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ABSTRACT Modern information technology is driving the rapid development of the information and
automation industry through the combination of computer technology, communication technology, and
control technology. Inspired by nature’s cluster movement, such as birds, people proposed the concept
of Multi–Agent Systems (MASs). This paper deals with the formation control problem for a class
of heterogeneous multi–agent systems with time-delays. First, the formation control of heterogeneous
multi–agent systems with communication delay in fixed and switching topologies is investigated.
A heterogeneous multi–agent system model with input delay and communication delay is established.
Furthermore, based on this model, the formation control protocol is designed and the stability of the proposed
control protocol in fixed and switched topologies is analyzed. The first– and second–order multi–agent
control system was formulated for both fixed and switched topology, respectively. Then, using the new LMI
toolbox, the feasibility of the parameters is obtained and the example is created byMATLAB. The simulation
results show that the proposed formation control protocol with delay in this paper can make the systems
converge to the expected value under fixed and switched hierarchies.

INDEX TERMS Heterogeneous multi–agent systems, Lyapunov functionals, formation control, resource
constraints.

I. INTRODUCTION
In the realm of artificial intelligence and control engineering,
the emergence of multi–agent systems (MASs) marks a
paradigm shift from traditional individual autonomous
control to a cooperative structure. This approach, inspired
by collective animal behaviors and extensively explored in
research [1] and industrial applications [2], offers enhanced
robustness and efficiency. Key characteristics of an agent
in this context include the ability to sense the environment,
make decisions, and actuate movement or interaction [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Xujie Li .

The evolution of MASs, influenced by advances in
robotics [4], micro–grids, and traffic control systems
Chen et al. 2003), demonstrates significant benefits such
as improved task efficiency, energy savings, and increased
fault tolerance in system redundancy [5]. These attributes
collectively contribute to the growing prominence and
application ofMASs in modern technological landscapes. The
readers may also be directed to the published papers listed
in Table 1, which provide additional historical evaluations
of diverse control systems implemented on multi–agent
systems (MAS).

In the actual network communication between agents, the
input delay and communication delay caused by the limited
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network resources and the non–ideal state of the actual
environment can not be ignored, including the influence of
switching topology on consistency convergence, which has
also attracted the attention of scholars, and has achieved
fruitful research results in the research of consistency under
switching topology and time–varying topology [6], [7].
Among them, literature [8], [9]mainly studies the consistency
of continuous-time systems with time delay and switching
topology, literature [10], [11], [12] mainly studies the
stability of discrete–time multi-agent systems with time
delay, interference or both, and literature [13] studies the
average consistency of discrete-time Markov switched linear
multi–agent systems (L-MAS) with fixed topology and time
delay, and proposes a time–delay switching. By improving
the new signal mode, the switching signal of the system and
the time delay signal of the controller are combined into
one signal. By using Lyapunov method, two LMIs standards
of average consistency are given, and it is proved that the
consistency of multi–agent system is related to the spectral
radius of the Laplacian matrix. Literature [14] studies the
distributed consistency of a class of multi–agent complex
systems with unknown time delay under switching topology
and intermittent communication. Each agent is modeled as
a general nonlinear system. Based on Lyapunov stability
theory and graph theory, the sufficient conditions for expo-
nential convergence are proved. Literature [15] studies the
grouping consistency of discrete–time multi–agent systems
with switching topology and bounded time delay. Based on
non–negative matrix theory and graph theory. It is proved
that the packet consistency condition is solvable under the
assumption that the communication topology in any time
interval of a given length contains the group–spanning
tree.
Multi–agent system control, specifically containment

control, has drawn increasing attention from scholars in
the modern era. The inclusion control problem has been
discovered to be apply in many practical situations inspired
by some natural phenomena, such as multi–mobile robots or
vehicle fleets. Incorporating control can allow an agent to
act as the leader so that a group of robots or autonomous
vehicles does not enter the dangerous zone by guiding the
vehicle or multiple–mobile robot into the safe areas that the
leader crosses. The use of containment control in practical
applications can be seen as playing a significant role in
[16] and [17]. The inclusion control problem has been
studied in great detail in recent years, and Ref. studies the
inclusion control problem for a dynamic switching topology
with communication delay in the case of a leader–following
multi–agent system. In [18], the problem of inclusion
control is studied. First–order and second–order dynamic
systems are considered containment control algorithms, and
modern control theory and algebraic graph theory are
applied to analyze the stability of the two containment
control algorithms using the Lyapunov–Rasovskii method.
An undirected/directed network topology was examined in
[19] and [20] when sampling data inclusion was needed from

FIGURE 1. Behavior–based formation control model.

a linear multiagent systemwithmultiple leaders. Refer to [20]
for the decomposition of the closed–loop control problem
into multiple subsystem stability analysis problems. The Lya-
punov function was combined with sufficient conditions to
ensure all followers entered the leader’s convex hull. Several
agents are under different leaders in [21] and [22]. The
authors discusses distributed containment control strategies
for multiple leaders both in static and dynamic situations in
his published kinds of literature [21], [23]. It is mainly the
study of alpha-asymptotically convergent followers in first–
order network models of multi–agent systems that refers to
[24], in which the alpha–asymptotically convergent followers
follow the strategy of alpha–asymptotically convergent
followers. Refer to Figure 1 for more information about the
behavior-based formation control model.

The above research results all consider that agents have
the same dynamic characteristics, but in reality, there are
differences between multi–agents. In recent years, hetero-
geneous multi–agent systems have gradually attracted the
attention of scholars [25], [26], [27], and literature [25]
has studied the consistency of heterogeneous multi–agent
systems under directed topology. A new consistency algo-
rithm is proposed for continuous–time systems with fixed
and switched topologies. Based on the method of system
transformation, the consistency problem of heterogeneous
multi–agent system is transformed into the consistency
problem of homogeneous multi–agent system. And enough
conditions are given. Literature [26] considers the problem
of leader–follower output consistency of a heterogeneous
multi–agent system with uncertain dynamic performance
under the conditions of lead time delay and input saturation
restriction. Combining neural network, graph theory, mean
value theorem and dynamic surface control (DSC) technol-
ogy, a distributed adaptive control scheme is constructed of
the nonlinear multi–agent systems. For a class of MIMO
time–delay systems with strict feedback, Li et al. [27]
proposed an adaptive control scheme through dynamic
surface control (DSC) technology, neural network and
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Lyapunov–Krasovskii function. In a control design scheme,
heterogeneous multi–agent systems plays a crucial role by
enabling decentralized decision–making, collaboration, and
coordination among agents with diverse capabilities and
expertise. System performance, reliability, and scalability are
enhanced by this ability to adapt and respond effectively to
complex and dynamic environments. It is also possible to
continue functioning if some agents fail or are unavailable
during heterogeneous multi–agent systems, which promotes
flexibility and fault tolerance. Heterogeneous multi–agent
systems also increases system resilience since multiple agents
accomplish control tasks, resulting in a reduced dependence
on one entity. Control schemes incorporating heterogeneous
multi–agent systems facilitate distributed intelligence and
decision–making since agents are capable of exchanging
information, sharing knowledge, and cooperating to achieve
goals [28]. Heterogeneous multi–agent systems optimize and
allocate resources efficiently by leveraging the diverse abili-
ties and knowledge of individuals. Generally, heterogeneous
multi–agent systems can enhance control design schemes
in multiple ways, including decentralized decision–making,
collaboration, adaptation to dynamic environments, fault
tolerance, resilience, and distributed intelligence.

Based on the above analysis,

1) In this research, the consistency problem of heteroge-
neous multi–agent systems under switching topology
has been investigated with communication delay to the
formation control problem.

2) For the formation control problem, both scenarios
(second–order and first–order heterogeneous multi-
agent systems) has been developed with new Lyapunov
function.

3) This research designs a new formation control protocol
with input delay and communication delay. Consid-
ering that the communication between agents will
be restricted by the geographical environment, the
stability of the system is affected in two cases: fixed
topology and time–varying topology and convergence
were analyzed.

The succeeding portions of this document are structured
in the subsequent fashion: Section 2 investigates the creation
of a deferred diverse multi–agent system model. Section 3
outlines the development of a formation control protocol
in both fixed and switched topologies. Section 4 delves
into the examination of the results obtained from simu-
lations, while Section 5 provides a concise summary of
the proposed system and offers potential paths for future
research.

II. FORMATION OF DELAYED HETEROGENEOUS
MULTI–AGENT SYSTEM MODEL
Consider a heterogeneous multi-agent system consisting of q
first–order and second–order agent nodes and a second-order
virtual leader. Firstly, p(p < q) agents are second–order
multi–agent systems, and q agents are first–order multi-agent

systems. The dynamic models of second-order and first-order
multi-agent systems are as follows:

ṡi(t) = vi(t),
v̇i(t) = ui(t), i = 1, 2, . . . , p
ṡi(t) = ui(t), i ∈ p+ 1, p+ 2, . . . , q

(1)

where
• si(t) ∈ RN presents the position of the ith agent.
• vi(t) ∈ RN denotes the speed of the ith agent.
• ui(t) ∈ RN shows the control inputs of the ith agent.
In the existing literature, many control protocol algo-

rithms have been proposed for different multi-agent system
consistency control problems. For example, in literature
[29], the first-order integral system consistency protocol is
adopted for the dynamic model with only one order integral
system:

ui(t) =

∑
j∈Ni

bij(sj(t) − si(t)), i = 1, 2, . . . , q (2)

In [30], aiming at the dynamic model of the second–order
integral system, the consistency protocol of the second–order
integral system is adopted:

ui(t) =

∑
j∈Ni

bij(sj(t) − si(t)) − K1vi, i = 1, 2, . . . , q (3)

On the basis of the above research results, in [6],
the authors proposed a consistency control protocol for
heterogeneous systems (1):

ui(t) =


−K1vi +

q∑
j=1

bij(t)(sj − si), i = 1, 2, . . . , p

K2

q∑
j=1

bij(t)(sj − si), i = p+ 1, p+ 2, . . . , q

(4)

Based on the above consistency control protocol, con-
sidering the formation control problem of heterogeneous
multi-agent systems under switching topology, a new forma-
tion control protocol for system (1) is proposed:

ui(t) =



−K2vi(t) + K1

∑
j∈Ni

bij(sj(t) − sdj)

−(yi(t) − sdi) + di0(si(t) − s0 − sdi ),
i = 1, 2, . . . , p∑
j∈Ni

bij(sj(t) − si(t))

+di0(si(t) − s0 − sdi ),
i = p+ 1, . . . , q

(5)

where K1, and K2 are the values to be designed. yi(t) is
the position information of the desired agent node and its
neighboring agent nodes respectively with yi(t) = si(t) +

vi(t), (sdi , sdj ) ∈ sq. Let D = diag{di0}, is a communication
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TABLE 1. Different Controllers Schemes for Multi–agents systems.

link between the agent node i and the virtual leader, di0 = bi0,
otherwise di0 = 0.

Definition 2.1 For the heterogeneous multi–agent sys-
tem (1), as long as the following conditions are met, we say
that the system realizes formation, and the conditions are as
follows:

lim
t→∞

∥∥si(t) − sj(t) − sdi
∥∥ = 0 for i, j ∈ Iq

lim
t→∞

∥∥vi(t) − vj(t)
∥∥ = 0 for i, j ∈ Ip

Considering the existence of input time-varying delay
h̄(t) > 0 and communication delay between agents λ(t) > 0,
the control protocol (2) can be written as:

ui(t) =



K1

∑
j∈Ni

bij(sj(t − λ(t) − h̄(t)) − sdj)

− (yi(t − h̄(t)) − sdi) + di0(si(t) − s0 − sdi)
− K2vi(t − h̄(t)), i = 1, 2, . . . , p∑
j∈Ni

bij(sj(t − λ(t) − h̄(t)) − sdj)

− (si(t − h̄(t)) − sdi))

+ di0(si(t) − s0 − sdi ),

i = p+ 1, . . . , q

(6)

According to the system (1) and the formation control
protocol (3), the agent node can be expressed as:

ṡi(t) =vi(t),

v̇i(t) = − K2vi(t − h̄(t)) + K1

∑
j∈Iq

bij[(sj(t − 𭟋(t)) − sdj )

− (yi(t − h̄(t)) − sdi )]

+ di0(si(t) − s0 − sdi ), i = 1, 2, . . . , p

ṡi(t) =

∑
j∈Iq

bij[(sj(t − 𭟋(t)) − sdi )

− (si(t − h̄(t)) − sdj )] + di0(si(t) − s0 − sdi )

i = p+ 1, . . . , q
(7)

where 𭟋(t) = h̄(t) + λ(t), Define formation error of agent
node i: {

s̄i(t) = si(t) − s0 − sdi ,
v̄i(t) = vi(t) − v0.

(8)

Then equation (7) can be rewritten as:

˙̄ss(t) = v̄s(t),
˙̄vs(t) = −K2Ipv̄s(t − h̄(t)) + K1[A22s̄s(t − 𭟋(t))
+A21s̄f (t − h̄(t) − λ(t))
−D2s̄s(t − h̄(t)) − D2v̄s(t − h̄(t))] − Css̄s(t),
ṡf (t) = A12s̄s(t − 𭟋(t)) + A11s̄f (t − 𭟋(t))
−D1s̄f (t − h̄(t)) − Cf s̄f (t)

(9)
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where

s̄s =
[
s̄T1 s̄T1 . . . s̄

T
p

]T
v̄s =

[
v̄T1 v̄T1 . . . v̄

T
p

]T
s̄f =

[
s̄Tp+1 s̄

T
p+2 . . . s̄

T
q

]T
Furthermore, A11 ∈ R(q−p)×(q−p), and A22 ∈ Rp×p are the

adjacency matrix between the second-order agents and the
adjacency matrix between the first–order agents respectively.
A21 ∈ Rp×(p−q), and A12 ∈ R(q−p)×p are the adjacency
matrix between the second–order agent and the first–order
agents are with the proper definitions:

D2 = diag
{∑q

j=1
bij, i ∈ 1, 2, .., p

}
,

D1 = diag
{∑q

j=1
bij, i ∈ p+ 1, p+ 2, .., q

}
,

Cs = diag{d10, . . . , dp0},

Cf = diag{c(p+1)0, . . . , dq0}

Then a closed–loop multi–agent system can be obtained
with augmented matrix.

e(t) =
(
s̄sv̄ss̄f

)
.

ė(t) = G1e(t) + G2e(t − h̄(t)) + G3e(t − h̄(t) − λ(t))

(10)

where

G1 =

 0 Im 0
−Cs 0 0
0 0 −Cf


G2 =

 0 0 0
−K1D2 −K2Ip − K1D2 0

0 0 0


G3 =

 0 0 0
K1A22 0 K1A21

A12 0 A11


Then, the formation control problem of multi–agent (1)

is transformed into the stability problem of the closed–loop
system (10). Before proceeding to the principal theorem, the
authors shall establish certain fundamental assumptions and
lemmas.
Assumption 1 ( [31]): 0 ≤ h̄(t) ≤ δ1, 0 ≤ ˙̄h(t) ≤

ρ1 < 1, δ1 > 0, t ≥ 0
Assumption 2 ( [31]): 0 ≤ λ(t) ≤ δ2, 0 ≤ λ̇(t) ≤ ρ2 <

1, δ2 > 0, t ≥ 0
Lemma 1 ( [32]): Suppose 0 ≤ λ(t) ≤ δ2, δ2 > 0 is a

piecewise continuous function. For any differentiable vector
function s(t) : [−δ2,∞) → Rq and any positive definite
matrix M ∈ Rq×q, the following inequality holds:(∫ t

t−λ(t)
ṡT (ϑ)dϑ

)
M

(∫ t

t−λ(t)
ṡ(ϑ)dϑ

)
≤

δ2

∫ t

t−δ2
ṡT (ϑ)Mṡ(ϑ)dϑ, t ≥ 0.

Remark 1: Due to the diversity of characteristics and
dynamic interactions between the agents in heterogeneous
multi–agent systems, formation control poses significant
challenges. Coordinating effectively and communicating
effectively is crucial for maintaining the stability of these
complex systems, especially the positions and velocities
among the agents. Decentralized control, consensus proto-
cols, and optimization techniques have been developed to
address these challenges. Taking into account heterogeneous
agents’ different capabilities, constraints, and objectives,
our proposed methods aim to achieve coordination and
cooperation between them. Optimizing coordination and
communication strategies in heterogeneous multi–agent sys-
tems requires consideration of diverse characteristics and
the dynamic interactions of agents. In addition, robustness
and flexibility in an unpredictable network configuration
depend on the ability to adapt to changing topologies.
An understanding of agent dynamics, effective coordination
and communication strategies, and robust and adaptable
control algorithms are necessary for the development and
control of heterogeneousmulti-agent systems under fixed and
switching topologies.

III. DESIGN OF FORMATION CONTROL PROTOCOL IN
FIXED AND SWITCHED TOPOLOGIES
Formation control in a multi–agent model refers to the
coordinated behavior of a group of agents to achieve and
maintain a desired geometric formation or pattern. In fixed
topologies, the agents maintain a specific arrangement
relative to each other throughout the entire operation. This
can be done by following a set of predefined rules and
communication protocols. On the other hand, in switched
topologies, the communication links between agents change
dynamically over time. This creates additional challenges
in achieving and maintaining the desired formation, as the
agents must adapt and synchronize their actions based on
the changing communication topology. In fixed topologies,
the formation control protocol involves agents maintaining
a specific arrangement relative to each other throughout the
operation using predefined rules and communication proto-
cols. In switched topologies, the formation control protocol
requires agents to dynamically adapt and synchronize their
actions based on the changing communication topology,
ensuring that they continue to achieve and maintain the
desired geometric formation or pattern.

A. FIXED COMMUNICATION TOPOLOGY
In this section, the authors will present the basic conditions
for the asymptotically stability in the Theorem 1.
Theorem 1: For heterogeneous multi–agent systems (1),

the closed-loop system (10) is globally uniformly asymp-
totically stable, if h̄(t), λ(t) satisfy Assumptions 1 and 2
respectively. In a fixed communication topology, if there
are real numbers K1, K2 and a series of positive definite
matrices P, Qj, Rj, j = 1, 2, 3, the following linear matrix
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inequalities hold: 411 412 413
♦ 422 423
♦ ♦ 433

 < 0 (11)

where

411=GT
1 P + PG1+Q1+σGT

1 R1G1+δ2GT
1 R2G1 − σ−1R1,

412 = PG2 + δ1GT
1 R1G2 + δ2GT

1 R2G2 + σ−1R1,

413 = PG3 + σGT
1 R1G3 + δ2GT

1 R2G3,

422 = (1 − ρ1)(Q2 − Q1) + σGT
2 R1G2 + δ2GT

2 R2G2

− σ−1R1 − δ2
−1R2,

423 = σGT
2 R1G3 + δ2GT

1 R2G3 + δ2
−1R2,

433 = (ρ1 + ρ2 − 1)Q2 + σGT
3 R1G3

+ δ2GT
3 R2G3 + δ2

−1R2.

Proof: Consider a Lyapunov–Krasovskii function as
follows:

W (t) = eT (t)Pe(t) +W1(t) +W2(t) (12)

where

W1(t) =

∫ t

t−h̄(t)
eT (θ )Q1e(θ )dθ

+

∫ t−h̄(t)

t−λ(t)−h̄(t)
eT (θ )Q2e(θ )dθ

W2(t) =

∫ 0

−σ

∫ t

t+ϑ
ėT (θ )R1ė(θ)dθdϑ

+

∫
−σ

−δ2−σ

∫ t

t+ϑ
ėT (θ )R2ė(θ )dθdϑ

Derive the formula (12).

Ẇ (t) = ėT (t)Pe(t) + eT (t)Pė(t)
+ (1 − ρ1)eT (t − h̄(t))(Q2 − Q1)

e(t − h̄(t)) + (ρ2 + ρ1 − 1)eT (t − h̄(t)

− λ(t))Q2e(t − h̄(t) − λ(t)) + σ ėT (t)R1ė(t)

− σ−1(eT (t) − eT (t − h̄(t)))R1(e(t) − e(t − h̄(t)))

+ δ2ėT (t)R1ė(t) − δ2
−1(eT (t − h̄(t)) − eT (t − h̄(t)

− λ(t)))R2(e(t − h̄(t)) − e(t − h̄(t) − λ(t)))

According to Lemma 1:

Ẇ (t) ≤ ξT (t)4ξ (t)

where

ξT (t) = [eT (t), eT (t − h̄(t)), eT (t − h̄(t) − λ(t))]

Therefore, if equation (11) holds, the system (10) is
globally asymptotically stable. And thus, the demonstration
of this theorem can be easily finalized. □
Remark 2: Robotic systems in complex manufacturing

environments benefit from multi–agent systems because they

FIGURE 2. Communication topology diagram of multi-agent system.

FIGURE 3. Expected formation.

enhance efficiency, flexibility, and adaptability. By utilizing
multiple autonomous agents that can communicate and
collaborate, multi-agent systems enable robots to perform
tasks more effectively. As a result of these systems, resource
allocation and coordination can be optimized, movement can
be coordinated, and information can be shared, resulting
in improved efficiency and productivity. By distributing
decision–making and task execution among multiple agents,
multi–agent systems in industrial robotics encourage fault
tolerance and resilience. In this way, a single robot is not
dependent on a single mechanism, and system robustness is
enhanced. Multiple robots can be coordinated, collaborated,
and made to make decisions using multi–agent systems.
Manufacturing processes become more efficient, adaptable,
and productive by collaborating and coordinating multiple
robots in multi-agent systems in industrial robotics.

B. SWITCHING COMMUNICATION TOPOLOGY
In practice, due to the change of the agent’s environment,
the communication of the whole network will be disturbed,
so the topological structure will also change. Therefore,
designing a communication topology that changes with time
can effectively solve the communication obstacle problem.
This section mainly studies the formation control problem
of heterogeneous multi–agent systems under switching
topology. The definition of ℧ =

{
Ḡ8, 8 = 1, 2, . . . ,N

}
represents a set of switching topologies. Then the system (7)
with time-varying delay in switched topology can write:

˙̄ss(t) = v̄s(t),
˙̄vs(t) = −K2I8p v̄s(t − h̄(t)) + K1[A822s̄s(t − 𭟋(t))
+A821s̄f (t − 𭟋(t)) − D82 s̄s(t − h̄(t))
−D82 v̄s(t − h̄(t))] − C8s x̄s(t),
ṡf (t) = A812s̄s(t − 𭟋(t)) + A811s̄f (t − 𭟋(t))
−D81 s̄f (t − h̄(t)) − C8f s̄f (t)

(13)
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FIGURE 4. Positions of Agent on X–axis and Y –axis in fixed Directed
Topology without control inputs.

The system (13) with augmented matrix can be rewritten
as:

ζ̇ (t) = G8
1 ζ (t) + G8

2 ζ (t − τ (t)) + G8
3 ζ (t − h̄(t) − λ(t))

(14)

where

G8
1 =

 0 I8p 0
−C8s 0 0
0 0 −C8f


G8

2 =

 0 0 0
−K1D82 −K2I8p − K1D82 0

0 0 0


G8

3 =

 0 0 0
K1A822 0 K1A821

A812 0 A811


Theorem 2: For heterogeneous multi-agent systems (1),

the closed–loop system (10) is globally uniformly asymptot-
ically stable, if h̄(t), and λ(t) satisfy assumptions 1 and 2
respectively. In the switching communication topology,
if there are real numbers K1, and K2 and a series of positive
definite matrices P, Qj, Rj, j = 1, 2, 3, the following linear

FIGURE 5. The velocity trajectory of the agent on the X -axis and Y -axis
under fixed directed topology without control inputs.

matrix inequalities hold:4s
11 4

s
12 4

s
13

♦ 4s
22 4

s
23

♦ ♦ 4s
33

 < 0 (15)

where

4s
11 = G8T

1 P + PG8
1 + Q1 + Q2 + σG8T

1 R1G8
1

+ (ρ2 + σ )G8T
1 R2G8

1 − σ−1R1 − (ρ2 + σ )R2,

4s
12=PG8

2 + σG8T
1 R1G2 + (ρ2 + σ )G8T

1 R2G8
2 + σ−1R1,

4s
13 = PG8

3
+ σG8T

1 R1G8
3

+ (ρ2 + σ ) + G8T
1 R2G8

3 + (ρ2 + σ )−1R2,

4s
22 = (ρ1 − 1)Q1 + σG8T

2 R1G8
2 + (ρ2 + σ )G8T

2 R2G8
2

− σ−1R1,

4s
23 = σG8T

2 R1G8
3 + (ρ2 + σ )G8T

1 R2G8
3 ,

4s
33 = (ρ1 + ρ2 − 1)Q2 + σG8T

3 R1G8
3

+ (ρ2 + σ )G8T
3 R2G8

3 − (ρ2 + σ )−1R2.

Proof: Consider a Lyapunov–Krasovskii function as
follows:

U (t) = ζ T (t)Pζ (t) + U1(t) + U2(t) (16)
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FIGURE 6. Positions of Agent on X–axis and Y –axis in fixed Directed
Topology with control inputs.

where

U1(t) =

∫ t

t−h̄(t)
ζ T (ψ)Q1ζ (ψ)dψ

+

∫ t−h̄(t)

t−λ(t)−h̄(t)
ζ T (ψ)Q2ζ (ψ)dψ

U2(t) =

∫ 0

−σ

∫ t

t+θ
ζ̇ T (ψ)R1ζ̇ (ψ)dψdθ

+

∫
−σ

−δ2−σ

∫ t

t+θ
ζ̇ T (ψ)R2ζ̇ (ψ)dψdθ

Derive the formula (16).

U̇ (t) = ζ̇ T (t)Pζ (t) + ζ T (t)Pζ̇ (t)
+ (1 − ρ1)ζ T (t − h̄(t))(Q2 − Q1)ζ (t − h̄(t))

+ (ρ1 + ρ2 − 1)ζ T (t − h̄(t) − λ(t))Q2ζ (t − h̄(t)

− λ(t)) + σ ζ̇ T (t)R1ζ̇ (t)

− σ−1(ζ T (t) − ζ T (t − h̄(t)))R1(ζ (t) − ζ (t − h̄(t)))

+ ρ2ζ̇
T (t)R1ζ̇ (t) − ρ2

−1(ζ T (t − h̄(t)) − ζ T (t − h̄(t)

− λ(t)))R1(ζ (t − h̄(t)) − ζ (t − h̄(t) − λ(t)))

According to Lemma 1.

U̇ (t) ≤ ϕT (t)4sϕ(t)

FIGURE 7. The velocity trajectory of the agent on the X–axis and Y –axis
under fixed directed topology with control inputs.

where

ϕT (t) = [ζ T (t), ζ T (t − h̄(t)), ζ T (t − h̄(t) − λ(t))]

Therefore, if equation (15) holds, the system (14) is
globally asymptotically stable. And thus, the demonstration
of this theorem can be easily finalized. □

IV. SIMULATION EXAMPLE
A. FORMATION CONTROL OF MULTI-AGENT SYSTEM
UNDER FIXED DIRECTED TOPOLOGY
A heterogeneous multi-agent system consisting of four
first–order and second–order agent nodes and a virtual leader
is considered. First, the two numbers 1 and 2 are second–order
multi–agent systems, and the two numbers 3 and 4 are
first–order multi–agent systems. The dynamic models of
the second–order and first–order multi–agent systems are as
follows: 

ṡi(t) = vi(t),
v̇i(t) = ui(t), i ∈ Ip
ṡi(t) = vi(t), i ∈ Ip/Iq

The communication topology diagram of a heterogeneous
multi-agent system based on fixed directed topology is shown
in Figure 2. The desired formation is shown in Figure 3. The
sampling period of the sensor is h = 0.1s. The authors can
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FIGURE 8. The position and velocity trajectory of the agent on the X–axis
and Y –axis under fixed directed topology with control inputs.

FIGURE 9. Different views of position and velocity of Multi-agent on
different time-varying delays.

choose communication delay and input time–varying delays
are as follows:

λ(t) = 3 |sin(0.8t)| (s)

h̄(t) = 0.5 |sin t| (s) (17)

FIGURE 10. Different views of position and velocity of Multi-agent on
different time-varying delays.

After solving the equation (11) by LMI toolbox with
h̄(t) < 0.816. In a heterogeneous multi–agent system,
where agents with different capabilities and requirements
collaborate and interact, the maximum upper bound delay
plays a crucial role in ensuring efficient communication and
coordination among the agents. This is because the maximum
upper bound delay represents the maximum time it takes
for a message or information to be transmitted from one
agent to another within the system. If the maximum upper
bound delay is too large, it can lead to delays in decision–
making, slower response times, and potential synchronization
issues among the agents. On the other hand, if the maximum
upper bound delay is small and well–controlled, it allows
for timely and seamless communication between agents,
enabling efficient coordination and collaboration in the
multi–agent system. Furthermore, the maximum upper bound
delay is especially important in real–time applications or
critical systems where timely communication is crucial for
achieving desired outcomes. Now, the maximum allowable
upper bound delay tau derived from the methodologies
outlined in [48], [49], [50], [51], [52], [53], [54], [55], and
[56] and our study is juxtaposed. This evaluation is illustrated
in Table 2, with h(t) = λ(t) being equal to τ̄ . The tabulated
data reveals that our approach yields more generalized results
for varying maximum allowable upper bounds compared to
the methodologies presented in [48], [49], [50], [51], [52],
[53], [54], [55], and [56]. Consequently, the methodology
introduced in our paper demonstrates superior efficiency in
this comparative analysis relative to the approaches in [48],
[49], [50], [51], [52], [53], [54], [55], and [56].

Then, the simulation results are shown in Figures 4–8,
where Figure 4 and Figure 5 show that the position com-
ponents of four agents converge to the expected formation
respectively, Figure 6 and Figure 7 show that the velocity
components of two second-order multi-agents converge to
zero, respectively.
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FIGURE 11. Topology diagram of multi-agent system communication.

TABLE 2. Maximum upper bound delay with different values of h(t) = λ(t) = τ̄ .

TABLE 3. Initial conditions for the heterogeneous multi–agent systems.

The Laplace matrix of the communication topology
diagram of the multi–agent system is:

L =


4 0 0 −2

−2 2 −2 0
−2 0 4 0
0 −2 −2 2


The initial state of each agent is:

s1 = (1.5, 0.35), s2 = (−20,−10), s3 = (21, 18)

s4 = (10, 50), v1 = (0.8, 0), v2 = (0.5, 0.15)

Get (K1,K2) = (0.95, 3.75) with LMI toolbox. The
simulation results of formation control under fixed directed
topology are as follows:

In Figures 4(a) and 4(b), the authors present the
positions of agents on both the X -axis and Y -axis in fixed
fixed–directed topology without control inputs, respectively.
On the other hand, the position and velocities of agents are
presented on the X -axis and Y -axis in fixed directed topology
in Figures 5(a) and 5(b). From the Figures 4 and 5, one can

observe that themulti-agent system states are highly unstable.
In control theory, it is important to consider the effect of
closed-loop systems on nonlinear systems. Various effects
can be caused by closed–loop systems on nonlinear systems.
As a result, it can enhance stability by providing feedback
and adjusting inputs accordingly. For this, the authors also
presented the closed-loop system with the help of controller
gains and showed the efficiency in Figures 6(a) and 6(b).
Heterogeneous multi–agent systems depend on position

and velocity to determine the locations and movements
of individual agents. Agents’ positions are determined by
their spatial coordinates, which indicate where they are
in a system. An agent’s velocity refers to its speed and
direction, while its speed refers to how quickly it is moving.
In order for agents to navigate their environment effectively,
establish communication with other agents, and coordinate
their actions, they need to know their position as well as
their velocity. In order to avoid collisions, reach consensus,
and control motions, this information is crucial. A system’s
overall behavior and dynamics are also influenced by the
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FIGURE 12. Location Trajectory of Agent Nodes on X -axis and Y -axis
under Switching Topology.

position and velocity of agents. A heterogeneous multi-
agent system can be navigated accurately and coordinated,
and avoid collisions by taking position and velocity into
account. A system’s overall performance and efficiency can
also be affected by the position and velocity of agents.
A system’s global patterns and emergent behaviors can also
be analyzed and predicted through the consideration of both
position and velocity. The agent’s velocity trajectory on the
X -axis and Y -axis under fixed directed topology control
inputs can be observed in Figures 7(a) and 7(b), respectively
and 3D plotting of the agent’s velocity trajectory are given
in Figures 8(a) and 8(b).

Formation control of multi-agent system with different
time varying delays:

Robotics and control theory are interested in the formation
control of multi-agent systems. Multi-agent systems can
experience various effects of time-varying delays [57],
and [58]. As a result, agents may be unable to synchronize
and coordinate, resulting in errors in formation. To maintain
desired formations, adaptive formation control strategies may
be required because topology switching disrupts the connec-
tivity between agents. The formation of the desired com-
pound can also be hindered by external disturbances, which
can introduce uncertainties and perturbations. To ensure reli-
able and robust formation control in real–world applications,
it is crucial to understand and address different time–varying
delays. Researchers have recognized the need for advanced

FIGURE 13. The velocity trajectory of the agent on the X–axis and Y –axis
under switching topology.

FIGURE 14. The position and velocity trajectory of the agent on the
X–axis and Y –axis under switch directed topology.

methods to tackle these challenges in multi-agent formation
control by taking into account time–varying delays. In order
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FIGURE 15. Fuzzy Adoptive controller based on neural networks for the satellite system.

to compensate for delay effects, distributed protocols are
often developed, predictive control algorithms are used to
compensate for delays or decentralized control strategies are
implemented to mitigate formation control effects resulting
from delays. To show time-varying delays for the multi–agent
systems can be observed in Figures 9 and 10.
Remark 3: The practical implementation of heteroge-

neous multi–agent systems involves integrating different
types of agents with varying capabilities, designs, and
platforms to achieve a specific goal or task. This can be done
by designing a communication protocol that allows agents to
exchange information and coordinate their actions, allocating
tasks to different agents based on their expertise and coor-
dinating their communication and collaboration to achieve
a common objective. Additionally, practical implementation
may involve developing algorithms and rules for agent
interaction, designing a suitable architecture for the system,
and ensuring compatibility between different agent types.
Moreover, real–world implementations of heterogeneous
multi–agent systems require careful consideration of the
potential challenges and trade–offs. Some of these challenges
include managing the heterogeneity of agents, ensuring
efficient communication and coordination among diverse
agents, handling conflicts and resolving them effectively,
designing mechanisms for agent adaptation and learning,
and evaluating the overall performance and effectiveness
of the system. Furthermore, practical implementation might

also involve considering security aspects, scalability, and
robustness of the system in order to ensure its successful
deployment in various real–world scenarios. In summary,
the practical implementation of heterogeneous multi-agent
systems involves integrating different types of agents, design-
ing communication protocols and coordination mechanisms,
addressing challenges related to heterogeneity ensuring
compatibility, and evaluating the performance and robustness
of the system.

B. FORMATION CONTROL OF MULTI-AGENT SYSTEM
UNDER SWITCH DIRECTED TOPOLOGY
A heterogeneous multi-agent system consisting of four
first–order and second-order agent nodes and a virtual leader
is considered. First, the two numbers 1 and 2 are second–order
multi–agent systems, and the two numbers 3 and 4 are
first–order multi-agent systems. The dynamic models of
the second-order and first-order multi-agent systems are as
follows: 

ṡi(t) = vi(t),
v̇i(t) = ui(t), i = 1, 2
ṡi(t) = vi(t), i = 3, 4

The communication topology diagram of a heterogeneous
multi–agent system based on switch topology is shown in
Figure 11. The desired formation is shown in Figure 3.
The sampling period of the sensor is h = 0.1s. Based on
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the Assumptions 1 and 2, we can choose communication
delay λ(t) = 3 |sin(0.02π t)| (s), and we can get h̄(t) <

0.945 by solving equation (15) in LMI toolbox. Assuming
h̄(t) = 0.5 |sin(0.1π t)| (s), the simulation results are shown in
Figures 12–14, in which Figure 12(a) and Figure 12(b) show
that the position components of four agents converge to the
expected formation, Figure 13(a) and Figure 13(b) show that
the velocity components of two second-order multi–agents
converge to zero. Figures 14(a) and 14(b) show the position
trajectories of four agents and the speed changes of two
second–order agents more intuitively.

The initial state of each agent, the reader can refer to the
Table 3. After getting the (K1,K2) = (0.62, 0.47) with LMI
toolbox. The simulation results of formation control under
switch directed topology are shown in Figures 12–14.
Remark 4: The simulation results under fixed directed

topology showcase the positions and velocities of agents,
revealing the system’s inherent instability without control
inputs. By presenting the system’s behavior under a fixed
directed topology, the authors emphasize the significance
of closed–loop systems in enhancing stability through
feedback mechanisms and input adjustments. This under-
lines the effectiveness of the proposed design method in
improving system stability and performance. The simulation
examples provide a visual representation of the system’s
dynamics, aiding researchers in understanding the impact
of control inputs on the agents’ trajectories under fixed
communication topologies. This visual feedback enhances
the comprehension of the proposed design method’s ability to
regulate agent movements and maintain formation integrity.
In addition, the simulation results underscore the advantages
of the proposed design method in achieving stability,
enhancing control, and optimizing the formation control
of heterogeneous multi–agent systems under fixed directed
topologies.

V. CONCLUSION
In this research, the problem of heterogeneous multi–agent
formation control with input delay and communication delay
in switching topology is studied. In order to solve the
problem of time delay in network communication in the
actual non-ideal environment, a heterogeneous multi–agent
system model with input delay and communication delay is
established, a new formation control protocol with time delay
is designed, and the formation convergence of heterogeneous
multi–agent systems in fixed and switched topologies is
analyzed, respectively. The closed–loop system is proved
to be stable by new Lyapunov function. Finally, through
two simulation examples, it is verified that each agent
can asymptotically converge to the desired formation under
fixed and switched topologies through the formation control
protocol designed in this research.

A state tracking controller can be implemented using our
proposed methodology for T–S fuzzy systems. To track the
states of a stable linear reference model, this controller
provides attainable plant–model matching conditions. Using

neural networks, two satellite variables will be trained.
Neural networks play a crucial role in satellite arrays
by enhancing data analysis and interpretation capabili-
ties for various applications such as weather forecasting,
earth observation, and communication satellite systems. For
further understanding in detail, the researcher can refer
the Figure 15.
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