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ABSTRACT As Unmanned Combat Aerial Vehicle (UCAV) continue to play an increasingly pivotal role
in modern aerial warfare, enhancing their intelligence levels is imperative for global military advancement.
Despite notable progress in employing deep reinforcement learning for autonomous air combat maneuver
decision-making, existing methods grapple with subpar performance, sluggish training, and susceptibility
to local optima. Therefore, this paper proposes a new air combat maneuver decision algorithm based on
Proximal Policy Optimization (PPO). Firstly, we establish a UCAV adversarial model and design a dual
observation space. Secondly, we develop an Actor-Critic network based on Bidirectional Long Short-Term
Memory (BiLSTM) and Multi-Head Self-Attention (MHSA), which better handles high-dimensional
information with temporal correlations in air combat situations. Thirdly, we propose an action selection
method based on Parallel Monte Carlo Tree Search with Watch the Unobserved (WU-PMCTS) to assist the
algorithm in making more effective maneuver decisions. Fourthly, we design a Dynamic Reward Evaluation
(DRE) method to dynamically adjust the weights of various rewards according to different adversarial
situations, improving algorithm performance. Finally, we introduce an Advantage Prioritized Experience
Replay (APER) to sample according to the sample advantage values, enhancing algorithm training efficiency.
Experimental results from ablation and comparative experiments demonstrate the superiority of the proposed
algorithm over PPO and other mainstream algorithms, with a 0.32 increase in average return and a 36%
increase in win rate.

INDEX TERMS Unmanned combat aerial vehicle, deep reinforcement learning, autonomous air combat,
maneuver decision-making, PPO, BiLSTM, MHSA, WU-PMCTS, DRE, APER.

I. INTRODUCTION
Unmanned Combat Aerial Vehicle (UCAV), which is drones
designed for combat, represent a new era in aerial warfare [1].
In modern warfare, aerial military forces have significant
advantages in intelligence, surveillance, reconnaissance,
and combat operations [2]. Enhancing the intelligence of
unmanned combat aircraft has become a critical pathway
for nations to bolster their military capabilities and achieve
military modernization. UCAV is capable of performing
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highly challenging flight missions that exceed the limits of
human pilots, and there is a growing trend towards replacing
manned fighter aircraft with these advanced unmanned
systems.

Maneuver decision-making refers to the process of control-
ling combat aircraft to gain air superiority and pose a threat
to enemy aircraft by considering maneuverability, current
situations, and other relevant information [3]. In Beyond-
Visual-Range (BVR) air combat, the core objective of
maneuver decision-making is to expose enemy aircraft to the
attack range of our air-to-air missiles as early as possible,
while skillfully maneuvering to evade enemy missiles.
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This aims to achieve the tactical goals of Within-Visual-
Range (WVR) air combat, where maneuver decision-making
focuses more on gaining a positional advantage behind the
enemy and evading enemy pursuit. Particularly in high-
intensity close-range dogfights, maneuver decision-making
becomes critically important.

In recent years, the application of reinforcement learning
methods in autonomous air combat decision-making has
garnered extensive attention from scholars both domestically
and internationally. Notably, Deep Reinforcement Learning
(DRL) methods have achieved significant success in the field
of intelligent decision-making. Reinforcement learning is a
paradigm of machine learning where an agent learns strate-
gies through continuous interaction with the environment,
selecting actions that lead to optimal states and ultimately
achieving decision-making goals. Deep learning, on the other
hand, can discover patterns within vast amounts of data and
use them for prediction and classification, combining feature
representation and learning into a single algorithm. However,
deep learning models perform poorly when data is insuf-
ficient. DRL combines the strengths of both reinforcement
learning and deep learning, enabling the analysis of state data
for autonomous decision-making. Since 2016, DRL methods
have achieved a series of remarkable successes in intelligent
decision-making. The AlphaGo series of algorithms [4], [5],
[6] defeated human champions in the game of Go, shattering
the belief that traditional artificial intelligence could not
succeed in highly complex domains. AlphaFold v2 achieved
groundbreaking results in protein structure prediction [7],
and AlphaTensor made significant advances in fast matrix
multiplication algorithms [8]. Additionally, AlphaStar [9]
outperformed 99.8% of human players in StarCraft II, and
OpenAI Five [10] defeated the reigning world champions in
DOTA2 with a score of 2:0. Notably, in the ‘‘AlphaDogfight
Trials’’ organized by the U.S. Defense Advanced Research
Projects Agency in 2020, the Falco algorithm [11] achieved
a decisive 5:0 victory over human pilots in 1v1 WVR air
combat, demonstrating overwhelming superiority.

Due to the outstanding performance of DRL in real-time
strategy games and high-dimensional decision-making tasks,
DRL-based air combat maneuvering decisions have also
made significant breakthroughs. In the study by [12], the
Deep Q-Learning (DQN) algorithm [13] was employed
for air combat intelligent agent decision-making, yielding
satisfactory results. In [14], DQN was combined with
Long Short-Term Memory (LSTM) neural networks [15],
and Monte Carlo Tree Search (MCTS) rewards [16] were
introduced for maneuver decision research. Additionally,
[17] addressed the problem of UCAV covert approach in
continuous state spaces using the Double DQN [18], which
incorporates both a target network and a main network.
In [19], the combination of LSTM and Dueling DQN [20]
based on the improved Double DQN algorithmwas applied to
autonomousmaneuvering decisions. This approach enhanced
thememory function of the agent, accelerated its convergence

speed, and achieved effective one-on-one confrontations
with maneuvering agents. The aforementioned methods are
all value function-based, requiring the estimation of action
values corresponding to each action in the current state.
As a result, the action space must be discretized, making
it challenging to effectively handle air combat tasks in
continuous action spaces.

In further research, the study in [21] employed the
Actor-Critic (AC) framework for autonomous air com-
bat decision-making, leveraging the advantages of both
value-based and policy-based methods. The work in [22]
utilized the Deep Deterministic Policy Gradient (DDPG)
[23] method, an improvement of AC, successfully addressing
the ‘‘dimensional explosion’’ problem in maneuver outputs
of traditional air combat decision-making methods, and
achieving continuous action outputs. To mitigate the impact
of overestimation in value functions on the performance
stability and convergence speed of the maneuver decision
model, some scholars combined DDPG with Double DQN,
creating the Twin Delayed Deep Deterministic Policy Gra-
dient (TD3) [24] algorithm for training maneuver decision
models. The study in [25] designed two experience replay
buffers for TD3, one for successes and one for failures.
During network updates, samples were taken from both
buffers in specific proportions, improving sample utilization
efficiency to some extent. These policy gradient-based
methods are better suited for controlling continuous variables
in air combat environments compared to value function-based
methods. However, they still face challenges such as network
overfitting and extended training times.

Recent studies have advanced the application of sophis-
ticated reinforcement learning algorithms for autonomous
air combat decision-making. For instance, the study in [26]
utilized the Soft Actor Critic (SAC) algorithm, achieving
effective tactical outcomes. Another work [27] introduced
the Proximal Policy Optimization (PPO) algorithm [28]
to address the challenges of continuous action spaces,
learning close-combat strategies in an end-to-end manner
from observational data. Additionally, [29] integrated an
attention mechanism [30] into PPO, developing an attention
model based on enemy threats to comprehensively account
for the influence of multiple adversary aircraft. Considering
the susceptibility of standard PPO algorithms, which utilize
fully connected neural networks, to gradient explosion
and vanishing gradients as network complexity increases,
leading to potential training failures, [31] proposed a PPO
algorithm combined with Long Short-TermMemory (LSTM)
network. This approach significantly improved the model’s
convergence speed. To further enhance training sample
selection and utilization efficiency, [32] introduced the FRE-
PPO method, which combines final reward estimation with
PPO. This method replaces the original advantage estimation
function with a final reward estimation to increase training
efficiency. These policy gradient-based methods generally
offer superior applicability andmore stable training processes
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compared to value function-based approaches. However,
their relatively simple network structures may be insufficient
for effectively managing the complex, high-dimensional
situational information inherent in air combat environments.

Furthermore, in exploring methods to train autonomous
air combat decision-making models without relying on
human expertise or dense rewards, literature [33] presents a
maneuver decision approach based on MCTS. This method
utilizes MCTS to identify the optimal action among seven
fundamental maneuvers, aiming to maximize the value of
the air combat advantage function. While verifying the
feasibility of MCTS for maneuver decision-making, this
approach operates within a discrete action space. Moreover,
literature [34] introduces a maneuver decision method com-
bining deep reinforcement learning with MCTS, employing
MCTS in a continuous action space and leveraging neural
network-guided self-play to enhance the capabilities of
air combat agents. Additionally, literature [35] highlights
the challenge of agents relying on random actions in the
early stages of training, hindering their ability to gain
rewards and learn effective decision-making. Consequently,
the PPO-MCTS approach is proposed to address this issue.
Despite the enhancements in decision-making capabilities
offered by these MCTS-integrated methods, they still face
challenges such as incomplete reward coverage and low
training efficiency.

We have seen some progress in above researches, but
challenges persist in air combat maneuver decision-making
methods based on DRL:

• Network Structure: Most algorithms use fully con-
nected layers in their network structure, which are
inadequate for handling temporally correlated and high-
dimensional information. Issues like gradient explosion
and vanishing gradients are common, especially with
rapidly changing air combat data, affecting the model’s
robustness and generalization.

• Action Selection: Random action sampling from a
continuous space leads to ineffective decision-making
in early training stages. Balancing ‘‘exploration’’ and
‘‘exploitation’’ is challenging, often resulting in local
optima and increased training time, limiting the model’s
applicability in real-world scenarios.

• Reward Function Design: Fixed reward weights fail
to comprehensively consider the combined impact
of angle, distance, speed, and altitude, overlooking
crucial features in different situations. Consequently, the
learned strategies lack specificity and flexibility.

• Experience Replay: Uniform random sampling can
lead to correlated data and uneven contributions to
gradient learning, resulting in low sample utilization,
prolonged training, convergence issues, and overfitting.

In view of the four problems, this paper aims to address
the limitations of the aforementioned methods. We propose
a novel air combat maneuver decision-making algorithm
that combines PPO with a network architecture based on

Bidirectional Long Short-Term Memory (BiLSTM) and
Multi-head Self-Attention (MHSA) [30]. This algorithm
integrates Parallel Monte Carlo Tree Search with Watch
the Unobserved (WU-PMCTS) [36] and a Dynamic Reward
Evaluation (DRE) method, employing Advantage Prioritized
Experience Replay (APER) technology. Hereafter, we refer to
the algorithm as PPO-BWDA. This paper main contributions
are as follows:

1) We establish a UCAV adversarial model based on the
kinematics and dynamics formulas in three-dimensional
space and design a dual observation space.

2) We design a BiLSTM+MHSA structure to replace the
traditional fully connected layers in the Actor-Critic
network of the PPO algorithm. The BiLSTM+MHSA
architecture facilitates flexible attention to key informa-
tion in sequences, dynamically adjusting focal points
to effectively handle highly time-correlated air combat
situational data.

3) We propose an action selection method based on WU-
PMCTS. Using aGaussian distribution constructed from
the mean actions output by the Actor and selecting
actions using WU-PMCTS enables a better balance
between ‘‘exploration’’ and ‘‘exploitation’’ during the
decision-making process, resulting in more effective
maneuver decisions.

4) We design a dynamic reward evaluation method,
dynamically adjusting the weights of various reward
functions according to different adversarial scenarios
to comprehensively assess air combat situations. This
dynamic reward evaluation approach allows UCAV
to achieve higher rewards in response to different
situations.

5) We design an advantage prioritized experience replay
mechanism, determining the probability of sampling
based on the size of the sample’s advantage value to
improve the training efficiency of the algorithm.

6) The results of ablation experiments validate the effec-
tiveness of the proposed algorithm. Compared to PPO,
the average return increased by 0.32, and the win rate
increased by 36%. Comparative experiments demon-
strate that the proposed algorithm’s average return
and win rate are significantly superior to those of
other mainstream reinforcement learning algorithms,
confirming its superiority.

II. RELATED WORK
A. PROXIMAL POLICY OPTIMIZATION
The Trust Region Policy Optimization (TRPO) [37]
algorithm is a type of policy gradient method within the
Actor-Critic framework. In policy gradient algorithms, when
the network is a deep model, updating parameters along
the policy gradient can lead to significant deterioration in
performance if the step size is too large, thereby affecting
training effectiveness. Therefore, TRPO improves policy
updates by employing a monotonic maximum step size
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FIGURE 1. MCTS Process: Selection, Expansion, Simulation, and Backpropagation.

approach while using the KL divergence to represent a
specific constraint that ensures the new policy is superior to
the old policy:maxEa∼πold

[
π (a|s)

πold (a|s)
Â(s, a)

]
s.t.D

ρπold
KL (πold , π) ≤ δ

(1)

where πold (a|s) represents the probability of the old policy
taking action a given state s, π (a|s) represents the probability
of the new policy taking action a given state s, DKL denotes
the KL divergence, and Â(s, a) is the advantage function,
expressed as:

Â(s, a) = (Qπold (s, a)− Vπold (s)) (2)

where Qπold (s, a) represents the value obtained by taking
action a in state s, and Vπold (s) represents the average value
in state s. Therefore, the advantage function Â(s, a) measures
how much better or worse the current state and action are
compared to the average level. The larger the value of the
advantage function, the better the current state and action.

Proximal Policy Optimization (PPO) is an algorithm
optimized based on TRPO. The PPO algorithm addresses
the issue of excessively large updates in Policy Gradient
algorithms while reducing the complexity of solving the
algorithm, making it easier to implement through coding.
It offers better convergence and stability compared to
previous deep reinforcement learning methods. PPO can be
divided into PPO-penalty and PPO-clip, with the latter being
more widely used. The objective function of the PPO-clip
algorithm is:

LCLIP(θ ) = Ê
[
min

(
π (a|s)

πold(a|s)
Â(s, a),

clip
(

π (a|s)
πold(a|s)

, 1− ε, 1+ ε

)
Â(s, a)

)]
(3)

where ε is a hyperparameter. The clip function is a constraint
function that ensures the ratio of the new policy to the old
policy is constrained within [1 − ε, 1 + ε]. If the ratio is
less than 1 − ε, it takes the value 1 − ε; if it is greater
than 1 + ε, it takes the value 1 + ε. This constraint ensures
that the new policy does not update beyond a predetermined

range, avoiding excessive policy changes while preserving
the well-performing parts of the original policy to prevent
instability and divergence.

B. MONTE CARLO TREE SEARCH
MCTS is a tree search strategy that balances historical returns
and future exploration. The core idea of MCTS is to construct
a search tree that represents all possible actions and their
outcomes in a game. In this paper, the MCTS search process
consists of four stages: selection, expansion, evaluation, and
backpropagation, as illustrated in Figure 1.
1) Selection: Starting from the root node, recursively select

the optimal child node using an exploration algorithm
until reaching a leaf node. The selection phase employs
the UCT formula:

UCT = argmax
s′∈C(s)

{
Qs′

Ns′
+ c

√
log(Ns)
Ns′

}
(4)

where Ns′ represents the number of simulations con-
ducted on the current node, Qs′ indicates the total
score obtained from simulations on the current node.
Ns denotes the number of simulations on the parent
node, C(s) represents the set of all child nodes of s, and
c is an adjustable parameter that controls the level of
exploration.

2) Expansion: In each search iteration, after the selection
phase reaches a leaf node, if the node has not been
explored, it needs to be expanded.

3) Simulation: Starting from the expanded node, a simu-
lation is run until the end of the game.

4) Backpropagation: After obtaining the simulation
result, the parent nodes are continuously updated
backward.

When dealing with large search spaces, traditional MCTS
incurs high computational costs due to the need for sequential
execution. In 2019, Liu et al. [36] proposed a parallelization
technique for MCTS called Watch the Unobserved in
UCT (WU-UCT), which is conceptually similar to tree
parallelization [38]. This method achieves linear speedup
with minimal performance loss. The algorithm uses a virtual
visit count, Ms, to balance exploration and exploitation. Ms
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represents the total number of times node s has been accessed
without simulating (or evaluating) the leaf nodes along that
path, thus preventing redundant exploration across multiple
threads during parallel execution. The exploration algorithm
used by WU-UCT in the selection phase is shown in the
equation below:

WU−UCT = argmax
s′∈C(s)

{
Qs′

Ns′
+ c

√
2 log(Ns +Ms)
Ns′ +Ms′

}
(5)

where Ms′ represents the number of visits to node s′ along
the path where the node has been searched but not yet
evaluated at the leaf node. If one of the search threads
accesses a node s′, then the value of M for that node will be
incremented accordingly. As shown in Equation(5), since M
of s′ increases, the exploration value calculated through the
exploration equation will decrease, reducing the likelihood of
the next search thread revisiting it. This effectively prevents
multiple threads from parallelly accessing the same tree node.
WU-UCT can greatly speed up the tree search under the
premise of guaranteeing the performance of tree search as
much as possible, and reasonably balance the relationship
between exploration and utilization in the search process.

III. PROPOSED METHOD
A. UCAV AIR COMBAT MODEL
To accurately describe the flight trajectory characteristics
and motion features of a UCAV, a detailed three-degree-of-
freedom point mass dynamics model is used for the research
and simulation of the UCAV’s autonomous decision-making
mechanism. To ensure the smooth progress of the research,
this paper establishes the aircraft kinematic and dynamic
model based on the following assumptions:
• Assume that the Earth’s rotation and curvature have no
impact on the UCAV’s motion, and treat the ground
coordinate system as an inertial coordinate system.

• Assume that gravitational acceleration is constant,
neglecting the effects of dimensional and altitude
changes on acceleration.

• Assume that atmospheric turbulence and gusts have no
effect on the UCAV’s motion.

• Assume that the UCAV’s mass remains constant and
treat it as a controllable point mass.

• Assume that the UCAV is always in a state of moment
equilibrium, ignoring the process of attitude changes
caused by short-term moment imbalances.

• Assume that the UCAV performs non-banked, skid-free
maneuvers in three-dimensional space.

Based on these assumptions and the fundamental princi-
ples of dynamics, the dynamic model of the UCAV in the
ground coordinate system [39] is established, as shown in
Figure 2.
In Figure 2, v represents the current velocity direction of

the UCAV, v′ represents the projection of v on the xoy plane.
γ is the angle between v′ and v, representing the pitch angle
of the UCAV, with the positive direction being the nose-up

FIGURE 2. UCAV air combat model.

direction of the aircraft. ϕ is the angle between v′ and the
oy axis, representing the yaw angle of the UCAV, with the
positive direction being the right yaw direction of the aircraft.
µ is the angle between the body coordinate system axis and
the plumb plane containing the body coordinate system’s
y-axis, indicating the roll angle of the UCAV in the positive
direction of the airplane’s tilt to the right. The kinematic
equations of the UCAV can thus be derived as follows:

ẋ = v cos γ cosϕ

ẏ = v cos γ sinϕ

ż = v sin γ

(6)

where ẋ, ẏ, and ż represent the rates of change of velocity
along each axis, respectively. In the same coordinate system,
the dynamics equations of the UCAV can be expressed as:

v̇ = g(nx − sin γ )

γ̇ =
g
v
(ny cosµ− cos γ )

ϕ̇ =
g

v cos γ
ny sinµ

(7)

where g represents the gravitational acceleration under
normal gravity conditions, nx is along the direction of the
aircraft’s flight velocity, usually referred to as the longitudinal
load factor or axial load factor, used to change the magnitude
of the aircraft’s flight velocity; ny is perpendicular to the
aircraft’s motion plane, typically referred to as the normal
load factor, used to change the direction of the aircraft’s
flight velocity. This dynamic equation can clearly and
intuitively describe the changes in the aircraft’s attitude.
From Equations (6) and (7), it can be clearly inferred the
relationship between the normal load factor, the axial load
factor, and the roll angle around the velocity axis and the
aircraft’s motion.

B. RELATIVE POSITION AND OBSERVATION SPACE
During air combat decision-making, it is crucial to understand
the relative positions and velocities of both the own and target
aircraft, as well as their respective lead angles. The position
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coordinates of the ownUCAV arePu = {xu, yu, zu}, and those
of the target UCAV are Pt = {xt , yt , zt }. The vector R denotes
the position of the own UCAV relative to the target. Vu is
the velocity vector of the own aircraft, and Vt is the velocity
vector of the target aircraft. Vut represents the velocity of
the own aircraft relative to the target. The lead angle qu is
the angle between the own aircraft’s velocity vector and the
relative position vector, while the lead angle qt is the angle
between the target aircraft’s velocity vector and the extension
of the relative position vector. The formulas for calculating
qu and qt are as follows:

R = Pt − Pu
Vtu = Vt − Vu

qu = arccos
Ptu · Vu
∥Ptu∥ · ∥Vu∥

, 0 ≤ qu ≤ π

qt = arccos
Ptu · Vt
∥Ptu∥ · ∥Vt∥

, 0 ≤ qt ≤ π

(8)

In typical observation space design, all situational infor-
mation from both the own Su and target St forces is
directly used as observation data, leading to redundant
information and increased difficulty in training the decision-
making network. This paper introduces a dual observation
space O, which combines relative situational information
with individual feature information, effectively reducing the
redundancy of observation data. The observation space O
consists of situational information from both sides Oa and
relative situational informationOr , as shown in the following
equation:

O =

{
Oa = {µu, γu, ϕu, vu, µt , γt , ϕt , vt }
Or = {1D, 1Dx , 1Dy, 1Dz, qu, qt }

(9)

where 1D represents the relative distance, and 1Dx , 1Dy,
and 1Dz are its components along the x, y, and z axes,
respectively.

C. ACTOR-CRITIC NETWORK
Air combat maneuver decision-making aims to achieve
the optimal solution during combat, ensuring self-safety
while swiftly defeating target aircraft. This task is complex
and challenging, requiring the comprehensive utilization
of temporally sequenced status information acquired by
aircraft and the implementation of advanced technologies
and algorithms for intelligent decision-making. Therefore,
to enable aircraft to fully leverage the observed temporal
information during combat, we have designed an improved
Actor-Critic network structure based on BiLSTM andMHSA
for air combat maneuver decision-making.

1) BiLSTM
LSTM networks, a variant of Recurrent Neural Networks,
address the long-term dependency issue by introducing
gate units, thus mitigating gradient vanishing. BiLSTM
networks integrate forward and backward LSTMs, processing
sequence information in both directions. Their outputs

FIGURE 3. The BiLSTM deep neural network. Where x represent the input,
ht represent the output hidden state.

FIGURE 4. The structure of MHSA. Where matrices Q, K and V represent
the query, key, and value respectively. They are obtained through different
linear transformations of the same matrix.

are concatenated, effectively capturing historical sequence
information while also focusing on future moments. The
structural diagram is depicted in Figure 3.

Incorporating BiLSTM into the Actor-Critic network
enables the network to leverage both forward and backward
temporal information concurrently, thereby fostering a more
holistic comprehension of variations in flight status. Such
capability is paramount for capturing the swiftly evolving
dynamic environment of air combat.

2) MHSA
The attention mechanism is widely used in deep learning
models to selectively focus on relevant information while
disregarding irrelevant details, effectively enhancing model
performance. MHSA enhances the model’s capability to
process sequential data by introducing multiple heads on top
of the self-attention mechanism. Each head learns different
attention weight distributions, capturing diverse relationships
and features, thereby strengthening the modeling of observa-
tion sequences. The structural diagram is depicted in Figure 4.

Incorporating MHSA into the Actor-Critic network
enables adaptive attention to each observation dimension.
The model dynamically adjusts attention to focus on crucial
information for the current decision, enhancing flexibility.
It can selectively attend to different observation dimensions
at different time steps, thus improving the model’s perception
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FIGURE 5. The overall structure of actor-critic network. The actor-critic network takes observations as input and outputs the
mean action values and predicted state values, providing valuable guidance for WU-PMCTS in terms of both value and policy.

of dynamic battlefield scenarios. This assists the algorithm in
learning and decision-making more effectively.

3) OVERALL STRUCTURE OF ACTOR-CRITIC NETWORK
The overall structure of the Actor-Critic network is illustrated
in Figure 5. The network takes the observations O at the
current time step as input and outputs the mean action values
and the predicted values of states. Initially, the Actor-Critic
network processes the observation information from time
step 0 to T , followed by forward LSTM and backward LSTM
processing, as shown in equation:

−→
ht = LSTM (−→xt ,

−−→
ht−1)

←−
ht = LSTM (←−xt ,

←−−
ht+1)

ht =
−→
ht +
←−
ht

(10)

where −→xt and
−→
ht represent the forward input and output

hidden state of the LSTM at time step t , respectively,←−xt and
←−
ht represent the backward input and output hidden state of
the LSTM at time step t , respectively, and ht represents the
combined output hidden state of the forward and backward
LSTMs at time step t . It contains the feature information at
the current time step t as well as the bidirectional information
before and after time step t .

Then, concatenate the output hidden states ht at each time
step to obtain the output matrix H = [h0, h1, h2, . . . , hT ].
The output H is input into MHSA to compute the output of
each self-attention head, and then the outputs of all heads are
concatenated and linearlymapped to obtain theMHSAoutput
Hs, as shown in the following equation:H∗ = softmax

(
(HWQ)(HWK )T

√
dk

)
HWV

Hs = Concat(H1
∗,H2

∗,H3
∗, . . . ,Hk∗)WO

(11)

where WQ, WK and WV are linear mapping matrices for
query, key, and value, respectively, and

√
dk is the scaling

factor.
After the MHSA output, layer normalization is applied

to enhance the stability of the network. Finally, the ReLU
activation function and fully connected layers are used
to obtain the output action means for the Actor head
and the output state prediction values for the Critic head.
This Actor-Critic network architecture design enables more
effective capture of crucial temporal information and features
in the observation sequence, such as the relative positions,
velocities, and altitudes of both own and target UCAVs.
It enhances the algorithm’s perception and decision-making
capabilities in dynamic battlefield scenarios.

D. WU-PMCTS
From the previous section, we understand that inputting the
current observation into the Actor-Critic network yields the
mean action and predicted value of the state as outputs.
In traditional approaches, actions are directly randomly
sampled from a Gaussian distribution constructed using the
mean. However, this method may lead to reduced returns.
Hence, we have designed a method that combines the
output of the Actor-Critic network with WU-PMCTS. WU-
PMCTS integrates root parallelizationMCTSwithWU-UCT.
In this approach, actions are sampled from a Gaussian
distribution formed by the mean output of the Actor network.
Subsequently, these sampled actions, along with the value
predicted by the Critic, guideWU-PMCTS to obtain the most
valuable actions. This method is then employed for self-play
training. Following this, information such as actions, rewards,
and the next observation is stored in a replay buffer for
subsequent training. The overall process is shown in Figure 7.
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FIGURE 6. The dynamic reward evaluation method. Where ω′

d , ω′
v , ω′

θ
, and ω′

hrepresent dynamic reward weights.

In WU-PMCTS, each node represents a state S, and the
edges of the node represent the actions taken from that state.
Each node stores a set (Q,N ,M ,P), where N represents the
number of visits to the node, Q represents the total estimated
value of the node, M represents the number of virtual visits
to the node, and P represents the prior probability of the
node obtained from a Gaussian distribution. The tree search
process is guided by the Actor and Critic networks. Starting
from the initial state S1, the observation of the state is
input into the Actor network to obtain the output action
values. The action values are considered as the mean of a
Gaussian distribution. A Gaussian distribution is constructed
by combining the action mean with a diagonal covariance
matrix, and then K actions are sampled from this distribution
for tree search. The state’s estimated value V is directly
provided by the Critic network. The exploration equation
used in the selection phase of WU-PMCTS is as follows:

at = argmax
s′∈C(s)

{
Qs′

Ns′
+ cP

√
2 log(Ns +Ms)
Ns′ +Ms′

}
(12)

The tree search process is guided by the Actor and Critic
networks. Starting from the initial state S1, the observation
value of the state is input into the Actor network to obtain the
output action value. The action value is regarded as the mean
of the Gaussian distribution. By constructing a Gaussian
distribution with a diagonal covariance matrix and action
mean, K actions are sampled from this distribution for tree
search. The estimated value of the node state, V , is directly
given by the Critic network.

When the tree search reaches a leaf node, for unexpanded
leaf nodes, Gaussian action sampling is performed based on
the action mean output by the Actor network. However, the
number of sampled actions for non-root nodes is less than
that for the root node, to increase exploration depth and avoid
redundant simulations of similar sampled actions. During the
simulation phase, the estimated value of the state is directly
provided by the Critic network. When a certain number of
steps are reached or the terminal state is encountered, the tree
search proceeds with backpropagation to update the node’s
visit count N , virtual visit countM , and total estimated value
Q. Finally, the action of the node with the highest value

is selected as the action for policy selection. This action
selection method yields higher rewards compared to random
selection, thereby enhancing training performance.

Using WU-PMCTS for action selection enables the
agent to achieve higher rewards compared to randomly
selecting actions from a Gaussian distribution. This implies
that the agent can obtain better strategies, and employing
WU-PMCTS significantly accelerates the tree search speed
compared to conventional MCTS while ensuring optimal tree
search performance as much as possible.

E. REWARD FUNCTION
In air combat decision-making, the objective of maneuver-
ing is to gain a favorable attack position. By using the
instantaneous spatial and temporal conditions between the
UCAV and the target as reward signals, and constructing
corresponding air combat reward functions to evaluate the
UCAV’s positional advantages, the decision system can select
the appropriate maneuvers, thus enhancing the UCAV’s
combat superiority. Traditional air combat environment
rewards typically include dense rewards such as distance,
speed, and angle rewards. The comprehensive air combat
reward value is derived through fixed weighting of these
rewards, or by using sparse terminal or event rewards.
However, these reward evaluation methods fail to fully and
accurately reflect the UCAV’s confrontation situation and the
current overall air combat status.

To better address different confrontation scenarios,
we have developed a dynamic reward evaluation (DRE)
method. This approach enables UCAV to learn and make
decisions more effectively based on the rewards provided by
the environment.

1) DISTANCE REWARD
Relative distance is a crucial parameter in air combat. During
confrontations, if the distance between the two parties is too
great, the probability of a successful weapon engagement
decreases, while if the distance is too close, safety issues
arise. Therefore, within the safe operational constraints, there
exists an optimal attack range [dmin, dmax]. For our aircraft,
the distance reward function can be formulated as shown
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in Equation:

Rd =


e−α( d−dmax

dmax
)
, d > dmax

1, dmin ≤ d ≤ dmax

e−β( dmin−d
dmin

)
, d < dmin

0, d ≤ ds

(13)

where d represents the scalar distance between the two
aircraft, dmax is the upper limit of the attack range, dmin is
the lower limit of the attack range, and α and β are adjustable
penalty coefficients. When the distance between our aircraft
and the target aircraft is within the attack range, the distance
advantage is maximized. When the distance between the two
aircraft is outside the attack range, it is necessary to quickly
move closer to the attack range.

2) VELOCITY REWARD
In air combat, speed is also an important factor affecting
the battle situation. Higher speed grants the aircraft more
initiative, allowing it to enter the attack range more quickly
during an attack and making it easier to approach or evade
the opponent. However, if the speed is too high, the aircraft’s
maneuverability will be greatly reduced. In actual close-range
air combat, our optimal speed will vary in real time based on
the target’s speed and relative distance. Therefore, the desired
speed v∗ is introduced and defined as:

v∗ =


vt , dmin ≤ d ≤ dmax

vt + (vmax − vt )(1− e
−( d−dmax

dmax
)), d > dmax

vt + (vmax − vt )(1− e
−( dmin−d

dmin
)), d < dmin

(14)

where vmax is the maximum scalar speed of the UCAV, and
vt is the scalar speed of the target aircraft. For our aircraft,
when the distance between our aircraft and the target aircraft
is greater than or less than the attack range [dmin, dmax],
our aircraft should accelerate to shorten the distance to the
opponent. The desired speed v∗ lies between vt and vmax, and
its actual value is determined by the distance d . When the
aircraft is within the attack range [dmin, dmax], v∗ equals the
target speed vt to maintain the distance advantage. The ideal
speed is always greater than or equal to the opponent’s speed
to maintain a relative advantage. Therefore, the speed scalar
reward function can be defined as the ratio between the actual
speed of the aircraft and the ideal speed:

Rv =
vu
v∗
e
−2|v∗−vu|

v∗ (15)

where vu represents the scalar speed of our aircraft. The
smaller the deviation between the speed of our aircraft and
the ideal speed, the greater the speed advantage. This means
that the UCAV can reach the attack range more quickly and
form favorable attack conditions in a shorter amount of time.
When vu = vt , the speed advantage is maximized.

3) ANGLE REWARD
In air combat, an aircraft is in an advantageous position
when it is chasing another aircraft, in a disadvantageous

TABLE 1. The relative posture situations own and target UCAVs.

position when it is being chased by another aircraft, and in
a balanced state when both aircraft are flying in opposite or
same directions. Therefore, this paper calculates the angle
reward function based on the lead angle between the two
aircraft as shown in the following equation:

Rθ =
2π − qu − qt

2π
(16)

From the equation above, it can be observed that the
smaller the lead angle of our aircraft, the greater our attack
advantage, while the smaller the lead angle of the target
aircraft relative to ours, the greater the attack disadvantage
of the target. When qu = qt = 0, the angle advantage of our
aircraft reaches its maximum at 1, forming a chasing situation
from our side to the target. Conversely, when qu = qt = π ,
the angle advantage of the target reaches its maximum, and
our angle advantage is 0, indicating a chasing situation from
the target to us. Additionally, based on the lead angles of the
two aircraft in the air combat process, the relative posture
situations between the two aircraft can be simplified into
three categories: relative advantage, relative disadvantage,
and mutual balance, as shown in Table 1 below.

4) ALTITUDE REWARD
In air combat, when the relative flight altitude is higher than
the target’s, the UCAV gains potential energy advantage.
Aircraft positioned at higher altitudes can seize better
attacking opportunities and utilize altitude superiority for
diving, rapidly entering the attack zone, or withdrawing from
combat. Therefore, in practical air combat, the optimal attack
altitude range is delineated, and the corresponding altitude
reward function is defined as follows:

Rh =


1, hmin < 1h < hmax

e
−

(1h−hmin)
2

2(hmax−hmin)
2
, 1h < hmin

e
−

(1h−hmax)2

2(hmax−hmin)
2
, 1h > hmax

(17)

The formula represents the altitude difference between our
aircraft and the target aircraft, where hmin and hmax denote
the upper and lower bounds of the optimal attack altitude
range, respectively. When our UCAV is relatively higher than
the target and the altitude difference falls within the optimal
attack altitude range, it maximizes its air combat advantage.
However, if the altitude difference is too large or too small,
the aircraft needs to adjust its altitude towards the attack area.
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FIGURE 7. The overall process of action selection using WU-PMCTS. In WU-PMCTS, branches of different colors represent parallel tree
searches.

5) DYNAMIC REWARD EVALUATION
The DRE method adjusts reward weights in real-time
according to changes in the battlefield situation, enabling
the UCAV to gain a more comprehensive understanding of
the battlefield environment and make more precise maneuver
decisions. DRE subdivides different dynamic weighting
coefficients for each reward function based on 24 types of
combat situations. The dynamic weighting coefficient of the
previous level will affect the dynamic weighting coefficient
of the next level, with a larger coefficient at the previous level
resulting in faster decay of the subsequent dynamic weighting
coefficients. The DRE method is illustrated in Figure 6.
In air combat, UCAV must first determine whether they

have entered the attack zone. If a UCAV has not entered the
attack zone, it should prioritize quickly reaching this zone.
Therefore, the dynamic weight of the distance reward ω′d is
determined by whether the aircraft is in the attack zone. The
basis for a UCAV’s rapid entry into the attack zone is its
speed advantage. If the speed advantage is significant (greater
than 0.8), the UCAV can quickly enter the attack zone, thus
the dynamic weight of the speed reward ω′v is influenced by
the speed advantage. Once the UCAV has entered the attack
zone and maintained a speed advantage, it can focus more on
adjusting its angle and altitude to gain a superior position. The
dynamic weight of the angle reward ω′θ is determined by the
lead angles of both sides and can be categorized into mutual
parity, our advantage, and our disadvantage. The dynamic
weight of the altitude reward ω′h is based on whether the
UCAV is within the optimal attack altitude range.

After selecting four dynamic reward weights ω′d , ω′v, ω′θ ,
and ω′h, normalization is performed to obtain the actual
reward weights ωd , ωv, ωθ , and ωh, as shown in Equation:

[ωd , ωθ , ωv, ωh] =
[ω′d , ω

′
θ , ω
′
v, ω
′
h]

ω′d + ω′θ + ω′v + ω′h
(18)

and we have:

ωd + ωθ + ωv + ωh = 1 (19)

Therefore, the comprehensive reward evaluation value is:

Rtotal = ωdRd + ωθRθ + ωvRv + ωhRh (20)

From the above Equation ( 20), it can be seen that when the
comprehensive reward evaluation value is large, the UCAV is
in an advantageous position and can better attack the target.
Conversely, when the comprehensive reward evaluation value
is low, the UCAV is in a disadvantageous position and is
more likely to be attacked by the target. The DRE method
mentioned above can dynamically adjust the reward function
weights according to different combat situations. This helps
theUCAVmake better maneuvering decisions during training
based on the current situation and avoids issues where the
UCAV might fall into local optima or experience inefficient
training due to incomplete considerations.

F. ADVANTAGE PRIORITIZED EXPERIENCE REPLAY
In reinforcement learning algorithms, after obtaining train-
ing samples, selecting an appropriate number of samples
from these samples for network training is a crucial step.
Traditional sampling methods usually rely solely on random
uniform sampling. However, to improve training efficiency
and effectiveness, we have designed a more refined method
called APER for sample selection. This method leverages the
property of the advantage function in reinforcement learning,
which measures the superiority of taking a certain action in a
given state relative to the average level.

Specifically, for each batch of samples, we can calculate
their corresponding advantage values. Samples with higher
advantage values indicate that they contribute more to policy
improvement compared to other samples. Therefore, these
samples should be prioritized for sampling during training.
The equation for sample selection is as follows:

P(i) =
(eA(i))

ρ

N∑
j=1

(eA(j))ρ
(21)

where A(i) represents the advantage value of the i-th sample,
ρ indicating the magnitude of the advantage function’s
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FIGURE 8. The overall flowchart of PPO-BWDA algorithm.

influence in the sampling probability, P(i) represents the
probability of the i-th sample being sampled by dividing the
advantage value of the i-th sample by the total advantage
value. When ρ = 0, uniform sampling of samples is
performed, and when ρ = 1, sampling is done entirely
according to the advantage function probability value. The
APER method is based on the advantage function and
adjusts the sampling probability to focus more on samples
with higher advantage values. The probability of each
sample being selected can be calculated by the following
formula. This sampling method can effectively increase the
utilization of samples, ensure that the network focuses more
on samples that play an important role in improving the policy
during training, thereby accelerating training convergence
and improving the overall performance of the policy. The
overall train loop and algorithm flow of our PPO-BWDA
algorithm is shown in the figure 8 and Algorithm 1.

IV. EXPERIMENT AND ANALYSIS
To validate the performance improvements of our proposed
PPO-BWDA algorithm compared to the baseline PPO and
other mainstream algorithms, we first describe the experi-
mental setup and evaluation methods in this section. Fol-
lowing this, we conduct ablation and simulation experiments
to demonstrate the advantages of the various improvements
introduced in this paper. Finally, we perform comparative
and simulation experiments to establish the superiority of the
proposed algorithm over current mainstream algorithms.

A. EXPERIMENTAL SETTINGS
During each round of adversarial training, the initial posi-
tions, speeds, and angles of our UCAV and the target
aircraft are randomly initialized from the ranges specified
in Table 2. The total number of training epochs for the
agent is set to 5000. The Replay Buffer stores a batch size
of 2048 episodes, with a mini_batch size of 64 episodes.
Each batch size undergoes 10 samplings of mini_batches, and
each mini_batch involves 5 network updates. The simulation
time step is set to 0.1s, meaning both sides select their
actions simultaneously every 0.1s. The maximum number

of decisions per confrontation is 1250. In the algorithm, the
clipping parameter is set to 0.2, the discount factor is 0.99,
and the initial learning rate is 3× 10−4, decaying to 0 by the
end of the training.

In air combat scenarios, we need to define the conditions
for the end of a round and determine the outcome. Taking
our aircraft as an example, our goal is to occupy a favorable
attack angle and maneuver to the target’s rear, ensuring that
the target falls within our attack range and finds it difficult
to escape quickly. Simultaneously, we must avoid falling into
the target’s attack range.

Specifically, the victory conditions can be quantified using
the following criteria:

• qu ≤ 30◦ and qt ≤ 60◦

• dmin ≤ d ≤ dmax
• hmin ≤ h ≤ hmax
• vu = v∗

If these conditions aremet, it is recorded as a victory for our
UCAV. Conversely, if the target UCAV meets its respective
conditions, it is recorded as a victory for the target. If the
maximum number of decision steps is reached without a clear
victory, the round is recorded as a draw.

B. ABLATION EXPERIMENT
In the ablation experiments, our UCAV adopted four
different algorithms for maneuver decision-making: PPO,
PPO-BW, PPO-BWD, and PPO-BWDA. The target UCAV
used a pre-trained PPO algorithm for maneuver decision-
making. Specifically, PPO-BW represents the PPO algorithm
enhanced with a BiLSTM + MHSA Actor-Critic network
structure and WU-PMCTS for action selection. PPO-BWD
includes the additions of DRE on top of PPO-BW, while
PPO-BWDA further incorporates APER.

1) EXPERIMENT EVALUATION
In Figure 9(a), we focus on the average return obtained by the
agent during the training process. The solid line represents
the mean of the average return, while the shaded area
represents the standard deviation. In air combat maneuver

119126 VOLUME 12, 2024



H. Wang et al.: Autonomous Air Combat Maneuver Decision-Making Based on PPO-BWDA

Algorithm 1 PPO-BWDA Algorithm

Input: Initialize Actor network parameters θ0, Critic network parameters ω0, hyperparameters, and environment (with
dual posture observations, Replay Buffer, DRE and APER)

Output: Actor network parameters θ , Critic network parameters ω

while Epochs < E do
Reset environment get ovservations Ot ;
for steps = 1 to T do

Inputs Ot to Actor network to get mean values µ;
Construct Gaussian distribution with mean and covariance matrix output by µ;

N (x | µ, 6) = 1
(2π)d/2

|6|1/2
e( −

1
2
(x − µ)T6−1(x − µ))

Use WU-PMCTS to select our agent actions at,o from N (x | µ, 6);

at = argmax
s′∈C(s)

{
Qs′

Ns′
+ cP

√
2 log(Ns +Ms)
Ns′ +Ms′

}
Get target UCAV actions at,t by Ot ;
Execute (at,u, at,t ) in environment to get DRE reward rt , next observation Ot+1 and done;

rt = ωdRd + ωθRθ + ωvRv + ωhRh

Store (Ot , at,u, rt , Ot+1) in Replay Buffer;
if done ̸= 0 then

break;

if Replay Buffer size ≥ batch size then
for k_epochs = 1 to K do

Epochs += 1;
Calculate the advantage values At for each sample;
Sample mini batch (Ot , at,u, rt , Ot+1) using APER;
for update_per = 1 to N do

Compute the surrogate objective for the sample:

L(θ ) = min(rt (θ ) · At , clip(, 1− ε, 1+ ε)At ), rt (θ ) =
π (at |Ot )

πold (at |Ot )

Update Actor network parameters: θ ← θ + α∇θL(θ )
Update Critic function parameters: ω← ω − β∇ω (Vω(st )− (rt + γVω(st+1)))2

Clear Replay Buffer;

decision-making, the value of the average return reflects
whether the agent has learned reasonable and effective
strategies. The experimental results show that the original
PPO algorithm takes up to 2000 epochs to converge, with a
convergence value of 0.66. Additionally, at the early stages
of training, the PPO algorithm exhibits random decision-
making, causing significant fluctuations in the standard
deviation of the shaded area. In contrast, PPO-BW shows a
significant improvement over the original PPO algorithm in
both convergence speed and convergence value, converging
after 1500 epochs with an average return of 0.81. This
improvement is due to PPO-BW leveraging the improved
BiLSTM + MHSA network structure and the WU-UCT
based PMCTS action selection mechanism, enabling the

agent to learn and choose appropriate maneuver strategies
more accurately, thereby accelerating the training process and
increasing the average return value. Furthermore, PPO-BWD
introduces DRE on top of PPO-BW, allowing the agent to
more comprehensively evaluate the current battlefield situa-
tion and adjust its decision-making strategy accordingly. As a
result, PPO-BWD shows a more significant improvement in
both convergence speed and convergence value, converging
after 1200 epochs with an average return of 0.94, further
proving the importance of dynamic situation assessment for
air combat maneuver decision-making. Finally, PPO-BWDA
incorporates APER, which further optimizes the agent’s
learning process. During training, it demonstrated the highest
convergence speed and value. This proves that APER allows

VOLUME 12, 2024 119127



H. Wang et al.: Autonomous Air Combat Maneuver Decision-Making Based on PPO-BWDA

FIGURE 9. Ablation experiments results.

TABLE 2. Experimental parameters.

the agent to utilize the data from the experience replay
buffer more effectively, accelerating the training process and
increasing the average return. PPO-BWDA converged after
1000 training episodes, achieving an average return of 0.98,
which is 0.32 higher than the final convergence value of the
PPO algorithm.

Moreover, to comprehensively evaluate the effectiveness
of the improved algorithms in solving maneuver decision-
making problems, the changes in the win rate recorded
during training are shown in Figure 9(b), which is the
number of wins per epoch divided by the total number
of epochs. As the number of training iterations increases,
the win rate of the improved PPO-BW, PPO-BWD, and
PPO-BWDA rises faster and reaches higher values compared
to the PPO algorithm, which is consistent with the trend in
the average return. This phenomenon further verifies that
our improved techniques enable the algorithm to learn more
reasonable and effective maneuver strategies during training,
and the decision-making ability of the agent gradually
enhances. Ultimately, the improved PPO-BW, PPO-BWD,
and PPO-BWDA algorithms achieve win rates of 82%, 90%,
and 97%, respectively, while the final win rate of PPO is only
61%. This indicates that agents trained with the improved
algorithms can more effectively handle different situations

in confrontations, making more optimized decisions and
achieving more victories.

2) SIMULATION EXPERIMENT
To further demonstrate the superiority of our proposed
algorithm over the benchmark algorithm PPO in learning
decision-making for space station maneuvers.These eval-
uations compared agents trained using the PPO-BWDA
and PPO algorithms over epochs ranging from 0 to 1200,
as shown in Figures 10. In these simulations, Agent SF
represents our UCAV, and Agent OP represents the target’s
UCAV. The green circles denote the starting positions of the
UCAV, while the red crosses indicate their ending positions.
In Figures 10(a), (b) and 11(a), (b), in the early stages
of training (at epochs 200 and 400), the UCAV guided
by the PPO algorithm exhibited actions akin to random
exploration, indicating a lack of learned effective attack
strategies. In contrast, the UCAV guided by the PPO-BWDA
algorithm was already engaging in mutual entanglement with
the target UCAV, although it had not yet overcome the
opponent.

As training progressed, as depicted in Figures 10(c), (d)
and 11(c), (d) at epochs 600 and 800, the UCAV trained with
the PPO-BWDA algorithm began to learn attack strategies
and adjust its posture. It attempted to maneuver behind
the target UCAV to gain a positional advantage, although
the chosen attack routes were suboptimal and often led to
futile circling. Conversely, the UCAV trained with the PPO
algorithm was only starting to learn how to engage with the
target UCAV.

By the time training reached epochs 1000 and 1200,
as shown in Figures 10(e), (f) and 11(e), (f), the UCAV
trained with the PPO-BWDA algorithm demonstrated a more
effective selection of attack strategies based on the target
UCAV’s position. It swiftly occupied favorable positions
and easily defeated the enemy agent. Meanwhile, the UCAV
trained with the PPO algorithm, although able to engage the
target UCAV, still failed to secure victory.

The results of the ablation experiments and simulation
adversarial experiments demonstrate the effectiveness of our
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FIGURE 10. The simulution results of PPO-BWDA over 0-1200 epochs.

FIGURE 11. The simulution results of PPO over 0-1200 epochs.

improvement techniques in enhancing the decision-making
capability of the algorithm and accelerating the convergence

of the training process. The PPO-BWDA algorithm ben-
efits from the introduction of an improved Actor-Critic
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FIGURE 12. Comparison experiments results.

network structure, WU-PMCTS, DRE, and APER, each
contributing to its performance to varying degrees. These
advancements are significant for improving the autonomous
decision-making capabilities and combat efficiency of air
combat systems. Additionally, they provide new insights and
methods for research in related fields.

C. COMPARISON EXPERIMENT
1) EXPERIMENT EVALUATION
In the comparative experiments, we introduced state-of-the-
art algorithms widely used in air combat decision-making,
namely SAC, DDPG, and DQN, into our air combat
environment and evaluated their performance. The average
return and win rate of the agents were recorded and are shown
in Figure 12.

The DQN algorithm performed the worst, with both
the Average Return and win rate curves growing slowly
throughout the training process, eventually stabilizing at
0.39 and 32%, respectively. This indicates that DQN is not
effective in learning complex air combat tasks.

The DDPG algorithm showed a slow increase in both
Average Return and win rate curves before 1000 epochs, with
a significant improvement between 1000 and 1500 epochs,
eventually stabilizing at 0.63 and 49%, respectively.
Although there was some improvement over DQN, it was still
suboptimal, achieving an Average Return of 0.63.

For the SAC algorithm, the average return and win rate
curves stabilized at 0.72 and 68%, respectively, slightly
higher than PPO but still not reaching the level of PPO-
BWDA. In contrast, our PPO-BWDA algorithm demon-
strated the best performance, with both average return and
win rate rising rapidly from the start. After approximately
5000 training epochs, PPO-BWDA exhibited significant
advantages in both convergence speed and final convergence
values. The PPO-BWDA algorithm outperformed the com-
pared DDPG, SAC, and DQN algorithms in terms of both
convergence speed and final values.

The experiments results further validate the superiority
of our proposed PPO-BWDA in air combat maneuver

TABLE 3. Performance comparison of different algorithms.

decision-making. The performance results of ablation and
comparison experiments are illustrated in table 3.

2) SIMULATION EXPERIMENT
To further validate the advantages of our algorithm in air
combat maneuver decision-making, we conducted simulation
adversarial experiments using the improved PPO-BWDA
algorithm against PPO, SAC, DDPG, and DQN. As shown
in Figure 13, in (a) and (b), the agent trained with our
algorithm quickly devised attack strategies and rapidly
approached adversary agents trained by DQN and PPO,
respectively. After gaining advantages in speed, altitude,
and distance, our agent adjusted its posture to defeat the
adversary. During confrontations with the SAC algorithm
and the DDPG algorithm in (c) and (d), our agent employed
different strategies to counter the actions of the target agents,
ultimately defeating them. The results of these simulation
adversarial experiments against PPO, SAC, DDPG, and
DQN demonstrate that our improved PPO-BWDA algorithm
not only exhibits excellent performance during training but
also shows significant advantages over other algorithms in
head-to-head confrontations, verifying the effectiveness and
reliability of our approach.

The results of the comparison experiments and simula-
tion adversarial experiments demonstrate the effectiveness
and superiority of our proposed PPO-BWDA algorithm
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FIGURE 13. Simulation results with different algorithm.

in addressing air combat decision-making problems. The
improvements show rapid convergence and higher final
convergence values, providing strong support for enhancing
the autonomous decision-making capabilities of air combat
systems.

V. CONCLUSION
This study addresses the limitations of current deep
reinforcement learning methods in air combat maneuver
decision-making by proposing an improved approach, the
PPO-BWDA algorithm based on PPO. Firstly, we established
a UCAV adversarial framework, which includes an aircraft
motion model, dynamic equations, and dual observation
spaces. We then introduced our designed BiLSTM+MHSA
network structure to enable the algorithm to more effectively
handle the observed situational information in air combat.
Additionally, we proposed an action selection method based
on WU-PMCTS, allowing the algorithm to choose more
optimal actions. Furthermore, we used our designed DRE to
provide more comprehensive situational rewards for different
adversarial scenarios, and implemented APER to enhance
training efficiency through sample selection.

Finally, ablation experiments demonstrated that each
improvement in our proposed PPO-BWDA algorithm con-
tributed to performance enhancements to varying degrees.
The final convergence values for Average Return and win rate
were 0.32 and 36% higher than those of PPO, respectively.
Comparative experiments effectively demonstrated the supe-
riority of our proposed algorithm over current mainstream
algorithms in terms of decision-making capability and
training convergence speed. This indicates that our approach
can provide significant technical support for applying deep
reinforcement learning in autonomous air combat decision-
making.

However, our algorithm also has some limitations. For
instance, it is more time-consuming compared to some tradi-
tional methods, requiring substantial time to train the agent.
Moreover, its training effectiveness is less satisfactory in
more complex environments involving missile engagements
or multi-agent confrontations. These are areas for future
improvement of the PPO-BWDA algorithm. Future work
will further explore the applicability of the algorithm in
broader air combat scenarios and conduct more in-depth
optimizations and validations in line with actual combat
requirements.
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