thus failing to capture the excitement
aspect.

Lastly, in Figure 5 (right), an artwork in the Expressionism
style, evoking contentment, amusement, and excitement and
titled ‘‘Landscape with Black Figure,’’ was incorrectly classi-
fied by our model as Cubism with the emotion of amusement.
Expressionism focuses on the artist’s inner feelings and
subjective experiences to convey emotional impact [28],
whereas Cubism is characterized by the deconstruction
and reassembly of geometric shapes to depict multiple
perspectives [56]. The artwork’s prominent geometric shapes
and dimensions might have led the model to overly focus on
features typical of Cubism, resulting in a misjudgment. If an
artwork’s stylistic features are not distinctly expressed, it can
lead to inaccuracies in the model’s classifications. In this
instance, the model wrongly associated the artwork with
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Cubism and identified amusement as the primary emotion,
overlooking the broader range of emotions present. This
indicates a potential model limitation in associating specific
emotions with particular styles, failing to capture the diversity
of emotional expressions in art. Such errors underscore the
challenges models face in distinguishing between similar
styles and understanding complex emotional nuances.

V. CONCLUSION
This study has embarked on an innovative journey into the
confluence of computer vision, art analysis, and emotion
prediction. It introduces the Unified Model for Art Style and
Emotion Prediction (ASE), showcasing a novel methodology
via a multi-task learning framework that includes Artwork
Style Classification, Emotion Prediction for Artwork View-
ers, and a Task-Specific Attention Module. Leveraging a
pre-trained image encoder alongside a task-specific attention
mechanism, the architecture facilitates the concurrent pro-
cessing of multiple tasks, evidencing the model’s versatility
and adaptability across varied artistic expressions. Our
evaluation using the Artemis dataset has validated the
model’s adeptness at accurately classifying artistic styles and
identifying emotional responses. These findings highlight
the ASE model’s capability to capture the subtle intricacies
present within artworks, laying the groundwork for future
breakthroughs at the nexus of art analysis and computer
vision.

As we move into an era where the melding of art
and technology gains greater significance, the contributions
of this research signal a step toward a more profound
comprehension of the complex interplay between visual
aesthetics and human emotions. Future research may delve
into refined architectures, expand upon existing datasets,
and explore practical applications, further narrowing the gap
between computer vision and artistic interpretation. This
work, therefore, not only presents a significant advancement
in understanding art through the lens of computer vision but
also opens new avenues for exploration in the rich interplay
between art, emotion, and technology.
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