
Received 5 June 2024, accepted 21 June 2024, date of publication 27 June 2024, date of current version 8 July 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3419835

Palm Oil Counter: State-of-the-Art Deep
Learning Models for Detection and
Counting in Plantations
MARTINUS GRADY NAFTALI 1, GREGORY HUGO 1, AND SUHARJITO 2, (Member, IEEE)
1Computer Science Department, BINUS Graduate Program–Master of Computer Science, Bina Nusantara University, Jakarta 11480, Indonesia
2Industrial Engineering Department, BINUS Graduate Program–Master of Industrial Engineering, Bina Nusantara University, Jakarta 11480, Indonesia

Corresponding author: Suharjito (suharjito@binus.edu)

This work was supported in part by the Ministry of Education, Culture, Research, and Technology in Indonesia; and in part by the
Directorate General of Higher Education under Contract 1165/LL3/AL.04/2023.

ABSTRACT Traditional palm oil production methods for evaluating fruit bunches (FFBs) are inefficient,
costly, and have limited coverage. This study evaluates the performance of various YOLO models and other
state-of-the-art object detection models using a novel dataset of oil palm fresh fruit bunches in plantations,
captured in the plantation regions of Central Kalimantan Province, Indonesia. The dataset includes five
ripeness classes (abnormal, ripe, underripe, unripe, and flower) and presents challenges such as partially
visible objects, low contrast scenes, occluded and small objects, and blurry images. The proposed YOLOv8s
Depthwise model was compared with other YOLO models, including YOLOv6s, YOLOv6l, YOLOv7 Tiny,
YOLOv7l, YOLOv8s, and YOLOv8l. YOLOv8s Depthwise demonstrated a balanced performance, with
a compact size (10.6 MB), fast inference time (0.027 seconds), and strong detection accuracy (mAP50
at 0.75, mAP50-95 at 0.481). Its rapid convergence and low training loss highlighted its efficiency,
completing training in the shortest time of 2 hours, 18 minutes, and 30 seconds. Furthermore, it achieved
low Mean Absolute Error (MAE) of 0.164 and Root Mean Square Error (RMSE) of 0.4, indicating precise
counting capability. Hyperparameter tuning revealed that the YOLOv8s Depthwise model achieved optimal
performance using the SGD optimizer with a batch size of 16 and a learning rate of 0.001, showing
the best balance between accuracy and training efficiency. Data augmentation positively impacted model
performance, resulting in improved performance metrics across various models. When evaluated against
other state-of-the-art models on the same dataset, including Faster RCNN, SSD MobileNetV2, YOLOv4,
and YOLOv9, YOLOv8s Depthwise surpassed other state-of-the-art models, including Faster R-CNN, SSD
MobileNetV2, YOLOv4, and EfficientDet-D0 from previous research, in terms of speed, accuracy, and
efficiency, making it ideal for real-time palm oil harvesting applications.

INDEX TERMS Deep learning, object counting, palm oil ripeness, real-time object detection, YOLO.

I. INTRODUCTION
Palm oil, one of the essentials of agriculture in Southeast
Asia, is also a global market leader. Its affordability and
versatility have fueled its rise, driven by increasing global
demand for oleochemicals [1], [2], [3]. These come from oil
palm trees, whose fruit bunches (FFBs) are crucial for oil
extraction. Peak OER (Oil Extraction Rate) relies heavily
on harvesting FFBs at optimal ripeness [4]. Indonesia and

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenbao Liu .

Malaysia dominate palm oil production, together accounting
for 80% globally. It’s a significant economic driver for
these nations, including Thailand, Colombia, and Nigeria.
Notably, Malaysia holds a 25.8% production share and a
34.3% export share [5], [6]. Indonesia boasts an even larger
45.6 million tons annually, translating to a 59% global
production share [5], [6], [7].

Delving in further, palm oil stands out as one of the
world’s most productive oilseed crops. It surpasses other
options like soybean, sunflower, and rapeseed in terms of
oil yield per hectare. This translates to a cost-effective

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 90395

https://orcid.org/0000-0003-2695-4913
https://orcid.org/0009-0009-5902-5193
https://orcid.org/0000-0002-0853-8812
https://orcid.org/0000-0002-0030-275X

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

advantage, making palm oil a highly attractive choice for
the oleochemical industry [8], [9]. Beyond its economic
benefits, palm oil offers unique characteristics that contribute
to its widespread use. It is virtually odourless and boasts
remarkable versatility, finding its way into a vast array
of everyday products lining supermarket shelves. From
essential cooking oils and delectable snacks like Oreos to
creamy margarines, shampoos, soaps, and lotions, palm oil’s
applications are truly diverse. To add to that, palm oil
is also refined for biodiesel and other fatty compounds,
highlighting the industry’s complexity and scale [10].This
intricate nature is further emphasized by the structural
characteristics of FFBs. Each bunch consists of a central
stem holding individual fruits situated on its outer layer [11],
which requires for accurate identification and collection for
enhancing production efficiency and contribute significantly
to a higher OER [12].
Traditionally, the evaluation of palm oil fruit bunches

(FFBs) involves a manual classification technique introduced
by [13]. This method assesses the maturity stages of FFBs
based on objective parameters such as colour, fruitlets
moisture, and oil content. Additionally, a method for black
bunch counting entails surveying bunches approximately
1.5months after the flowering stage at a selected oil palm tree.
The recommended sampling involves 5 to 10 percent of the
total trees within a 0.3 to 0.5 km2 block area. To estimate FFB
yield, multiply the total counted bunches with the estimated
bunch weight [13]. However, the traditional method, which
relies on manual counting, encounters inherent challenges,
including high operational costs, time inefficiency, and
limited coverage [2]. Moreover, manual assessment of
harvest yield tends to be problematic due to inconsistent and
subjective ripeness assessment, leading to frequent disputes
between harvesters and customers [14]. The complexity
arises from the diverse shapes and ripeness stages of FFBs,
making precise visual detection challenging. On top of that,
one of the oil palm industry’s current practice of using
commercial colour meters adds another layer of inefficiency.
Not only are they inaccurate, but they also damage the fruits
themselves [15].

The palm oil yield estimation process requires innovative
automated solutions to improve accuracy and streamline the
process. Advancements in artificial intelligence, particularly
machine vision-based technologies, offer a more efficient
alternative to manual harvesting [16]. In spite of conventional
machine learning classifiers having exhibited potential in
identifying crops, their efficacy is often hampered by the
labour-intensive process of feature extraction [17], [18],
[19], [20]. Conventional machine learning methods rely
on techniques like colour model conversion, thresholding,
histogram equalization, spatial filtering with Laplace and
Sobel operators, and Gaussian blur to extract features,
with some models explicitly incorporating colour space
as a feature [19]. In contrast, deep learning, particularly
Convolutional Neural Networks (CNNs), revolutionizes the

feature extraction task, presenting a substantial advancement
over traditional methods [21], [22]. Drawing inspiration from
the human brain’s mechanisms, deep learning has found
widespread applications in visual imagery analysis [23].
Exploring deeper into [23], it becomes evident that

in deep learning, automated feature extraction through
deep convolutional neural networks (DCNNs) eradicates
the necessity for manual feature engineering. Through
iterative learning, DCNNs learn and extract relevant features
from input data, offering distinct advantages over conven-
tional machine learning methods. This automated approach
enhances classification accuracy and avoids labour-intensive
and time-consuming manual feature extraction processes.
Techniques employed in automating feature extraction in
DCNNs include visual saliency modelling, unsupervised pre-
training, and specialized modules like the Inception module.
These techniques empower the network to autonomously
learn and extract pertinent features from the input data,
resulting in superior performance compared to conventional
machine learning methods.

In recent years, there has been substantial growth in
utilizing deep learning techniques for detecting objects in
agricultural images [24], [25]. This is due in part to the fact
that deep learning models have achieved significantly higher
accuracy in object detection tasks. Additionally, these models
excel at handling large and complex datasets [26]. However,
existing deep learning models for FFB detection still face
limitations, such as constrained ripeness level classification
and a scarcity of comprehensive training datasets [27],
[28]. Previous studies have primarily explored datasets of
harvested fruits rather than those still attached to trees [3].
Although there is one study from 2024 that focuses on a
plantation setting, it only addresses classification, making it
unsuitable for real-time detection and counting [29]. This lack
of diverse data, particularly for fruits still on trees, further
hinders the ability of these models to accurately detect FFBs
in real-world scenarios.

For models designed to support the FFB harvesting
process, real-time execution and efficient resource utilization
are vital requirements. Certain systems, like YOLOv4,
demonstrate diminished performance when adapted for
real-time mobile devices [3], [4], but it is still resource-
efficient, nonetheless. While models like Mask R-CNN
and Faster R-CNN boast high precision capabilities, their
computational demands render them impractical for real-time
mobile applications [30], [31].

Within the agricultural domain, a growing body of research
highlights the application of real-time object detection for
various tasks. Notably, these studies demonstrate a strong
preference for YOLO models as the preferred solution [32],
[33], [34], [35], [36]. Particularly for FFB harvesting, this
emphasis on real-time and efficient object detection has led
to a strong inclination for YOLO models, as evidenced by
research focusing on FFB ripeness detection using these
models [3], [4], [16], [37]. In addition, YOLO’s single-stage

90396 VOLUME 12, 2024

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

architecture streamlines object detection, enabling real-time
performance through efficient processing in one network
pass. This contrasts with two-stage detectors and traditional
machine learning models, like [30], [31], [37], offering a
significant advantage for resource-constrained environments.

Researchers have also developed automatic counting
systems for counting oil palm tree yield, utilizing remote
sensing imagery and deep learning techniques, achieving
high accuracy rates [2]. Smartphone technology has also
been harnessed for fruit bunch enumeration, addressing chal-
lenges like embezzlement during harvesting seasons [16].
Accurately counting FFBs on trees is a challenge due to
overlapping bunches, tight clusters, and obstructed views
(occlusion). Developing solutions for efficient FFB counting
can significantly improve the harvesting process.

This paper proposes an innovative approach to palm
oil bunch estimation, focusing on the recently developed
YOLOv8 Depthwise model. This model leverages advance-
ments in deep learning techniques, combining the strengths
of previous YOLO versions with depthwise separable con-
volutions to enhance efficiency and accuracy. The choice
to propose YOLOv8 Depthwise stems from its significant
improvements over its predecessors, making it well-suited
for addressing the complexities and challenges of our novel
dataset of oil palm fruits in plantations for real-time,
resource-efficient applications in agricultural monitoring
which captured real-world challenges in the plantation
regions of Central Kalimantan Province, Indonesia.

The decision to compare YOLOv8 Depthwise with
YOLOv6 [38], YOLOv7 [39], and YOLOv8 [40], coupled
with the capability to count objects and evaluate counting
error, is grounded in their status as newer and enhanced
models, each featuring distinctive improvements over their
predecessors. These models are not incremental iterations
of each other but represent distinct advancements over the
earlier YOLO versions. The choice of these specific versions
is based on their individual enhancements and optimizations,
making them particularly effective for our specific palm oil
yield estimation task. Across various domains, YOLOv6,
YOLOv7, and YOLOv8 have demonstrated versatility and
effectiveness in diverse applications beyond their primary use
in object detection [41], [42], [43], [44], [45], [46].
Recent research has highlighted the advantages of

YOLOv8. According to [47], [48], YOLOv8 not only runs
faster but also scores higher on mAP metrics than YOLOv5,
YOLOv6, and YOLOv7. [49] found that YOLOv8 excels
at detecting small objects on camera sensors, outperforming
older versions like YOLOv3, YOLOv5, and YOLOv7.

The decision to incorporate depthwise separable convo-
lutions in YOLOv8 Depthwise is based on their proven
ability to reduce model size and computational complex-
ity while maintaining detection accuracy. Previous appli-
cations in YOLOv5 demonstrated significant reductions
in model size and complexity, as noted by [50], [51].
In YOLOv4, [52] showed that the use of depthwise sep-
arable convolutions reduced parameters by 40%, increased

speed by 20%, and even improved detection accuracy
by 1%.

Prior research has demonstrated the feasibility of auto-
mated counting in various agricultural domains. For instance,
[17] introduces an automated counting system for tomatoes.
In a similar vein, [18] presents an automatic counting
approach for green oranges on trees. Qiao et al. [53] employ
a deep learning model for automated counting, focusing on
red jujubes. Their algorithm adds a detected single fruit to
the overall count.

Multiple contributions are made to the field of palm
oil fruit yield estimation, encompassing the following:
(1) Utilization of a self-collected dataset with video
recordings of Fresh Fruit Bunches (FFBs) still attached
to trees. The dataset includes five ripeness classes (abnor-
mal, ripe, underripe, unripe, and flower) and presents
challenges like occlusion, blur, and low contrast. Com-
prehensive processing includes frame extraction, cleaning,
annotation, splitting, and augmentation. (2) Introduction and
fine-tuning of the YOLOv8 Depthwise model, leveraging
depthwise separable convolutions for enhanced efficiency
and accuracy. Performance is compared with other YOLO
models (YOLOv6s, YOLOv6l, YOLOv7tiny, YOLOv7l,
YOLOv8s, YOLOv8l) and state-of-the-art models (Faster
RCNN, SSD MobileNetV2, YOLOv4). (3) The imple-
mentation of evaluation on counting error integrated into
each model. This increases the practicality and real-time
applicability of the models. (4) Optimization of model
inference time using converters and quantization, ensuring
suitability for mobile devices with limited computational
resources. (5) Deployment of models in a web application,
enhancing accessibility across various devices, including
mobile phones, for real-time FFB counting in the field.

The proposed approach reduces human labor, inconsisten-
cies, and errors, making it suitable for large-scale operations.
It enhances oil quantity and quality, boosts efficiency, lowers
labour costs, and promotes environmental sustainability by
reducing waste from unripe FFBs. The subsequent sections
of this paper will delve into an explanation of materials
and methods, results and discussion of the experiment, and
conclusion of the proposed automated counting systems
potential to revolutionize palm oil detection and count
estimation.

II. MATERIALS AND METHODS
A. DATASET
The dataset for this research was meticulously compiled
in Central Kalimantan Province, Indonesia, through video
recordings at 30 frames per second within an oil palm
plantation. We have collected a total of 440 videos, each
with varying lengths ranging from 8 seconds to 1 minute
and 31 seconds. These videos are captured in a resolution of
320× 640 pixels, providing a portrait orientation.
All videos are stored in the MP4 format, a standard

in digital media, which ensures compatibility and ease of

VOLUME 12, 2024 90397

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

FIGURE 1. Annotated ground- truth images of each class: (a) Abnormal, (b) Ripe, (c) Underripe, (d) Unripe, and (e) Flower.

FIGURE 2. Dataset complexity.

use in various object detection frameworks. As illustrated
in Figure 1, the dataset focuses on categorizing oil palm
fruits into five stages: Unripe, Underripe, Ripe, Flower,
and Abnormal. The Unripe stage (early-stage fruits) is
characterized by fruit bunches with a blackish hue. The
Underripe stage (transitional phase fruits) features fruit
bunches that vary in color from dark purple to dark red. The
Ripe stage (mature fruits ready for harvest) showcases fruit
bunches that range from dark red to bright red, often with
yellow spots. In the Flower stage (representing the flowering
stage), the structures lack fruits and have long, brown fibers
resembling petals. The Abnormal stage (fruits with atypical
characteristics due to potential disease or irregularities)
includes fruits with irregular shapes, often appearing less
uniform and with fewer fruits in the bunch.

The dataset involved presents a multitude of intricate
challenges that require thorough examination. A primary
obstacle lies in the dataset’s intrinsic complexity, where a
single frame may encompass multiple instances

Occlusion and partial visibility are significant challenges
in detecting Fresh Fruit Bunches (FFBs) in the dataset.
Occlusion occurs when portions of fruits are obscured from

FIGURE 3. Data collection and pre-processing flow.

view by other objects, while partial visibility refers to objects
that are only partially within the frame. These challenges
are compounded by factors such as substantial distances
between the camera and objects, which can lead to diminished
perceptual acuity. Furthermore, the challenges are worsened
by the presence of slight blurring and reduced contrast, which
may cause one class to resemble another. This combination,
presented in Figure 2, highlights the need for increased
sensitivity in model recognition, as each of these factors
contributes to the overall complexity of the challenges present
in the dataset.

B. DATA PRE-PROCESSING
In our research, Figure 3 illustrates the data collection and
pre-processing pipeline. This pipeline plays a crucial role
in preparing the dataset for effective object detection model
training. The details of this process can be further dissected,
as shown in the following pseudocode, which reveals the
specific steps involved in data pre-processing.

Algorithm 1 Dataset Preprocessing
1: procedure PreprocessDataset
2: Input: Raw videos
3: Output: Preprocessed train, val, and test dataset
4: extracted_frames←
5: ExtractAndAnnotateFrames(dataset)
6: train_data, val_data, test_data←
7: SplitDataByObjectCount(extracted_frames)
8: AugmentTrainData(train_data)
9: Resize val_data and test_data to 640× 640

90398 VOLUME 12, 2024

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

10: Manually undersample majority classes by deleting images
containing those objects

11: return Preprocessed Train, Val, Test Dataset
12: end procedure
13:
14: procedure ExtractAndAnnotateFrames
15: Input: Raw videos
16: Output: Annotated frames
17: for each video in dataset do
18: while there are remaining frames do
19: Extract frame
20: if frame quality is acceptable and
21: not similar to the last then
22: Annotate frame content
23: end if
24: Save annotated frame
25: end while
26: end for
27: return Annotated frames
28: end procedure
29:
30: procedure SplitData
31: Input: Annotated frames
32: Output: Train, validation, and test data
33: Group annotated frames by video sources
34: for each group in groups do
35: assigned← false
36: while not assigned do
37: Randomly choose train, val, or, test
38: if train dataset is chosen and
39: ratio of objects < 0.7 then
40: Add group to train dataset
41: assigned← true
42: else if val dataset is chosen and
43: ratio of objects < 0.2 then
44: Add group to val dataset
45: assigned← true
46: else if test dataset is chosen and
47: ratio of objects < 0.1 then
48: Add group to test dataset
49: assigned← true
50: end if
51: end while
52: end for
53: sets← [train, val, test]
54: for each class in FFB classes do
55: for each set in sets do
56: if number of class in set is low then
57: Move groups containing class from
58: other sets to set until minimal presence
59: of class is achieved
60: end if
61: end for
62: end for
63: return Train, val, test data
64: end procedure
65:
66: procedure AugmentTrainData
67: Input: Train data
68: Output: Augment train data
69: for each image in train data do
70: Resize image to 640× 640
71: augmentations←
72: [(Horizontal flip, 0.5), (Vertical flip, 0.5),
73: (Rotate 90 degrees, 0.5), (Adjust brightness, 0.5),
74: (Adjust contrast, 0.5), (Add Gaussian noise, 0.5),
75: (RGB shift, 0.5), (HSV shift, 0.5),

76: (Random crop, 0.8)]
77: for (augmentation, probability) in
78: augmentations do
79: if random chance < probability then
80: Apply augmentation to image
81: end if
82: end for
83: end for
84: return Augmented train data
85: end procedure

1) FRAME EXTRACTION AND CLEANING
The initial step involves converting the 440 collected videos
into individual frames in.png format using Computer Vision
Annotation Tool (CVAT) [54]. This transformation ensures
uniformity in resolution and aspect ratio across all frames.
To enhance dataset quality, frames with blue tint or distor-
tions, indicative of lighting anomalies or lens aberrations, are
manually removed using CVAT’s frame deletion feature.

2) ANNOTATION
Annotating these frames is critical for supervised learning.
Using CVAT’s ‘‘draw new rectangle’’ feature, we thoroughly
label each frame, assigning classes like unripe, underripe,
ripe, flower, and abnormal. The ‘‘track’’ feature in CVAT aids
in maintaining object consistency across frames, ensuring
accurate temporal tracking.

3) FORMAT CONVERSION FOR MODEL TRAINING
The annotation results are converted into a format suitable
for YOLO-based models. The dataset is initially structured
in the YOLOv8 format from CVAT, including a configuration
file and separate folders for images and labels. This format is
then transformed into the COCO dataset.

4) DATA SPLITTING
We ensure no overlap of videos between training, valida-
tion, and testing datasets, avoiding temporal information
redundancy. Additionally, a class-wise distribution approach
ensures balanced representation across different classes.
At the onset of our data splitting process, we initialize
parameters by setting a split ratio of 0.7, 0.2, and 0.1 for
training, validation, and testing, respectively. Alongside this,
we establish a dictionary of the total class count, to keep track
of the count of each class across all frames. In the first pass
of our procedure, we iterate over each video frame, counting
frames and reading annotations to update the total class count.

5) DATA AUGMENTATION AND CLASS BALANCING
To address class imbalance and enrich dataset diversity,
we leverage Albumentations [55] for data augmentation. This
process involves various techniques applied with specific
probabilities: random cropping (80%), horizontal/vertical
flipping (50% each), 90◦ rotations (50%), adjustments to
brightness/contrast (50%), and the introduction of Gaussian
noise, RGB shift, and HSV shift (all 50%). Importantly,
all images are standardized to 640 × 640 pixels before

VOLUME 12, 2024 90399

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

FIGURE 4. Detailed architecture of conv and depthwise separable conv module with parameter count for each layer.

augmentation. This augmentation pipeline aims to bolster
the representation of underrepresented classes (targeting
2480 images per class) without resorting to excessive
oversampling. In cases of severe class imbalance, we employ
manual undersampling to mitigate the dominance of overrep-
resented classes. This undersampling focuses on eliminating
frames with high visual similarity.

TABLE 1. Class distribution by object.

C. PROPOSED METHOD
This study proposed a method for estimating palm oil
production using advanced deep learningmodels, particularly
the YOLOv8 Depthwise model on a novel dataset. The
comparative analysis of the proposed model is streamlined
using the MMYOLO benchmark toolbox from OpenMM-
Lab [56], while the enumeration process will be handled
simultaneouslywhile the detection is being run. Finally, every
model’s performance is going to be accelerated with ONNX
Runtime to acquire faster inference time.

YOLO (You Only Look Once) series [57], a one-stage
object detection networks. Introduced by
Joseph Redmon et al. in 2016, instigated a significant shift
in the paradigm of real-time, end-to-end object detection.
Setting itself apart from preceding methodologies, YOLO
performs a single forward pass to simultaneously predict class
probabilities and bounding box coordinates, a stark contrast
to the two-tiered approach of methods like R-CNN [58],
fast R-CNN [59], and Faster R-CNN [60], consequently
placing YOLO at the vanguard of real-time applications [61].
Over time, YOLO has undergone several enhancements,
notably in terms of speed and precision [38], [39], [40], [56],
[62], [63], [64], [65]. In essence, the YOLO architecture
segments the input image into a grid, within which it
predicts numerous bounding boxes and class probabilities
for each cell. These boxes encompass coordinates and a
confidence score. The network’s output, characterized as a
tensor with dimensions S × S × (B × 5 + C), is refined via
non-maximum suppression (NMS) for heightened precision
in detection [56].

YOLOv6 marks a significant leap, especially for industrial
applications, prioritizing efficiency post-deployment [38].
It employs RepOptimizer and channel-wise distillation [66],
[67], and integrates both Post-training Quantization (PTQ)
and Quantization-aware Training (QAT) to balance speed
and accuracy. The architecture of YOLOv6 amalgamates
the EfficientRep backbone, based on RepVGG [68], with
a neck composed of the Path Aggregation Network (PAN)
[69], enhanced using RepBlocks [68] or CSPStackRep [70]

90400 VOLUME 12, 2024

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

FIGURE 5. Detailed architecture of C2f and its bottlenecks modified with depthwise separable convolutions with parameter count for each layer.

for its larger variants, and culminates with an Efficient
Decoupled Head. Its other distinct innovations include
the adoption of a Task alignment learning approach from
Task-aligned One-stage Object Detection (TOOD) for label
assignment [71]. It also introduces novel classification and
regression losses, specifically a classification VariFocal
loss [72] and SIoU/GIoU regression loss [73], [74].

YOLOv7 introduces numerous architectural changes and
a ‘‘bag-of-freebies,’’ enhancing accuracy while reducing
parameter count and computational load compared to
YOLOv4 [64]. A key improvement is the Extended Efficient
Layer Aggregation Network (E-ELAN) [75], which enhances
learning capacity by shuffling and merging cardinality
without disrupting the gradient path [38]. YOLOv7 also
pioneers model scaling for concatenation-based models, pre-
serving optimal structure [38]. Its ‘‘bag-of-freebies’’ includes
Planned Reparametrized Convolution (RepConvN) without
the identity connection typical in standard RepConv [68],
Coarse and Fine Label Assignment for auxiliary and lead
heads, and the use of Exponential Moving Average for
final inference [39]. These enhancements make YOLOv7 an
efficient and precise object detector.

The most recent iteration, YOLOv8, builds upon
YOLOv5’s strengths while introducing significant novel-
ties [40]. It retains a similar backbone but revamps the

CSPLayer to the C2f module, which integrates high-level
features with contextual data to boost detection accuracy [76].
The C2f module improves efficiency by reducing one
convolutional layer [77]. YOLOv8 also incorporates the
SPPF module [78], combining a CBS module with multiple
max-pooling layers to enhance feature map interpretabil-
ity [79]. Its neck integrates a Feature Pyramid Network (FPN)
[80] with PAN [69] for comprehensive feature integration.
For loss functions, YOLOv8 uses CIoU [81] andDFL [82] for
bounding box loss and binary cross-entropy for classification
loss, improving detection capabilities, especially for smaller
objects.

For comparative analysis, MMYOLO provides a unified
backend for YOLO-based object detection and segmentation,
ensuring a consistent and effective framework for bench-
marking. This overview, informed by key references [83],
[84], [85], [86], [87], elucidates MMYOLO’s architecture,
implementation, and its role in comparative analyses within
the computer vision community.

The proposedmodel prioritizes a parameter-efficient archi-
tecture. This is achieved by replacing standard convolutional
blocks with depthwise separable convolutions throughout
the YOLOv8 design. YOLOv8, particularly the YOLOv8s
variant, offers a compelling balance between speed and
accuracy, as it is the lighter variation of YOLOv8.

VOLUME 12, 2024 90401

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

FIGURE 6. Detailed architecture of SPPF and depthwise-separable-convolution-modified SPPF with parameter count for each layer.

FIGURE 7. Detailed architecture of depthwise separable convolutions in detect module with parameter count for each layer.

This characteristic is suitable for real-time applications
where both aspects are crucial. As depicted in Figure 4,
a depthwise separable convolution consists of two parts: a

depthwise conv block with stride of 2, resulting in halved
output width and height. While the group is set the same as
channel in, so that each channel is convolved by the filter.

90402 VOLUME 12, 2024

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

This is followed by a pointwise convolutional block where
the kernel size is 1 × 1 convolving across all the channel
processed before. Batch normalization (BatchNorm2d) is
then employed to normalize the output using shift and
scale operations, followed by a SiLU activation function,
which is the default choice in YOLOv8. This approach
significantly reduces the number of parameters compared to
traditional convolutional blocks. Our calculations based on
the architecture in Figure 4 indicate a parameter reduction of
84.589%.

The C2f block in the YOLOv8 architecture is also replaced
by C2f DW Separable Block as shown in Figure 5. While the
overall structure remains the same as the C2f block, all Conv
blocks in C2f are replaced with Depthwise Separable Conv.
The number of bottleneck blocks ‘n’ is configured according
to parameter ‘d’ from YOLOv8s which is 0,33. Overall, the
new C2f Ghost block uses 50.65% less parameters than the
original C2f block.

The SPPF block used in the neck is also replaced with
SPPF DW. As shown in Figure 6, the only difference
in this block is that the Conv blocks are replaced with
Depthwise Separable Conv from Figure 6. Every ouput from
the maxPool2d layer and the first Conv block is concatenated.
This configuration is the same as individually maxpooling
each input with maxpool kernel sizes of 5, 9, and 13. Here,
the first max pooling has a 5× 5 receptive field. The second
pooling, applied on the already pooled output, increases the
receptive field equivalent to a 9 × 9 area due to overlapping
effects. Finally, the third maxpool has a receptive field of
13×13. This allows the network to detect objects at multiple
scales.

The detect head in YOLOv8 is also replaced by detect DW
(Figure 7) which enhanced its efficiency by replacing original
Conv in the middle before bounding box regression and
class prediction operation with Depthwise Separable Conv.
This helps reduces the parameter by 42.25%. Combining all
the modification described earlier, the final architecture of
the proposed YOLOv8 model is shown in Figure 8. It also
displays the dimensions of feature maps that goes through
each module. This dimension specifies the height, width, and
channel of the corresponding feature map. The number of
input and output channels is determined based on the model
size. Here, a width multiple of the model size is used to scale
the number of channels. Additionally, this value is capped
by a maximum channel number that also correlates with the
model size.

Each model was converted to the ONNX Runtime [88]
format for cross-platform compatibility, as ONNX Runtime
is optimized for accelerating the deployment of machine
learning models across various platforms and devices,
thereby enabling cross-platform model inference. In addition
to the model conversion, we applied FP16 quantization to
both the small and large versions of each YOLO model
used in our experiment. This process aimed to investigate
the impact of quantization on the inference time and mean
Average Precision (mAP) of each model. The results of

these comparative analyses provide valuable insights into the
trade-offs between model size, computational efficiency, and
performance accuracy.

Finally, the enumeration of detected oil palms is performed
automatically, wherein the number of each object in a frame is
quantified. This counting process involves sorting the objects
based on their respective classes, allowing for a detailed
comparison between the predicted and ground truth counts
for all images. Evaluation metrics, including Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE) [89] are
then employed to assess the accuracy of the counting results.
The specific steps of this counting process are detailed in
the ensuing pseudocode, which outlines the algorithm used
to automate the enumeration of objects based on their classes
within each frame.

Algorithm 2 Object Count
1: procedure CountOilPalmPerFrame
2: Input: boundingBoxes, IoUThreshold
3: Output: countDataPerClass
4: classCounts← {}
5: for each boundingBox in boundingBoxes do
6: if boundingBox. IoU > IoUThreshold then
7: class← boundingBox.class
8: if class in classCounts then
9: classCounts[class]←
10: classCounts[class] + 1
11: else
12: classCounts[class]← 1
13: end if
14: end if
15: end for
16: for each class in classCounts do
17: Print ‘‘Class:’’, class, ‘‘Count:’’, classCounts[class]
18: end for
19: return classCounts
20: end procedure

Following the evaluation of counting errors, the subsequent
phase involves the development of a web application tailored
for FFB counting. This strategic approach ensures seamless
accessibility from a myriad of mobile devices while retaining
the capability to conduct real-time fruit detection through
camera access. The foundational framework for this appli-
cation is based on next.js framework [90] and onnxruntime-
web package [91], with a deliberate effort to align its
functionality with our adopted model’s specifications. This
necessitates fine-tuning the application’s processing capabil-
ities to harmonize with our model’s architecture. Specifically,
adjustments are made to accommodate the model’s distinct
shape and facilitate the recognition of the five distinct classes
targeted for detection. This intricate calibration ensures
a symbiotic relationship between the application and our
specialized model, fostering optimal performance in FFB
counting.

D. TRAINING MODEL
The training model in the MMYOLO toolbox is executed
in the Google Colaboratory environment, leveraging the

VOLUME 12, 2024 90403

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

FIGURE 8. Architecture of YOLOv8 modified with depthwise separable convolutions (DW Conv), C2f DW, SPPF DW, and detect DW including input
dimensions (height × width × channel).

computational capabilities of an NVIDIA V100 Tensor Core
GPU. The choice of the V100 GPU aligns with the need

for robust training performance and efficient processing of
complex deep learning models. For inferencing tasks, the

90404 VOLUME 12, 2024

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

trained models are tested on an NVIDIA T4 GPU using
the ONNX Runtime, ensuring streamlined and optimized
execution in real-world applications.

Regarding hyperparameters, the training process utilizes
a learning rate of 0.001 to achieve an optimal balance
between the speed of convergence and the stability of the
optimization process. A weight decay of 0.0005 is used to
prevent overfitting and improve model generalization. The
momentum, which controls the model’s update direction,
is set to 0.03 to stabilize the optimization process.

Additionally, the batch size for all models was uniformly
set to 16. This decision was necessitated by the computational
limitations of our testing bench. Although smaller models
could potentially be run with a batch size of 32, we opted for
a batch size of 16 to ensure consistency and fairness across
all models.

To identify the optimal base model architecture for further
improvement through depthwise separable convolutions,
we employed a finetuning strategy detailed in the following
pseudocode.

Algorithm 3Model Training

1: procedure FineTuneBaseModels
2: Input: Preprocessed train and validation dataset
3: Output: Trained models
4: baseline_model_configs← [
5: YOLOv6s_config, YOLOv6l_config,
6: YOLOv7tiny_config, YOLOv7l_config,
7: YOLOv8s_config, YOLOv8l_config]
8: for config in baseline_model_configs do
9: model← InitializeModel(config)

10: epoch← 0
11: max_epochs← Get max epochs from config
12: training← true
13: while training do
14: for mini batch in train dataset do
15: predictions←Make model predict mini
16: batch
17: loss← Calculate loss from predictions
18: and mini batch labels
19: Perform backpropagation using loss
20: Update model weights with optimizer
21: end for
22: epoch← epoch + 1
23: validation_loss← Calculate validation loss
24: if epoch ≥ max_epochs then
25: training← false
26: end if
27: end while
28: Save trained model
29: end for
30: return Trained models
31: end procedure
32:

33: procedure InitializeModel
34: Input:Model configuration

35: Output: Initialized model
36: Definemodel architecture usingmodel configuration
37: Define hyperparameters using model configuration
38: Define classes and class weights using model

configuration
39: return Initialized model
40: end procedure

Following the identification of the optimal base model
through finetuning, a modified version incorporating depth-
wise separable convolutions will be trained. The training
regimen for this modified model closely resembles the
finetuning process as well, with the key difference being
the model architecture itself. The InitializeModel procedure
within the pseudocode will be modified to reflect these
architectural changes, including adjustments to the backbone,
neck, and head components. These modifications aim to
improve the model’s efficiency while maintaining its object
detection accuracy.

The approach to hyperparameter tuning mirrors the
finetuning process as well. Here, the model’s performance
is evaluated with different configurations for key hyperpa-
rameters that can significantly impact training effectiveness.
These hyperparameters include the base learning rate and
the optimizer used. The optimal number of images processed
together during each training iteration different learning rates
(0.0001, 0.001, and 0.01) will be tested to find the rate that
allows the model to learn effectively without overshooting
the minimum loss. The impact of the optimization algorithm
will also be compared by evaluating both SGD (Stochastic
Gradient Descent) and Adam optimizers.

Algorithm 4Model Inference
1: procedure DetectImage
2: Input: Image input, Confidence threshold, NMS threshold
3: Output: Image with detections
4: model← InitializeModel(YOLOv8s_DW_config)
5: Resize image to 640× 640
6: detections← Perform forward pass on model
7: results← PostprocessDetections(detections,

confidence_threshold, nms_threshold)
8: for (box, confidence, class_label) in results do
9: Draw bounding box on image with label and
10: confidence
11: end for
12: Show the image with detections
13: return Image with detections
14: end procedure
15:
16: procedure PostprocessDetections
17: Input: Detections, Confidence threshold, NMS threshold, Classes
18: Output: Bounding boxes, Confidences, Classes
19: boxes← []
20: confidences← []
21: class_ids← []
22: for each detection in detections do
23: scores← detection’s confidence scores
24: class_id← Get class with highest score
25: confidence← scores[class_id]
26: if confidence > confidence_threshold then
27: box← Extract bounding box coordinates
28: from detection
29: Append box to boxes
30: Append confidence to confidences

VOLUME 12, 2024 90405

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

31: Append class_id to class_ids
32: end if
33: end for
34: indices← Apply NMS to boxes, confidences, nms_threshold
35: results← [(boxes[i], confidences[i],
36: classes[class_ids[i]]) for i in indices]
37: return results
38: end procedure

Moreover, the DetectImage procedure exemplifies how the
trained model operates during inference. Inference refers to
the stage where the model is used to make predictions on
new, unseen data. In this case, the pseudocode showcases how
the modified version with depthwise separable convolutions
would process an image for object detection. This procedure
provides a high-level overview of the steps involved in
making predictions using the trained model.

E. MODEL OPTIMIZATION
This section explains the strategies employed to enhance the
performance of YOLO-based models. The aim is to improve
the efficiency and accuracy of the model in detecting fresh
fruit bunches, addressing the unique challenges posed by real-
world scenarios. In this discussion, we will examine different
optimization techniques that enhance the model’s predictive
capabilities.

1) CLASS WEIGHT ADJUSTMENT
To address the imbalances in the dataset and improve the
model’s ability to discern between different classes of fruit
bunches, we assign a comparatively lower weight to the
majority class, ‘Unripe.’ The weight assigned to each class
is calculated using Equation (1), where it considers the total
instances of the respective class in relation to the overall
instances across all classes.

wnew = 1−
nclass
ntotal

(1)

Here, nclass is the number of instances in a class and ntotal is
the number of instances across all class.

2) LAYER-FREEZING
In conjunction with our efforts to optimize the models,
we selectively freeze specific stages of the backbone network
during model training. This ensures that the parameters
associated with them remain unaltered throughout the fine-
tuning process, providing stability to the foundational layers
of the model. In this implementation, the first stage of
the backbone is frozen. By preserving the initial feature
extraction layers strategically, we aim to retain valuable
low-level features that are critical for accurate identification
of fruit bunches. This approach to freezing backbone layers
preserves essential foundational features during the model
fine-tuning process.

In detail, for the YOLOv8 family, we freeze the Con-
vModule and CSPLayer_2Conv blocks in the first stage
of the backbone. In the YOLOv7 family, the frozen blocks
in the first stage consist of ConvModule and ELANBlock.

On the other hand, the YOLOv6 family exhibits variations
between YOLOv6s and YOLOv6l. For YOLOv6s, the frozen
blocks in the first stage of the backbone include RepVG-
GBlock and RepStageBlock, whereas YOLOv6l employs
RepVGGBlock and BepC3StageBlock in the first stage.

3) ANCHOR TUNING
Furthermore, our attention focuses on anchor tuning within
the YOLOv7 architecture. Unlike YOLOv6, which uses
dynamic anchors [38], YOLOv7 adheres to a pre-set anchor
paradigm as stipulated in [92]. To increase adaptability and
dynamism, K-means clustering is integrated seamlessly into
these anchors, a method widely explained in [93]. This
approach allows for adjusting anchor boxes to better fit the
various object scales and aspect ratios in the dataset.

4) LOSS FUNCTIONS
Our optimization strategy for object detection models in
YOLO-based frameworks, such as YOLOv6, YOLOv7, and
YOLOv8, goes beyond anchor tuning. It includes meticulous
selection and implementation of loss functions, which are
critical for refining model performance. The choice of
loss functions plays a pivotal role in guiding the model’s
learning process. These loss functions serve as metrics
determining the disparity between predicted outputs and
actual annotations, steering the model toward increased
precision in its predictions.

In YOLOv6, the model uses Varifocal Loss (VFL) [72]
for classification, a dynamic approach that assigns different
weights to different classes based on their importance. Addi-
tionally, for regression, YOLOv6 uses both SCYLLA-IoU
(SIoU) [73] and Generalized IoU (GIoU) [74] as loss
functions. These choices contribute to the model’s robust
training dynamics and promote improved object recognition
performance.

VFL serves as a refinement of Focal Loss [94], introducing
additional nuances to improve the training dynamics of object
detection models. Rooted in Focal Loss, VFL extends its
foundation to incorporate elements of binary cross-entropy
loss. It aims to forecast the IoU-Awareness Classification
Score (IACS), a scalar classification unit, considering the
intersection between the anticipated and actual bounding box.
VFL, as shown in Equation (2), is explicitly defined, and its
distinctive feature is to selectively scale the loss contribution
of negative examples by a factor of pγ , without applying
the same down-weighting to positive examples. In this way,
VFL aims to prioritize the learning of challenging instances
and high-quality positives, ultimately contributing to the
model’s ability to achieve a higher Average Precision (AP)
by focusing on the most informative and relevant examples
during training.

FL(p, y) =

{
−α(1− p)γ log(p) if y = 1
−(1− α)pγ log(1− p) otherwise

(2)

90406 VOLUME 12, 2024

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

where p is the predicted IoU-Aware Classification Score, q is
the target score, α is the adjustable scaling factor, (1− p)γ is
the positive class, and pγ is the negative class.
As for SIoU, it consists of four cost functions: angle cost,

distance cost, shape cost, and IoU cost. The addition of the
angle-sensitive component helps the model converge faster
by minimizing the number of variables in distance-related
‘‘wandering’’. Through each of these functions, the formula
displayed in Equation (3) is formed. Directly involved in this
formula, Equation (4) symbolizes the distance cost, while
Equation (5) represents the shape cost. To calculate loss
functions involving IoU, its value is required, which can be
calculated with Equation (6).

LSIoU = 1−IoU +
1+�

2
(3)

where

1 =
∑
t=x,y

(1− e−γρt) (4)

� =
∑
t=w,h

(1− e−ωt) (5)

IoU =
Area of prediction box ∩ Area of truth box
Area of prediction box ∪ Area of truth box

(6)

To accompany SIoU in YOLOv6, GIoU is calculated by
finding the smallest convex shape that encloses both shapes,
then measuring the ratio between the volume occupied by
this shape excluding the original shapes and the total volume
occupied by it. Finally, GIoU is obtained by subtracting this
ratio from the IoU value. GIoU has properties like IoU,
such as being a distance metric, invariant to the scale of the
problem, and always a lower bound on IoU. From computing
the value of GIoU, the loss function can be found, as shown in
Equation (7). This process entails computing the area of the
bounding box enclosure using Equation (8) and determining
the area of union (U), as expressed in Equation (9) through
the calculation involving the areas of both the predicted and
ground-truth bounding boxes.

LGIoU = 1−IoU −
Ac − U
Ac

(7)

where

Ac = (xc2 − x
c
1)× (yc2 − y

c
1) (8)

U = Ap + Ag−I (9)

In YOLOv7, Binary Cross Entropy Loss [95] is employed
for classification loss, while the loss for the detector utilizes
CIoU (Complete IoU) [81]. CIoU is a loss function utilized
in object detection for bounding box regression. It considers
three geometric factors in bounding box regression: overlap
area, central point distance, and aspect ratio. Shown in
Equation (10), the loss function of CIoU is found from the
sum of the penalty between the predicted and ground-truth
bounding box with the dot product of the positive trade-off

parameter (α) and the aspect ratio consistency (v). Which
then, it will be added with the loss.

LCIoU = 1−IoU +
ρ2(b, bgt)

c2
+ αv (10)

α =
v

(1− IoU)+ v′
(11)

v =
4
π2

(
arctan

wgt

hgt
− arctan

w
h

)2

(12)

In accordance with Binary Cross Entropy Loss, the
operation is carried out on the predicted probability score and
its corresponding ground truth within a binary classification
model. The function treats each problem independently and
calculates the loss for each class separately. Equation (13)
exhibits how the loss function is assessed. The probability
score, denoted as p(xi), represents the predicted likelihood
that the instance xi is associated with the default class. Here,
yi signifies the true label, taking on values of either 0 or 1.

L = − (yi · log(p(xi))+ (1− yi) · log(1− p(xi))) (13)

As discussed in the previous section, YOLOv8 utilizes
CIoU [81] and DFL [82] for its loss functions. Equation (10)
has already demonstrated the formula of CIoU. Meanwhile
DFL, or Distribution Focal Loss, models bounding box
locations as general distributions and encourages the network
to focus on learning the probabilities of values close
to the target coordinates. This loss function, as seen in
Equation (14), explicitly increases the probabilities of values
around the target, ensuring its accuracy.

DFL(Si, Si+1) = − ((yi + 1− y) log(Si)+ (−yi) log(Si + 1))

(14)

5) OPTIMIZER
The preferred optimization method for enhancing the perfor-
mance of computer visionmodels, such as those implemented
in this study, is Stochastic Gradient Descent (SGD) [96].
It is a common method for optimizing computer vision
models. SGD strategically utilizes a single random sample
to estimate the gradient of the loss function during each
iteration, making it a highly efficient and well-suited solution
for large-scale problems. The ability of SGD to achieve
rapid convergence, especially in strong convex problem
scenarios, is noteworthy. It exhibits a high convergence
rate even when the optimization problem’s conditions are
less strict than the strong convex condition. Additionally,
fundamental improvements to SGD, which concentrate on
increasing speed and reducing fluctuations, have been crucial
in refining its optimization process. In addition to SGD, this
experiment also employs Adam for hyperparameter tuning.
Adam combines the advantages of both SGDwithmomentum
and RMSprop [97]. Adam is known for its ability to handle
sparse gradients and its robustness to noisy data, making it
a popular choice for many machine learning applications.
The selection of an appropriate base learning rate is crucial
because it has a direct impact on how quickly and efficiently

VOLUME 12, 2024 90407

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

a model learns. By testing base learning rates across different
scales like 0.0001, 0.001, and 0.01, we can explore how large
or small adjustments the model makes to its weights during
training, impacting its ability to find the optimal solution.

6) QUANTIZATION
As part of our model optimization strategy, we prioritize
efficiency through quantization during training. This process
involves converting the numerical representation of model
parameters into the half-precision floating-point format,
known as fp16. In fp16, each floating-point number is rep-
resented using 16 bits, offering advantages such as reduced
memory storage and faster computations. Implementing fp16
quantization significantly reduces the memory footprint of
model parameters, enhancing computational efficiency. This
is especially beneficial when deploying models on hardware
that supports half-precision computations.

F. MODEL EVALUATION
Within the scope of model assessment, our focal point lies
in the evaluation conducted during the validation phase,
elucidating the nuanced performance of each YOLO variant.
This thorough examination is crucial for assessing the
effectiveness and precision of our models. We use established
metrics such as Average Precision (AP), mean Average
Precision (mAP), and mean Average Recall (mAR) to
precisely measure and analyse the performance of each
model [98]. These metrics are essential to the validation
process as they provide a quantitative measure of the models’
ability to accurately identify and localize objects within the
provided dataset.

Our assessment evaluates the accuracy of instance enumer-
ation within individual frames, in addition to the previously
mentioned metrics. The aim is to evaluate the accuracy of
instance enumeration within individual frames and determine
whether the detected number of instances aligns with the
ground truth. This emphasizes the correctness of estimation
for each class in the image. Across all images employed
in the counting process, the evaluation employs metrics
such as MAE and RMSE [89]. MAE represents the average
absolute differences between predicted and ground truth
values, providing a straightforward measure of accuracy.
In contrast, RMSE emphasizes the magnitude of errors by
taking the square root of the average squared differences,
offering a more sensitive metric to large discrepancies.
Moreover, model size and inference time were measured.
This was done to compare the efficiency and performance of
the models during real-time inference operations.

1) AVERAGE PRECISION (AP)
Calculating AP for object detection differs from the con-
ventional method used in regular precision and recall
computations. While the latter typically relies purely on true
and false outcomes, object detection introduces an additional
element: the confidence level associated with each detection.

Equations (15) and (16) outline the computation of recall
and precision by integrating a threshold (τ) based on this
confidence level. This means that a higher threshold results
in a lower computed value.

Pr(τ) =

∑S
n=1 TPn(τ)∑S

n=1 TPn(τ)+
∑N−S

n=1 FPn(τ)
(15)

Rc(τ) =

∑S
n=1 TPn(τ)∑S

n=1 TPn(τ)+
∑G−S

n=1 FNn(τ)
(16)

AP is based on the region below the Precision-Recall (PR)
curve and is calculated using a specific IoU threshold. The
PR curve is discretely represented, with recall values having
a direct and unchanging correspondence to confidence levels
(τ). Then, compute the AP using the two ordered sets of
reference recall values and the confidence values. The AP
itself, expressed in Equation (17) is calculated by a Riemann
integral of Printerp(R) with reference to the K recall values
from the set Rr(k).

AP =
K∑
k=0

(Rr (k)− Rr (k + 1))Printerp(Rr (k)) (17)

2) MEAN AVERAGE PRECISION (MAP)
Through this, we can determine the value of mAP with
Equation (17), which is just themean of AP among all classes.
The total AP across all C classes will be aggregated and then
divided by the number of classes.

mAP =
1
C

C∑
i=1

APi (18)

The calculation of mean Average Precision (mAP) typi-
cally incorporates the utilization of IoU thresholds, often
represented as mAP50, mAP@0.5, mAPAvailIoU = 0.5],
or some other similar variations, if the threshold is set at
50%. Additionally, another commonly employed threshold
is 50-95%.

3) MEAN AVERAGE RECALL (MAR)
To assess the performance of object detection algorithms,
Average Recall (AR) measures the model’s ability to identify
all relevant instances, represented by ground-truth bounding
boxes. Given the confidence level τ (k) and the IOU
threshold t(o), where Prt(o)(τ (k)) and Rct(o)(τ (k)) represent
the Precision-Recall (PR) points, the computation of AR is
expressed as:

AR =
1
O

O∑
o=1

max
k|Prt(o)(τ (k))>0

{
Rct(o)(τ (k))

}
(19)

In this computation, the process entails determining the mean
of the highest recall values while ensuring that precision
exceeds zero for every IOU threshold, and τ (k) is defined
according to the set of K different confident. This process
provides an approximate integral of the function that retrieves
the recall for a given IoU with O values, given that the O

90408 VOLUME 12, 2024

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

IOU threshold set, t(o), adequately covers a range of overlaps,
where O is the size of such set.

Through Equation (20), we can calculate the mAR by
averaging the AR with the number of classes.

mAR =
1
C

C∑
i=1

ARi (20)

4) INFERENCE TIME
Beyond the established metrics, the inclusion of inference
time provides a supplementary dimension to gauge a model’s
performance. Notably, in the scope of YOLO, renowned
for its real-time object detection capabilities, inference time
emerges as a pivotal metric. This metric examines the
temporal domain, providing insights into the speed at which
a model processes and detects objects in real-time scenarios.
More specifically, it denotes the duration required for a
model to analyse an input image or frame and generate the
corresponding output, encompassing the identification and
localization of objects. In leveraging inference time as a
metric, we gain a comprehensive understanding of a model’s
practical efficiency, particularly crucial in applications where
swift decision-making is paramount.

To solidify our exploration of inference time as a perfor-
mance metric, we implemented the ONNX Runtime. This
strategic choice aims to optimize and accelerate the inference
process. The ONNX Runtime acts as a cross-platform
model booster and introduces efficiency enhancements,
which are particularly beneficial for devices with constrained
computational resources, such as mobile devices. Mobile
devices can benefit greatly from the expedited inference
capabilities facilitated byONNXRuntime, given their limited
capabilities. This optimization ensures a more responsive
and swift inference process, aligning with the demands of
applications where real-time responsiveness is of paramount
importance.

5) MEAN AVERAGE ERROR (MAE)
To evaluate the model over all images, the MAE value is
determined by calculating the absolute difference for each
class individually. This involves calculating the absolute
difference between the ground truth counts (Gi) and the
predicted counts, Pi(τ), for each class (c) in N images.
Notably, predicted counts are only considered if they exceed
a given confidence threshold (τ). We then infer the MAE,
as depicted in Equation (21). The overall MAE, as described
in Equation (22), is then obtained by averaging the MAE
values across all classes (C), providing a comprehensive
evaluation of themodel’s accuracy in estimating object counts
across the entire dataset.

MAE(c) =
1
N

N∑
i=1

|Gi − Pi(τ)| (21)

Overall MAE =
1
C

C∑
c=1

MAE(c) (22)

6) ROOT MEAN SQUARE ERROR (RMSE)
The overall approach to computing the RMSE closely mirrors
that of the MAE in the provided code. For each class (c) and
for each of the N images, the squared difference between the
ground truth counts (Gi) and the predicted counts that meet
the confidence threshold (Pi(τ)) are computed, as portrayed
in Equation (23). Once the RMSE for each class has been
determined, the overall RMSE, presented in Equation (24),
is obtained by averaging these class specific RMSE values
across the total number of classes (C). This method ensures
a comprehensive evaluation of the model’s performance
in estimating object counts, taking into account both the
magnitude and direction of the errors.

RMSE(c) =

√√√√ 1
N

N∑
i=1

(Gi − Pi(τ))2 (23)

Overall RMSE =
1
C

C∑
c=1

RMSE(c) (24)

G. WEB APPLICATION
Our web application incorporates WebAssembly (wasm) as
a pivotal element to optimize the execution of our deep
learning model within a web environment. By designating
wasm as the execution provider during the instantiation
of the inference session, our application capitalizes on
the capabilities of WebAssembly for accelerated model
execution. This strategic use of wasm on client devices
eliminates the necessity for server-side processing, ensuring
seamless integration and compatibility with our web-based
application.

In the operational framework of the application, we lever-
age the ONNX runtime for web applications to execute
any YOLO model. To initiate model execution, a session
is created for the model. Real-time input is pre-processed
to conform to the model’s input shape, adhering to
the NCHW format (number of batches, channel, height,
and width), and adjusting the numerical precision based
on the ONNX runtime model employed. Subsequently,
the model is invoked to infer the pre-processed input,
generating the desired output, including detection results
for each identified object along with the corresponding
label.

Following the model inference, a post-processing stage
is enacted, wherein each output is mapped to its cor-
responding label, and bounding boxes are displayed in
alignment with these labels. The detection results include
confidence scores, enabling the application to filter out
results below a predetermined threshold. Concurrently, the
counting process is integrated into the post-processing
stage, estimating the count for each detected class in
the frame. This final step enables the display of bound-
ing boxes for each object based on its class, accompa-
nied by an accurate count of objects within the current
frame.

VOLUME 12, 2024 90409

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

TABLE 2. Overall performance for each model (with data augmentation).

TABLE 3. Overall performance for each model (without data
augmentation).

III. RESULTS AND DISCUSSIONS
Table 2 and 3 offer a comprehensive comparison of the impact
of data augmentation on the performance of each model.
Notably, larger models such as YOLOv6l, YOLOv7l, and
YOLOv8l demonstrate a clear benefit when trained with
augmented data. YOLOv6l, in particular, exhibits superior
performance in terms of mAP50, mAP50-95, and mAR50-
95 metrics, both with and without data augmentation. These
results indicate its robustness and ability to generalize across
different datasets. The ‘l’ (large) variants typically offer more
layers and parameters, enabling them to capture complex
features more effectively, which could explain their enhanced
performance in our analysis.

Upon examining the impact of data augmentation,
we observed a positive trend in mAP50 andmAP50-95 scores
across all models. However, the difference in mAR50-95,
MAE, and RMSE is relatively insubstantial. This suggests
that while data augmentation certainly aids in improving the
model’s ability to detect objects accurately (as reflected in
mAP scores), its impact on the overall recall (mAR) and error
metrics (MAE, RMSE) is more nuanced.

As shown in Table 4, the performance of YOLOv6s,
YOLOv6l, YOLOv7tiny, YOLOv7l, YOLOv8s, YOLOv8l,
and YOLOv8s Depthwise models was evaluated across five
distinct classes: Abnormal, Flower, Ripe, Underripe, and
Unripe. These classes were assessed based on Average
Precision (AP50 and AP50-95) and error metrics (MAE
and RMSE). Analyzing the data, it is observed that the
YOLOv6 series, particularly YOLOv6s, demonstrates excep-
tional performance in terms of AP50 (0.874) and AP50-95
(0.543) in the Abnormal class, indicating its robust capability
in accurately detecting crop anomalies. In contrast, the
YOLOv7tiny model excels in reducing counting error rates,
achieving the lowest MAE (0.064) and RMSE (0.253) in
the Abnormal class and MAE (0.105) and RMSE (0.323) in

the Flower class. This distinction suggests that YOLOv7tiny
is particularly effective in tasks requiring precise counting,
such as distinguishing subtle variations in crop conditions.
The proposed YOLOv8s Depthwise model shows a well-
rounded performance, balancing both detection accuracy
and counting error metrics across all classes. For instance,
in the Abnormal class, it maintains a low MAE and RMSE,
indicating its proficiency in accurate detection and counting.
Similarly, in the Flower and Ripe performance showcasing
its versatility. Notably, the YOLOv8s Depthwise model also
excels in the Underripe and Unripe classes, maintaining a
balanced performance that makes it a reliable choice for
identifying different maturity stages of crops.

Additionally, the YOLOv8s Depthwise model has a
significant advantage in terms of model size. With a size
of just 21.2 MB, it is the smallest among all the models
evaluated, which includes the much larger YOLOv6l at
223.7 MB and YOLOv8l at 174.5 MB. This compact
size is particularly beneficial for deployment in resource-
constrained environments, offering ease of implementation
without compromising on performance. When accuracy in
detection (reflected by high AP scores) is prioritized, the
YOLOv6 series is preferable due to its superior detection
capabilities. However, for tasks where reducing classification
and counting errors is crucial, the YOLOv7 series, especially
the YOLOv7tiny and YOLOv7l models, provide significant
advantages due to their low MAE and RMSE values. Mean-
while, the YOLOv8 series, and particularly the YOLOv8s
Depthwise model, presents a well-rounded solution with
balanced performance across various classes and a compact
model size.

For the proposed model that is YOLOv8s Depthwise,
we also performed hyperparameter tuning for its base
learning rate, and optimizer, with the performance results
shown in Table 5. The Adam optimizer, known for its
adaptive learning rate properties, showed robust performance
at lower learning rates (0.0001 and 0.001), with stable
detection accuracy and moderate error rates. However, at a
higher learning rate (0.01), the performance deteriorated,
indicating overfitting or training instability. Conversely,
the SGD optimizer, which is simpler but can generalize
better, required a moderate learning rate (0.001) to achieve
optimal performance. At this learning rate, the model
demonstrated balanced detection accuracy and low error
rates, highlighting effective learning. Lower learning rates
(0.0001) with SGD resulted in inadequate learning, while
higher rates (0.01) maintained stable performance but with
slightly increased errors. Quantization to fp16 consistently
resulted in a negligible increase in inference time while
maintaining similar performance metrics compared to non-
quantized models, proving it as a viable strategy for reducing
computational load without sacrificing accuracy.

As outlined in Figure 9, YOLOv6l shows a steady decline
in loss, suggesting the effectiveness of its EfficientRep
backbone and RepBlocks. However, its larger parameter
space leads to a slower convergence rate compared to models

90410 VOLUME 12, 2024

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

TABLE 4. Class-wise performance comparison for each model: abnormal, flower, ripe, underripe, and unripe.

TABLE 5. Performance evaluation of hyperparameter scenarios: optimizer and learning rate.

with fewer parameters. The training time for YOLOv6l was
8 hours, 16 minutes, and 20 seconds. In contrast, YOLOv6s
demonstrates the most rapid initial loss reduction, likely
due to its efficient backbone and task alignment learning.
This model completed training in 3 hours, 30 minutes, and
4 seconds.

YOLOv7l also shows a consistent decrease in loss,
benefiting from its E-ELAN architecture that optimizes
gradient flow and model scaling. The training duration for
YOLOv7l was 7 hours, 32minutes, and 59 seconds. However,
YOLOv7tiny exhibits a slower and more fluctuating loss
curve, possibly due to its lightweight design being more
sensitive to learning rate adjustments. Nevertheless, it still
achieves a competitive final loss, with a training time of
3 hours, 30 minutes, and 3 seconds.

Similarly, YOLOv8l displays a smooth and steady loss
decrease, highlighting the optimized performance of its C2f
module and decoupled head. While its convergence speed
is moderate, similar to YOLOv6l, it effectively reduces loss
over time. The training time for this model was 5 hours,
12 minutes, and 15 seconds. Interestingly, YOLOv8s shows
a slower convergence compared to other models, even
though its loss decreases steadily. This suggests that while
its architecture is efficient, it might require more training
epochs to reach its full potential. YOLOv8s completed its
training in 2 hours, 39 minutes, and 41 seconds. Finally,
YOLOv8s depthwise stands out with the lowest loss over
time, demonstrating the efficiency of depth-wise separable
convolutions in achieving rapid convergence and maintaining

low loss throughout the training process. This model had the
shortest training time of 2 hours, 18 minutes, and 30 seconds.

The comparison shown in Figure 10 and 11 provides a
comprehensive evaluation of the counting results obtained by
our object detection models. In Figure10, the examination
of the ground truth against the counting results reveals
different types of errors. Figure 10(a) illustrates instances
where the same object is counted twice, highlighting
potential challenges in the detection process. Conversely,
Figure 10(b) shows situations where the model fails to detect
a single object, highlighting the importance of addressing
false negatives. On the positive side, Figure 11 provides a
reassuring representation of accurate counting results that
closely match the ground truth.

As presented in Table 6 of our study, the ONNX
runtime converted models which deliver the conversion
and optimization of models for deployment across various
platforms were analyzed to understand their performance
in comparison to their original counterparts. Notably, the
metrics mAP50, mAP50-95 and inference time were used
as the primary evaluation criteria. The analysis revealed that
the mAP50 and mAP50-95 scores of the ONNX runtime
converted models were identical to those of the original
models, indicating that the conversion process preserved the
models’ accuracy effectively. This consistency is significant
as it ensures that the deployment on various platforms does
not compromise the model’s detection capabilities.

Further, a comparison was conducted between the quan-
tized (fp16) and non-quantized versions of the ONNX

VOLUME 12, 2024 90411

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

FIGURE 9. Comparison of training loss for different YOLO model variants: YOLOv6s (orange), YOLOv6l (blue), YOLOv7tiny
(dark red), YOLOv7l (green), YOLOv8s (brown), YOLOv8l (purple), and YOLOv8s Depthwise (pink).

TABLE 6. ONNX runtime comparison for each model.

models. Remarkably, the quantization process did not lead to
any substantial differences in mAP50 and mAP50-95 scores.
The variations were marginal, often as little as 0.001, which
is negligible in practical scenarios. This finding is crucial as
it demonstrates that model quantization, a process often used
to reduce model size and increase computational efficiency,
does not adversely affect the model’s efficacy in detecting
objects.

The most significant observation from the quantization
process was its impact on inference time. Despite the minimal
effect on accuracy, the inference time was notably reduced,
particularly for largermodels. For instance, the inference time
for the YOLOv6l model was halved from 0.0632s (original)

to 0.0378s (fp16), and similar trends were observed across
other versions like YOLOv7 and YOLOv8. The YOLOv7tiny
model, for example, showed a reduction from 0.0248s to
0.0219s, and the YOLOv8l model from 0.055s to 0.0314s
in their fp16 formats. These reductions in inference time are
particularly valuable in real-time applications where speed is
as critical as accuracy.

YOLOv8s Depthwise model, the quantized version
achieved an inference time of 0.027s compared to 0.0275s for
the non-quantized version. While this reduction is relatively
small, it is consistent with the trend observed across other
models. The model maintained an mAP50 of 0.75 and
mAP50-95 of approximately 0.481 for both non-quantized

90412 VOLUME 12, 2024

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

FIGURE 10. Ground truth vs. counting errors: (a) Duplicate counting and
(b) Missing object.

FIGURE 11. Ground truth vs. correct counting result.

and quantized versions, confirming that the quantization
does not compromise the detection performance. In terms of
size, the YOLOv8s Depthwise model exhibited a significant
reduction from 21.2 MB (non-quantized) to 10.6 MB
(quantized fp16). This reduction is particularly advantageous
for initial loading and reduces storage allocation especially
for mobile applications.

When comparing the YOLOv8s Depthwise model to other
state-of-the-art models in the plantation dataset, such as
seen in Table 7, the YOLOv8s Depthwise model achieves
an inference time of 0.027 seconds, which is competitive
among the models tested. Although SSD MobileNetV2 has a
slightly faster inference time at 0.024 seconds, it significantly
lags in detection accuracy with mAP50 at 0.546 and
mAP50-95 at 0.306, along with higher error rates (MAE
0.321, RMSE 0.543). In terms of accuracy, the YOLOv8s
model outperforms the YOLOv8s Depthwise, with mAP50
at 0.759 and mAP50-95 at 0.5. However, YOLOv8s is

TABLE 7. Performance comparison of YOLOv8s depthwise with other
SOTA models.

larger in size (22.3 MB) compared to YOLOv8s Depthwise
(10.6 MB), making the latter more suitable for deployment in
resource-constrained environments.

Faster RCNN offers competitive accuracy with an mAP50
of 0.743 but suffers from a longer inference time (0.0497 sec-
onds) and a much larger model size (165.4 MB), limiting its
practicality for real-time applications. YOLOv4 shows the
highest detection accuracy (mAP50 at 0.787 and mAP50-95
at 0.513) but at the cost of a longer inference time (0.048 sec-
onds) and the largest model size (244.3 MB), making it less
feasible for mobile applications. The YOLOv8s Depthwise
model balances efficiency and performance with a small
size (10.6 MB), competitive inference time (0.027 seconds),
and high detection accuracy (mAP50 at 0.75, mAP50-95 at
0.481). Its counting error metrics (MAE 0.164, RMSE 0.4)
are also within acceptable ranges, ensuring reliable counting.

TABLE 8. Comparison between proposed model and previous works with
harvested fruits dataset.

To validate the performance of the proposed model
corresponding to Table 8, the YOLOv8s Depthwise model
was validated to previous research that detected harvested
oil palm placed on the ground [3]. The results highlight
that the YOLOv8s Depthwise model achieves the fastest
inference time at 0.026 seconds, outperforming other models
such as SSD MobileNetV2 (0.027 seconds), EfficientDet-
D0 (0.03 seconds), and YOLOv4 (0.042 seconds). This

VOLUME 12, 2024 90413

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

efficiency is crucial for real-time applications where rapid
processing is essential. In terms of detection accuracy, the
YOLOv8s Depthwise model excels with an mAP50 of
0.994 and anmAP50-95 of 0.875, the highest among the com-
pared models. Although EfficientDet-D0 also shows strong
performance with an mAP50 of 0.993 and an mAP50-95
of 0.871, it has a larger model size of 40.1 MB. YOLOv4,
despite achieving high accuracy in previous research with
an mAP50 of 0.985 and an mAP50-95 of 0.743, lags in
mAP50-95, indicating less precise detection across varying
IoU thresholds. The YOLOv8s Depthwise model maintains
a compact size of 10.6 MB, significantly smaller than
YOLOv4 (244.3 MB) and EfficientDet-D0 (40.1 MB), and
slightly smaller than SSD MobileNetV2 (12.3 MB). This
compactness is advantageous for deployment in resource-
constrained environments, ensuring efficient storage and
faster model loading times.

FIGURE 12. Real-time counting in mobile device-operated web
application: (a) Before and (b) After inference.

As illustrated in Figure 12(a), the mobile device-operated
web application, developed with the capability for real-
time inference, allows users to direct their device camera
towards fresh fruit bunches (FFBs) for immediate counting.
In Figure 12(a), a virtual camera was employed to replicate
the process of capturing FFBs in a real-world setting. Moving
to Figure 12(b), the application performs real-time detection
after running the inference, displaying each identified object
within bounding boxes marked with corresponding class
labels and confidence scores. For enhanced clarity, each
bounding box is color-coded based on its class. Moreover,
the application interface below provides a real-time count of
objects in the current frame. In the example of Figure 12(b),
the application successfully counted two instances of unripe
fruits, one instance of an abnormal fruit, and one instance of
an underripe fruit. These outcomes affirm the application’s

ability to employ resource-efficient YOLO models, particu-
larly YOLOv8s Depthwise, for real-time counting, accessible
across various devices due to its web-based nature.

IV. CONCLUSION
The paper presented an innovative approach to palm oil
yield estimation, leveraging the advancements in deep
learning techniques, specifically YOLOv8 Depthwise, along-
side YOLOv6, YOLOv7, and YOLOv8. These models can
accurately detect and count Fresh Fruit Bunches (FFBs) in
plantations. The research leveraged a self-gathered dataset of
high complexity, comprising video recordings of FFBs still
attached to trees. A key aspect of this study was the emphasis
on estimating the number of FFBs during model inference.
To run on devices with limited resources, the models were
converted and quantized with ONNX runtime for deployment
in a web application.

Our experimental results highlight distinct trends and
strengths among the models. Hyperparameter tuning revealed
that the YOLOv8 Depthwise model achieved optimal per-
formance using the SGD optimizer with a batch size of
16 and a learning rate of 0.001. The YOLOv8 Depthwise
model demonstrated superior performance with a mAP50
of 0.75, mAP50-95 of 0.481, MAE of 0.164, RMSE of
0.4, and an inference time of 0.027 seconds. Quantization
further improved efficiency, reducing model size (21.2 MB
to 10.6 MB) with minimal impact on speed (0.0275s to
0.0273s), while maintaining high detection accuracy.

When evaluated against other state-of-the-art models
on the same dataset, including Faster RCNN, SSD
MobileNetV2, and YOLOv4, YOLOv8 Depthwise main-
tained superior performance in speed, accuracy, and
efficiency. Additionally, comparisons with other datasets
from previous research further validated the model’s
robustness and adaptability against models like YOLOv4,
EfficientDet-D0, and SSD MobileNetV2.

This research shows that automatically detecting ripeness
in fruit bunches can save labor, reduce errors, and improve
efficiency for both small and large farms. This not only helps
businesses be more competitive but also reduces waste and
promotes sustainable practices in the palm oil industry. The
YOLOv8 Depthwise model is a particularly good solution for
this task because it’s fast and accurate, even on devices with
low processing power.

Despite these promising results, there are some limitations
to this research. The dataset, while comprehensive, is limited
to the specific conditions of the Central Kalimantan Province
in Indonesia. Variations in environmental conditions, palm
species, and agricultural practices in different regions
could affect the model’s generalizability. Additionally, the
deployment of the model in real-world scenarios might
face challenges related to hardware constraints, network
connectivity for the web application, and the need for
continuous updating and retraining of the model to adapt to
changing conditions and new data.

90414 VOLUME 12, 2024

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

Future work will focus on addressing these limitations,
expanding the dataset, and further optimizing the model
for diverse agricultural environments. Additionally, there is
significant potential for the application of YOLO technology
in broader agricultural contexts, such as improving crop
monitoring, pest detection, yield estimation, and precision
farming, enhancing overall productivity and sustainability in
agriculture.

REFERENCES
[1] K. Hashim, S. Tahiruddin, and A. J. Asis, ‘‘Palm and palm kernel oil

production and processing in Malaysia and Indonesia,’’ in Palm Oil.
Amsterdam, The Netherlands: Elsevier, 2012, pp. 235–250.

[2] M. S. Muna, A. P. Nugroho, M. Syarovy, A. Wiratmoko, and L. Sutiarso,
‘‘Development of automatic counting system for palm oil tree based on
remote sensing imagery,’’ in Proc. Int. Conf. Sustain. Environ., 2022,
pp. 503–508.

[3] M. Asrol, D. N. Utama, and F. A. Junior, ‘‘Real-time oil palm fruit grading
system using smartphone and modified YOLOv4,’’ IEEE Access, vol. 11,
pp. 59758–59773, 2023.

[4] J. W. Lai, H. R. Ramli, L. I. Ismail, and W. Z. W. Hasan, ‘‘Real-time
detection of ripe oil palm fresh fruit bunch based on YOLOv4,’’ IEEE
Access, vol. 10, pp. 95763–95770, 2022.

[5] U.S. Dept. Agricult. Foreign Agricult. Service (FAS). (2024). Palm
Oil World Production. Accessed: Jan. 22, 2024. [Online]. Available:
https://ipad.fas.usda.gov/cropexplorer/commodityView.aspx?cropid=
4243000

[6] Malaysian Palm Oil Council (MPOC). (2023). Malaysian Palm
Oil Industry. Accessed: Jan. 22, 2024. [Online]. Available:
https://mpoc.org.my/malaysian-palm-oil-industry

[7] M. Barrientos and C. Soria. Agricultural Production Statistics
By Country. Accessed: Apr. 4, 2023. [Online]. Available:
https://www.indexmundi.com/agriculture

[8] X. Liu, K. H. Ghazali, F. Han, and I. I. Mohamed, ‘‘Automatic detection
of oil palm tree from UAV images based on the deep learning method,’’
Appl. Artif. Intell., vol. 35, no. 1, pp. 13–24, Oct. 2020.

[9] F. B. Ahmad, Z. Zhang,W. O. S. Doherty, and I.M. O’Hara, ‘‘The outlook
of the production of advanced fuels and chemicals from integrated
oil palm biomass biorefinery,’’ Renew. Sustain. Energy Rev., vol. 109,
pp. 386–411, Jul. 2019.

[10] H. Purnomo, B. Okarda, A. A. Dewayani, M. Ali, R. Achdiawan,
H. Kartodihardjo, P. Pacheco, and K. S. Juniwaty, ‘‘Reducing forest and
land fires through good palm oil value chain governance,’’ Forest Policy
Econ., vol. 91, pp. 94–106, Jun. 2018.

[11] W. J. Henderson, O. Purba, H. I. Purba, and T. Juliana, ‘‘Oil palm (Elaeis
guineensis Jacq.) bunch structure variation and limitations,’’ Sci. Res.
Journal., vol. 3, no. 1, pp. 5–10, 2015.

[12] C. L. Chew, C. Y. Ng, W. O. Hong, T. Y. Wu, Y.-Y. Lee, L. E. Low,
P. S. Kong, and E. S. Chan, ‘‘Improving sustainability of palm oil
production by increasing oil extraction rate: A review,’’ Food Bioprocess
Technol., vol. 14, no. 4, pp. 573–586, Apr. 2021.

[13] M. S. M. Kassim, W. I. W. Ismail, A. R. Ramli, and S. K. Bejo,
‘‘Oil palm fresh fruit bunches (FFB) growth determination system to
support harvesting operation,’’ J. Food Agricult. Environ., vol. 10, no. 2,
pp. 620–625, 2012.

[14] M. K. Shabdin, A. R. M. Shariff, M. N. A. Johari, N. K. Saat, and
Z. Abbas, ‘‘A study on the oil palm fresh fruit bunch (FFB) ripeness
detection by usingHue, saturation and intensity (HSI) approach,’’ inProc.
IOP Conf. Series, Earth Environ. Sci., vol. 37, 2016, p. 012039.

[15] I. Omar, M. K. Ashhar, and M. W. Basri, ‘‘Colour meter for measuring
fruit ripeness,’’MPOB Inf. Ser., no. 182, p. 195, 2003.

[16] A. Aripriharta, A. Firmansah, N. Mufti, G.-J. Horng, and N. Rosmin,
‘‘Smartphone for palm oil fruit counting to reduce embezzlement in
harvesting season,’’ Bull. Social Informat. Theory Appl., vol. 4, no. 2,
pp. 76–82, Sep. 2020.

[17] K. Yamamoto, W. Guo, Y. Yoshioka, and S. Ninomiya, ‘‘On plant
detection of intact tomato fruits using image analysis and machine
learning methods,’’ Sensors, vol. 14, no. 7, pp. 12191–12206, Jul. 2014.

[18] W. Maldonado and J. C. Barbosa, ‘‘Automatic green fruit counting in
orange trees using digital images,’’ Comput. Electron. Agricult., vol. 127,
pp. 572–581, Sep. 2016.

[19] R. Hamza and M. Chtourou, ‘‘Design of fuzzy inference system for apple
ripeness estimation using gradient method,’’ IET Image Process., vol. 14,
no. 3, pp. 561–569, Jan. 2020.

[20] W. Castro, J. Oblitas, M. De-La-Torre, C. Cotrina, K. Bazán, and
H. Avila-George, ‘‘Classification of cape gooseberry fruit according to
its level of ripeness using machine learning techniques and different color
spaces,’’ IEEE Access, vol. 7, pp. 27389–27400, 2019.

[21] A. Shrestha and A. Mahmood, ‘‘Review of deep learning algorithms and
architectures,’’ IEEE Access, vol. 7, pp. 53040–53065, 2019.

[22] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan,
O. Al-Shamma, J. Santamaría, M. A. Fadhel, M. Al-Amidie, and
L. Farhan, ‘‘Review of deep learning: Concepts, CNN architectures,
challenges, applications, future directions,’’ J. Big Data, vol. 8, no. 1,
pp. 1–74, Mar. 2021.

[23] W. Yang, Q. Liu, S. Wang, Z. Cui, X. Chen, L. Chen, and N. Zhang,
‘‘Down image recognition based on deep convolutional neural network,’’
Inf. Process. Agricult., vol. 5, no. 2, pp. 246–252, Jun. 2018.

[24] F. Khoroshevsky, S. Khoroshevsky, and A. Bar-Hillel, ‘‘Parts-per-object
count in agricultural images: Solving phenotyping problems via a single
deep neural network,’’ Remote Sens., vol. 13, no. 13, p. 2496, Jun. 2021.

[25] L. Shen, J. Su, R. He, L. Song, R. Huang, Y. Fang, Y. Song, and B. Su,
‘‘Real-time tracking and counting of grape clusters in the field based on
channel pruning with YOLOv5s,’’ Comput. Electron. Agricult., vol. 206,
Mar. 2023, Art. no. 107662.

[26] K. Kipli, S. Osman, A. Joseph, H. Zen, D. N. S. D. Awang Salleh,
A. Lit, and K. L. Chin, ‘‘Deep learning applications for oil palm tree
detection and counting,’’ Smart Agricult. Technol., vol. 5, Oct. 2023,
Art. no. 100241.

[27] S. N. A. B. M. Robi, M. A. B. M. Izhar, M. B. Sahrim, and N. B. Ahmad,
‘‘Image detection and classification of oil palm fruit bunches,’’ in Proc.
4th Int. Conf. Smart Sensors Appl. (ICSSA), Jul. 2022, pp. 108–113.

[28] M. H. Junos, A. S. Mohd Khairuddin, S. Thannirmalai, and M. Dahari,
‘‘Automatic detection of oil palm fruits from UAV images using an
improved YOLO model,’’ Vis. Comput., vol. 38, no. 7, pp. 2341–2355,
Apr. 2021.

[29] S. Puttinaovarat, S. Chai-Arayalert, and W. Saetang, ‘‘Oil palm bunch
ripeness classification and plantation verification platform: Leveraging
deep learning and geospatial analysis and visualization,’’ ISPRS Int.
J. Geo-Inf., vol. 13, no. 5, p. 158, May 2024.

[30] K. Yarak, A. Witayangkurn, K. Kritiyutanont, C. Arunplod, and
R. Shibasaki, ‘‘Oil palm tree detection and health classification on high-
resolution imagery using deep learning,’’ Agriculture, vol. 11, no. 2,
p. 183, Feb. 2021.

[31] Y.-P. Huang, T.-H. Wang, and H. Basanta, ‘‘Using fuzzy mask R-CNN
model to automatically identify tomato ripeness,’’ IEEE Access, vol. 8,
pp. 207672–207682, 2020.

[32] L. Fu, J. Duan, X. Zou, J. Lin, L. Zhao, J. Li, and Z. Yang, ‘‘Fast and
accurate detection of banana fruits in complex background orchards,’’
IEEE Access, vol. 8, pp. 196835–196846, 2020.

[33] O. M. Lawal, ‘‘YOLOMuskmelon: Quest for fruit detection
speed and accuracy using deep learning,’’ IEEE Access, vol. 9,
pp. 15221–15227, 2021.

[34] Q. An, K. Wang, Z. Li, C. Song, X. Tang, and J. Song, ‘‘Real-time
monitoring method of strawberry fruit growth state based on YOLO
improved model,’’ IEEE Access, vol. 10, pp. 124363–124372, 2022.

[35] J. Guo, Y. Yang, X. Lin, M. Sohail Memon, W. Liu, M. Zhang, and
E. Sun, ‘‘Revolutionizing agriculture: Real-time ripe tomato detection
with the enhanced tomato-YOLOv7 system,’’ IEEE Access, vol. 11,
pp. 133086–133098, 2023.

[36] J. Meng, F. Kang, Y. Wang, S. Tong, C. Zhang, and C. Chen, ‘‘Tea buds
detection in complex background based on improved YOLOv7,’’ IEEE
Access, vol. 11, pp. 88295–88304, 2023.

[37] Z. Chen, S. Elsaid, D. Y. Y. Sim, T. Maul, and I. Y. Liao, ‘‘Detection of oil
palm fresh fruit bunches (FFBS) with computer vision models,’’ in Proc.
Int. Conf. Mech., Autom. Electr. Eng. (CMAEE), Dec. 2022, pp. 86–91.

[38] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng,
W. Nie, Y. Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei,
and X. Wei, ‘‘YOLOv6: A single-stage object detection framework for
industrial applications,’’ 2022, arXiv:2209.02976.

VOLUME 12, 2024 90415

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

[39] C.-Y.Wang, A. Bochkovskiy, and H.-Y.Mark Liao, ‘‘YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2023, pp. 7464–7475.

[40] G. Jocher, A. Chaurasia, and J. Qiu. Ultralytics YOLOv8 (Version
8.0.0). Accessed: Nov. 5, 2023. [Online]. Available: https://github.com/
ultralytics/ultralytics

[41] S. Norkobil Saydirasulovich, A. Abdusalomov, M. K. Jamil, R. Nasimov,
D. Kozhamzharova, and Y.-I. Cho, ‘‘A YOLOv6-based improved fire
detection approach for smart city environments,’’ Sensors, vol. 23, no. 6,
p. 3161, Mar. 2023.

[42] R. B. Bist, S. Subedi, X. Yang, and L. Chai, ‘‘A novel YOLOv6
object detector for monitoring piling behavior of cage-free laying hens,’’
AgriEngineering, vol. 5, no. 2, pp. 905–923, May 2023.

[43] Y. Wang, H. Wang, and Z. Xin, ‘‘Efficient detection model of steel
strip surface defects based on YOLO-V7,’’ IEEE Access, vol. 10,
pp. 133936–133944, 2022.

[44] L. Cao, X. Zheng, and L. Fang, ‘‘The semantic segmentation of standing
tree images based on the YOLO v7 deep learning algorithm,’’Electronics,
vol. 12, no. 4, p. 929, Feb. 2023.

[45] O. K. T. Alsultan andM. T.Mohammad, ‘‘A deep learning-based assistive
system for the visually impaired using YOLO-v7,’’ Revue D’Intell.
Artificielle, vol. 37, no. 4, pp. 901–906, Aug. 2023.

[46] D. Wu, S. Jiang, E. Zhao, Y. Liu, H. Zhu, W. Wang, and R. Wang,
‘‘Detection of camellia oleifera fruit in complex scenes by usingYOLOv7
and data augmentation,’’ Appl. Sci., vol. 12, no. 22, p. 11318, Nov. 2022.

[47] B. Gasparović, G. Mausa, J. Rukavina, and J. Lerga, ‘‘Evaluating
YOLOv5, YOLOv6, YOLOv7, andYOLOv8 in underwater environment:
Is there real improvement?’’ in Proc. 8th Int. Conf. Smart Sustain.
Technol. (SpliTech), Jun. 2023, pp. 1–4.

[48] A. Hattak, G. Iadarola, F. Martinelli, F. Mercaldo, and A. Santone,
‘‘Benchmarking YOLO models for automatic reading in smart metering
systems: A performance comparison analysis,’’ in Proc. Int. Conf. Mach.
Learn. Appl. (ICMLA), Dec. 2023, pp. 2207–2213.

[49] H. Lou, X. Duan, J. Guo, H. Liu, J. Gu, L. Bi, and H. Chen, ‘‘DC-
YOLOv8: Small size object detection algorithm based on camera sensor,’’
Electronics, vol. 12, no. 10, p. 2323, 2023.

[50] R. Hong, X. Wang, Y. Fang, H. Wang, C. Wang, and H. Wang, ‘‘YOLO-
Light: Remote straw-burning smoke detection based on depthwise
separable convolution and channel attention mechanisms,’’ Appl. Sci.,
vol. 13, no. 9, p. 5690, May 2023.

[51] X. Tang, X. Chen, J. Cheng, J. Wu, R. Fan, C. Zhang, and Z. Zhou,
‘‘YOLO-Ant: A lightweight detector via depthwise separable convolu-
tional and large kernel design for antenna interference source detection,’’
IEEE Trans. Instrum. Meas., vol. 73, pp. 1–18, 2024.

[52] T. Liu, B. Pang, L. Zhang, W. Yang, and X. Sun, ‘‘Sea surface object
detection algorithm based on YOLO v4 fused with reverse depthwise
separable convolution (RDSC) for USV,’’ J. Mar. Sci. Eng., vol. 9, no. 7,
p. 753, Jul. 2021.

[53] Y. Qiao, Y. Hu, Z. Zheng, H. Yang, K. Zhang, J. Hou, and J. Guo,
‘‘A counting method of red jujube based on improved YOLOv5s,’’
Agriculture, vol. 12, no. 12, p. 2071, Dec. 2022.

[54] B. Sekachev, N. Manovich, M. Zhiltsov, A. Zhavoronkov, D. Kalinin,
B. Hoff, D. Kruchinin, A. Zankevich, M. Markelov, M. Chenuet,
A. Melnikov, J. Kim, L. Ilouz, N. Glazov, Priya, R. Tehrani, S. Jeong,
V. Skubriev, S. Yonekura, V. Truong, Zliang, Lizhming, and T. Truong.
(Aug. 2020). openCV/CVAT: V1.1.0. Accessed: Nov. 12, 2023. [Online].
Available: https://doi.org/10.5281/zenodo.4009388

[55] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin,
and A. A. Kalinin, ‘‘Albumentations: Fast and flexible image augmenta-
tions,’’ Information, vol. 11, no. 2, p. 125, Feb. 2020.

[56] MMDetection Contributors. Openmmlab Toolbox and Benchmark.
Accessed: Nov. 8, 2023. [Online]. Available: https://openmmlab.com

[57] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[58] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature
hierarchies for accurate object detection and semantic segmentation,’’ in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[59] R. Girshick, ‘‘Fast R-CNN,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 1440–1448.

[60] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017.

[61] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, ‘‘A
survey of deep learning-based object detection,’’ IEEE Access, vol. 7,
pp. 128837–128868, 2019.

[62] J. Redmon and A. Farhadi, ‘‘YOLO9000: Better, faster, stronger,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6517–6525.

[63] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improvement,’’
2018, arXiv:1804.02767.

[64] A. Bochkovskiy, C.-Y. Wang, and H.-Y. Mark Liao, ‘‘YOLOv4: Optimal
speed and accuracy of object detection,’’ 2020, arXiv:2004.10934.

[65] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, Y. Kwon, K. Michael,
J. Fang, Z. Yifu, C. Wong, A. V, D. Montes, Z. Wang, C. Fati,
J. Nadar, V. Sonck, P. Skalski, A. Hogan, D. Nair, M. Strobel,
and M. Jain. (Nov. 2022). Ultralytics/YOLOv5: V7.0—YOLOv5 SOTA
Realtime Instance Segmentation. Accessed: Nov. 4, 2023. [Online].
Available: https://doi.org/10.5281/zenodo.7347926

[66] X. Ding, H. Chen, X. Zhang, K. Huang, J. Han, and G. Ding,
‘‘Re-parameterizing your optimizers rather than architectures,’’ 2022,
arXiv:2205.15242.

[67] C. Shu, Y. Liu, J. Gao, Z. Yan, and C. Shen, ‘‘Channel-wise knowledge
distillation for dense prediction,’’ in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2021, pp. 5291–5300.

[68] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, ‘‘Path aggregation network for
instance segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 8759–8768.

[69] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, ‘‘RepVGG:
Making VGG-style ConvNets great again,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 13728–13737.

[70] C.-Y. Wang, H.-Y. Mark Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-
H. Yeh, ‘‘CSPNet: A new backbone that can enhance learning capability
of CNN,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2020, pp. 1571–1580.

[71] C. Feng, Y. Zhong, Y. Gao, M. R. Scott, and W. Huang, ‘‘TOOD:
Task-aligned one-stage object detection,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2021, pp. 3490–3499.

[72] H. Zhang, Y. Wang, F. Dayoub, and N. Sünderhauf, ‘‘VarifocalNet: An
IoU-aware dense object detector,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 8510–8519.

[73] Z. Gevorgyan, ‘‘SIoU loss: More powerful learning for bounding box
regression,’’ 2022, arXiv:2205.12740.

[74] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
‘‘Generalized intersection over union: A metric and a loss for bounding
box regression,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 658–666.

[75] C.-Y. Wang, H.-Y. Mark Liao, and I.-H. Yeh, ‘‘Designing network design
strategies through gradient path analysis,’’ 2022, arXiv:2211.04800.

[76] J. Terven, D.-M. Córdova-Esparza, and J.-A. Romero-González, ‘‘A
comprehensive review of YOLO architectures in computer vision:
From YOLOv1 to YOLOv8 and YOLO-NAS,’’ Mach. Learn. Knowl.
Extraction, vol. 5, no. 4, pp. 1680–1716, Nov. 2023.

[77] X. Zhai, Z. Huang, T. Li, H. Liu, and S. Wang, ‘‘YOLO-drone: An
optimized YOLOv8 network for tiny UAV object detection,’’ Electronics,
vol. 12, no. 17, p. 3664, Aug. 2023.

[78] E. Casas, L. Ramos, E. Bendek, and F. Rivas-Echeverría, ‘‘Assessing the
effectiveness of YOLO architectures for smoke and wildfire detection,’’
IEEE Access, vol. 11, pp. 96554–96583, 2023.

[79] K. Xia, Z. Lv, C. Zhou, G. Gu, Z. Zhao, K. Liu, and Z. Li, ‘‘Mixed
receptive fields augmented YOLO with multi-path spatial pyramid
pooling for steel surface defect detection,’’ Sensors, vol. 23, no. 11,
p. 5114, May 2023.

[80] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘‘Feature pyramid networks for object detection,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 936–944.

[81] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, ‘‘Distance-IoU loss:
Faster and better learning for bounding box regression,’’ in Proc. AAAI
Conf. Artif. Intell., Apr. 2020, vol. 34, no. 7, pp. 12993–13000.

[82] X. Li, C. Lv, W. Wang, G. Li, L. Yang, and J. Yang, ‘‘Generalized
focal loss: Towards efficient representation learning for dense object
detection,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3,
pp. 3139–3153, Mar. 2023.

90416 VOLUME 12, 2024

M. G. Naftali et al.: Palm Oil Counter: State-of-the-Art Deep Learning Models

[83] L. I. Kuncheva, F. Williams, S. L. Hennessey, and J. J. Rodríguez,
‘‘A benchmark database for animal re-identification and tracking,’’ in
Proc. IEEE 5th Int. Conf. Image Process. Appl. Syst. (IPAS), vol. Five,
Dec. 2022, pp. 1–6.

[84] M. Zhou, Y. Bai, W. Zhang, T. Zhao, and T. Mei, ‘‘Look-into-object:
Self-supervised structure modeling for object recognition,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 11771–11780.

[85] H.-W. Huang, C.-Y. Yang, Z. Jiang, P.-K. Kim, K. Lee, K. Kim,
S. Ramkumar, C. Mullapudi, I.-S. Jang, C.-I. Huang, and J.-N. Hwang,
‘‘Enhancing multi-camera people tracking with anchor-guided clustering
and spatio-temporal consistency ID re-assignment,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2023,
pp. 5239–5249.

[86] L. Hu and J. Ren, ‘‘YOLO-LHD: An enhanced lightweight approach
for helmet wearing detection in industrial environments,’’ Frontiers Built
Environ., vol. 9, Nov. 2023, Art. no. 1288445.

[87] Q. Wu, B. Zhang, C. Guo, and L. Wang, ‘‘Multi-branch parallel networks
for object detection in high-resolution UAV remote sensing images,’’
Drones, vol. 7, no. 7, p. 439, Jul. 2023.

[88] ONNX Runtime Developers. (2021). ONNX Runtime. [Online]. Avail-
able: https://onnxruntime.ai

[89] D. Lu, J. Ye, Y. Wang, and Z. Yu, ‘‘Plant detection and counting:
Enhancing precision agriculture in UAV and general scenes,’’ IEEE
Access, vol. 11, pp. 116196–116205, 2023.

[90] Vercel. (2016). Next.Js. [Online]. Available: https://nextjs.org
[91] (2021). ONNX Runtime Developer. [Online]. Available: https://www.

npmjs.com/package/onnxruntime-web
[92] Y. Hui, J. Wang, and B. Li, ‘‘DSAA-YOLO: UAV remote sensing small

target recognition algorithm for YOLOV7 based on dense residual super-
resolution and anchor frame adaptive regression strategy,’’ J. King Saud
Univ. Comput. Inf. Sci., vol. 36, no. 1, Jan. 2024, Art. no. 101863.

[93] Y. Deng, X. Hu, D. Teng, B. Li, C. Zhang, and W. Hu, ‘‘Dynamic
adjustment of hyperparameters for anchor-based detection of objects
with large image size differences,’’ Pattern Recognit. Lett., vol. 167,
pp. 196–203, Mar. 2023.

[94] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for
dense object detection,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 2999–3007.

[95] R.Wali, ‘‘Xtrememargin: A tunable loss function for binary classification
problems,’’ 2022, arXiv:2211.00176.

[96] Y. Tian, Y. Zhang, and H. Zhang, ‘‘Recent advances in stochastic gradient
descent in deep learning,’’Mathematics, vol. 11, no. 3, p. 682, Jan. 2023.

[97] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[98] R. Padilla, W. L. Passos, T. L. B. Dias, S. L. Netto, and E. A. B. da Silva,
‘‘A comparative analysis of object detection metrics with a companion
open-source toolkit,’’ Electronics, vol. 10, no. 3, p. 279, Jan. 2021.

[99] M. Tan, R. Pang, andQ.V. Le, ‘‘EfficientDet: Scalable and efficient object
detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 10778–10787.

[100] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

MARTINUS GRADY NAFTALI is currently pur-
suing the master’s degree in computer science with
Bina Nusantara University, Jakarta.

He is a high-achieving student selected for
the accelerated master’s program, which recog-
nizes undergraduates with outstanding academic
achievements and facilitates a swift transition
to their master’s degree. He aspires to make
significant contributions to this dynamic field
through innovative research. Beyond academics,

he is actively engaged as a junior programmer at his university, developing
a learning management system. Prior to this, he gained valuable practical
experience as a software developer intern at a leading global supply chain
enterprise in Singapore. His research interests include deep learning and
machine learning, particularly within the domain of computer vision.

GREGORY HUGO is currently pursuing the
master’s degree in computer science with Bina
Nusantara University, Jakarta.

He stands out as a participant in the prestigious
Master Track program, a carefully selected group
of students chosen by the university for an accel-
erated and integrated transition from bachelor’s
to master’s studies. Aside from his academic
aspirations, he works as a junior programmer at
one of Indonesia’s largest telecommunications and

digital companies. In his current position, he is a part of a team tasked
with creating and maintaining a content management systems that aids the
development of villages in Indonesia. This unique initiative offers an efficient
path to an advanced degree in computer science, with a particular focus on
artificial intelligence. His research interest includes computer vision, and he
hopes to make significant contributions to the field’s ongoing advancements.
He has been awarded a scholarship by the university in recognition of his
academic achievements.

SUHARJITO (Member, IEEE) received the mas-
ter’s degree in information engineering from the
Sepuluh Nopember Institute of Technology (ITS),
in 2000, and the Ph.D. degree in agro-industrial
engineering from Bogor Agricultural University,
Indonesia, in 2011.

He is currently a Senior Lecturer with the
Department of Master of Industrial Engineering,
Binus Graduate Program, Bina Nusantara Univer-
sity. His areas of expertise are computer science,

engineering, decision sciences, soft computing, and information engineering.
His current research interest includes computer vision, especially the use
of computer vision in agriculture with the topic of detecting the maturity
level of oil palm. The research, he is currently carrying out is supported
by the Indonesian Directorate General of Higher Education, Research and
Technology.

VOLUME 12, 2024 90417

