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ABSTRACT Accurately estimating the actual capacity of the battery is crucial for stable battery operation
and user safety. This paper combined feature extraction through differential thermal voltammetry analysis
and long short-term memory for accurate state of health estimation. First, differential thermal voltammetry
curves according to battery degradation were extracted for various cathode materials. Then, health indicators
are collected from the differential thermal voltammetry curve for deep learning-based state of health
estimation. In particular, to improve the state of health estimation performance, the integral value of the
differential thermal voltammetry curve through the specific voltage ranges was additionally introduced along
with the peak and valley. Second, the correlation between the extracted health indicators and capacity was
analyzed using Pearson correlation analysis. Finally, a framework was developed to estimate the state of
health of the battery using high-quality health indicators as inputs to the long short-term memory model.
The state of health estimation performance of the proposed algorithm, which reflected the integral value
of the differential thermal voltammetry curve, was compared with the case that did not reflect. From the
result, the mean absolute error decreased by 11.6% and the root mean square error by 10.01% for the two
battery data sets.

INDEX TERMS Lithium-ion battery, state of health, differential thermal voltammetry, long short-term
memory, battery management system.

I. INTRODUCTION
Lithium-ion batteries have been widely used as energy
storage devices in applications such as electric vehicles
and smart grids [1], [2], [3]. However, their performance
decreases during cycling, which increases the risk of fire and
explosion accidents [4], [5], [6]. Therefore, it is essential
to estimate and monitor the state of health (SOH) of the
battery for efficient and stable usage. Conventional methods
for estimating battery SOH can be roughly divided into two
groups: 1) model-based method and 2) data-driven method.

The associate editor coordinating the review of this manuscript and
approving it for publication was Enamul Haque.

For the model-based method, equivalent circuit models
or electrochemical models are used to analyze the dynamic
characteristics of the battery. Afterward, the battery capacity
or internal resistance is set as a state variable, and the SOH
is estimated using a filter or observer algorithm [7], [8],
[9]. Since SOH estimation accuracy is highly dependent
on the model accuracy, these methods require professional
knowledge of battery modeling.

Recently, with the advancement of computing power and
data collection techniques, SOH estimation using data-driven
based on battery operation data has been widely studied [10],
[11]. The data-driven method extracts health indicators (HIs)
reflecting capacity fade from experiment data and then
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estimates SOH using a data mining algorithm [12], [13].
Because this method estimates SOH based on data, it does not
require knowledge of complex electrochemical mechanisms
as in model-based methods. However, because extracted
HIs significantly impact SOH estimation performance, it is
crucial to decide which HI to use for successful estimation.

HIs extracted directly from battery voltage, current, and
temperature information, such as constant current (CC)
charging time, constant voltage (CV) charging time, and
area of the data curve, can be easily obtained from the raw
battery data [14], [15], [16]. Nevertheless, these HIs cannot
effectively explain the internal degradation mechanisms of
the battery.

Meanwhile, battery degradation mechanisms can be exam-
ined through incremental calculation-based HIs, which can
be obtained by further processing battery raw data [17],
[18], [19], [20], [21]. Incremental capacity analysis (ICA)
and differential voltage analysis (DVA) are representative
examples of incremental calculation-based HI. In this way,
HIs extracted from incremental capacity (IC) and differential
voltage DV curves can help explain battery aging mecha-
nisms and estimate SOH more accurately [20], [21].

Recently, differential thermal voltammetry (DTV) has
also been proposed as an effective method to explain the
degradation mechanism of batteries. Similar to ICA and
DVA, DTV analysis can capture changes in the curve due
to degradation, and the result can be used as HI. In existing
DTV-based SOH estimation studies, the positions and heights
of the peak and valley of the curve were extracted as HI
and used as input for the deep learning algorithm [22], [23],
[24], [25], [26]. Reference [22] extracted the positions and
heights of peaks and valleys from the DTV curve as HIs
and estimated SOH through Gaussian process regression
(GPR). Reference [23] extracted the positions and heights of
peaks and valleys from the DTV curve as HIs and estimated
SOH using long short-term memory (LSTM). Additionally,
the hyper-parameters of the model were selected through
Bayesian optimization. Reference [24] extracted HIs through
various analysis techniques such as ICA, DTV, and terminal
voltage characteristics and then estimated SOH using LSTM.
However, in existing literature, only the position and height
of the peak and valley of the DTV curve were used. Although
studies of other incremental calculation-based HI have shown
that the change in curve area over the cycle is highly
correlated with capacity degradation [27], [28], this approach
has not yet been attempted in DTV research.

From the above perspective, this study aims to demonstrate
that SOH estimation performance can be improved by
utilizing the integral value of the DTV curve according to
the specific voltage ranges, in addition to the peak and
valley of the DTV curve, as input to the deep learning
algorithm for SOH estimation. Specifically, the DTV analysis
is implemented using experimental data from various cathode
material batteries. An apparent DTV curve is obtained
through the Savitzky-Golay (SG) filter, and HIs highly cor-
related with SOH are extracted through Pearson correlation

TABLE 1. Main specifications of SLPB533459H4.

analysis. In addition to the peak and valley obtained from
the DTV curve, the integral value according to the specific
voltage ranges is input into the LSTM to verify the SOH
estimation performance. The SOH estimation performance
of the proposed algorithm reflecting the integral value of the
DTV curve was compared with the case that did not reflect.
As a result, the error was significantly reduced, confirming
the validity of the proposed SOH estimation algorithm.

II. DIFFERENTIAL THERMAL VOLTAMMETRY-BASED
HEALTH INDICATOR EXTRACTION
A. BATTERY DEGRADATION DATASETS
This paper used two battery data sets to test the feasibility
of DTV-based HIs extraction. Most existing literature that
extracted HIs from DTV used battery data sets provided
by the University of Oxford and NASA [22], [23], [24],
[25], [26]. However, lithium-ion batteries exhibit various
characteristics depending on the composition of the cathode
material, which may cause the shape of the DTV curve to
vary. Therefore, in this study, deterioration data for batteries
that were not previously used were additionally collected
to verify whether DTV analysis can be applied to various
batteries.

The first dataset is the battery degradation dataset from the
University of Oxford [29]. The battery used in the experiment
was a pouch-type battery SLPB533459H4 manufactured
by Kokam. The battery consists of an anode made of
graphite and a cathode combined with lithium cobalt oxide
(LCO) and lithium nickel cobalt oxide (NCO). Detailed
specifications are shown in Table 1. Charging and discharging
were performed using a Bio-logic MPG 205 battery tester
and tested in a chamber maintained at 40◦C. The battery
was charged at a 2C rate in a chamber at 40◦C and
discharged using a dynamic discharge profile for degradation.
After performing the degradation profile 100 times, battery
degradation data is collected by applying charging and
discharging at a rate of 1C. In other words, battery data
was collected every 100 degradation cycles. Fig. 1 shows
the evolution in capacity, voltage, and temperature due to
the degradation of the LCO/NCO battery from data collected
when a 1C charging and discharging profile is applied every
100 degradation cycles.
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FIGURE 1. Evolution of the capacity, voltages, and surface temperatures
of LCO/NCO battery throughout the degradation process: (a) charge
capacity, (b) terminal voltage, (c) surface temperature.

The second data set is battery degradation data tested in the
laboratory of the authors. The battery used in the experiment
was cylindrical INR 18650-25R manufactured by Samsung.
The battery consists of a graphite anode and a cathode
combined with lithium nickel cobalt manganese oxides
(NCM) and lithium nickel cobalt aluminum oxide (NCA).
Detailed specifications are shown in Table 2. As shown
in Fig. 2, charging and discharging were carried out using
the Bio-logic BCS 815 battery tester, and the experiment
was conducted in a constant temperature-humidity chamber
maintained at a temperature of 25◦C and humidity of 65%.

TABLE 2. Main specifications of INR 18650-25R.

FIGURE 2. Battery test bench, which consists of host PC, battery cycler,
battery, and temperature-humidity chamber.

Battery cells were degraded through CC-CV charging and
CC discharging at a 0.5C rate, with an idle period of
1 hour between charging and discharging. Battery data was
collected for voltage, temperature, and capacity at every
cycle. Fig. 3 shows the evolution in capacity, voltage,
and temperature due to the degradation of the NCM/NCA
battery.

Fig. 1 and Fig. 3 show that battery capacity and CC
charging time decrease as the number of cycles increases,
whereas surface temperature increases due to the influence
of internal resistance.

B. DIFFERENTIAL THERMAL VOLTAMMETRY CURVE
EXTRACTION
The DTV curve was extracted throughout the battery
degradation data. DTV can be obtained through changes in
battery surface temperature according to terminal voltage
during CC charging and is expressed as follow

DTVk =
dTk
dVk

=
Tk − Tk−1

Vk − Vk−1
=
Tk − Tk−1

tk − tk−1

/
Vk − Vk−1

tk − tk−1

(1)

where Tk and Vk denote the battery surface temperature
and terminal voltage measurements at time tk , respectively.
Generally, temperature and voltage data in actual applications
contain sensor noise, which significantly affects the accuracy
of the DTV curves. In particular, battery analysis techniques
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FIGURE 3. Evolution of the capacity, voltages, and surface temperatures
of NCM/NCA battery throughout the degradation process: (a) charge
capacity, (b) terminal voltage, (c) surface temperature.

based on incremental calculations, such as ICA and DTV, are
vulnerable to noise due to differential calculations. Fig. 1(c)
and Fig. 3(c) show that the battery surface temperature
contains a huge noise component. Therefore, noise must be
removed to extract the DTV curve accurately. If the selected
time interval for extracting the DTV curve is too small, it is
vulnerable to noise. On the other hand, if it is too large,
the information in the data cannot be appropriately reflected.
Therefore, through trial and error, the optimal time interval, tk
– tk−1, was derived as 15 seconds in this study. Then, the data
were smoothed by applying the SG filter to obtain apparent

FIGURE 4. Filtered battery surface temperature and DTV curve:
(a) comparison of the surface temperature curves before and after
smoothing by SG filter, (b) comparison of DTV curve after surface
temperature smooth and DTV curve smoothed by SG filter.

temperature and DTV curves. Although this paper does not
introduce the SG filter algorithm in detail, it has been widely
used for filtering DTV curves [30], [31], and the detailed
algorithm can also be found in [32].
Fig. 4 shows the temperature and DTV curves when the

noise is removed through the SG filter. Fig. 4(a) shows
the raw temperature data and the smoothed curve by the
SG filter. The DTV curve calculated based on the filtered
temperature data is shown in Fig. 4(b). The calculated DTV
curve was also smoothed using an SG filter for accurate
identification.

C. HEALTH INDICATOR EXTRACTION
Fig. 5(a) and Fig. 5(b) show the evolution of the DTV
curve due to the degradation in the LCO/NCO battery and
the NCM/NCA battery, respectively, when an SG filter
removes noise. In the LCO/NCO battery, one valley and
two peaks can be identified, and in the NCM/NCA battery,
two peaks and two valleys can be identified. As seen in
the figure, as the battery degrades, the voltages where the
peak and valley occur change. In addition, as the DTV
value gradually changes, the integral value of the DTV curve
in the specified voltage range also changes, as shown in
Fig. 6.
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FIGURE 5. The evolution of the DTV curve throughout the battery
degradation process: (a) LCO/NCO battery, (b) NCM/NCA battery.

The peak and valley of the DTV curve can be calculated as
follows{

Vpeak = V
∣∣ dDTV

dVi
=0, and f (Vi)≥f (V ), V∈ (Vi−1,Vi+1)

DTVpeak = f (Vpeak )
(2)

{
Vvalley = V

∣∣ dDTV
dVi

=0, and f (Vi)≤f (V ), V∈ (Vi−1,Vi+1)

DTVvalley = f (Vvalley)
(3)

where f (·), Vi−1, and Vi+1 represent the mapping function
between voltage and DTV, voltages at the previous and later
sampling points, respectively. The integral value of the DTV
curve over the specific voltage range can be calculated as∫ Vupper

Vlower
DTV (V ) dV =

∫ Vupper

Vlower

dT
dV

dV

= T (Vupper ) − T (Vlower ) = 1T (4)

where Vupper and Vlower mean the upper and lower limits of
the voltage range, respectively.

From (5), it can be seen that the integral value of the
DTV curve according to the voltage range is calculated as
the change in surface temperature. Fig. 6 shows a schematic
representation of the peak, valley, and integral value of the
DTV curve.

This study first derived the peak and valley voltage
positions and DTV values to apply the proposed estimation

FIGURE 6. Integral value of the DTV curve as a new health indicator:
(a) LCO/NCO battery, (b) NCM/NCA battery.

algorithm. The DTV curve of the battery data sets used in this
study confirmed that the peak and valley exist within 3.4V to
4.0V. As the battery ages, the integral value of the DTV curve
in this range will gradually change depending on the peak
and valley values, and it can be inferred that it can be used
as a HI that reflects battery aging characteristics. Therefore,
to ensure that the integral value of the DTV curve proposed in
this study is HI to reflect better battery aging characteristics,
three integral values from 3.4V to 3.6V, 3.6V to 3.8V, and
3.8V to 4.0V were selected as parameters.

Fig. 7 and Fig. 8 show the extracted HIs of the LCO/NCO
and NCM/NCA batteries, respectively. The subscript ‘pos’
represents the voltage position of the peak and valley, and
the subscript ‘val’ represents the DTV value at the peak
and valley. Additionally, integral value1, integral value2, and
integral value3 indicate the integral values of the DTV curve
for the voltage ranges of 3.4 to 3.6V, 3.6 to 3.8V, and 3.8 to
4.0V, respectively.

D. CORRELATION ANALYSIS
Pearson correlation analysis was conducted on the extracted
HIs to ensure high accuracy and efficiency of SOH estima-
tion. Through Pearson correlation analysis, the correlation
between extracted HI and capacity can be quantitatively
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FIGURE 7. Extracted health indicators of LCO/NCO battery: (a) voltage
position of peak and valley, (b) DTV value of peak and valley, (c) Integral
value according to voltage range.

determined as follow

rxy =

N∑
i=1

(xi − x̄)(yi − ȳ)√
N∑
i=1

(xi − x̄)2

√
N∑
i=1

(yi − ȳ)2

(5)

where N , x and y represent the data size and variables,
respectively. x̄ and ȳmean the average values of x and y. Fig. 9
shows the results of Pearson correlation analysis between the
HIs and capacity calculated by (6). Most HIs have a high
correlation with capacity. This study used high-quality HIs

FIGURE 8. Extracted health indicators of NCM/NCA battery: (a) voltage
position of peak and valley, (b) DTV value of peak and valley, (c) Integral
value according to voltage range.

with a correlation coefficient of 0.8 or higher as inputs for
deep learning to ensure high accuracy of SOH estimation.

III. SOH ESTIMATION METHOD
A. LSTM MODEL STRUCTURE
In this paper, LSTM was used to estimate SOH. LSTM is
a variant of RNN that solves RNN’s long-term dependence
problem, gradient vanishing and exploding. Fig. 10 shows the
structure of LSTM. The forward propagation process of the
LSTM unit at time t is as follows:

ft = σ (Wfxxt +Wfhht−1 + bf ) (6)

89926 VOLUME 12, 2024



Y. Choi et al.: Deep Learning Approach for SOH Estimation of Lithium-Ion Batteries

FIGURE 9. The correlation coefficient between extracted health indicators
and capacity: (a) LCO/NCO battery, (b) NCM/NCA battery.

it = σ (Wixxt +Wihht−1 + bi) (7)

ot = σ (Woxxt +Wohht−1 + bo) (8)

Ct = ftCt−1 + it tanh(Wcxxt +Wchht−1 + bc) (9)

ht = ot × tanh(Ct ) (10)

where ft , it , and ot are the forget, input, and output gates
at time t , respectively. Ct is the cell state, and ht is the
hidden output. σ and tanh are sigmoid and hyperbolic tangent
activation functions, respectively. W and b are weight and
bias.

B. FRAMEWORK OF DIFFERENTIAL THERMAL
VOLTAMMETRY-BASED SOH ESTIMATION
Fig. 11 shows the framework of the SOH estimation
model combining DTV analysis and LSTM. The framework
comprises four parts: data gathering, feature extraction,
model construction, and SOH estimation. In the first part of
the framework, battery terminal voltage, surface temperature,

FIGURE 10. Structure of LSTM model.

and capacity are collected for DTV analysis. The second part
extracts the DTV curve using the battery terminal voltage
and surface temperature data. Additionally, HIs that reflect
battery degradation are extracted utilizing the peak, valley,
and integral values of the DTV curve. In the third part,
Pearson correlation analysis is used to determine HIs that
correlate highly with capacity degradation and are selected
as input data for LSTM. Additionally, the dropout method is
employed to mitigate model overfitting. The LSTM model
utilizing the Adam optimizer is developed to expedite model
convergence. In the last part, the estimated SOH and real SOH
are compared using various evaluation indexes, and model
performance is quantitatively evaluated.

IV. RESULT AND DISCUSSION
This section performs accuracy verification and error analysis
of the SOH estimation model combining DTV and LSTM.
First, the test setup for SOH estimation and the hyperpa-
rameters of the deep learning model are introduced. Second,
the evaluation indexes to verify the SOH estimation model
are introduced. Third, the SOH estimation performance of
the conventional method using only the peak and valley of
the DTV curve and the proposed method were compared.
Additionally, to ensure accuracy even when the amount of
data is small, performance was verified according to various
split proportions of the dataset. Finally, a discussion of the
proposed method and future research is provided.

A. TEST SETUP AND HYPERPARAMETERS
This study used PyTorch to build the deep learning-based
SOH estimation model, utilizing the compute unified device
architecture (CUDA) to accelerate computation. The version
of PyTorch is 1.11.0, and the version of CUDA is 11.1.
The workstation with an Intel i9 10940X CPU and Nvidia
RTX 3090 D6X were used for SOH estimation.

Hyperparameters significantly affect the training speed,
convergence, and accuracy of deep learning models. Hence,
they must be optimally selected through debugging. The
LCO/NCO battery has a small data size because data was
measured every 100 cycles. However, the NCM/NCA battery
has a large data size because data was measured every
single cycle. Therefore, the hyperparameters for the optimal
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FIGURE 11. The framework of SOH estimation model combining DTV analysis and LSTM.

TABLE 3. Hyperparameters of deep learning model.

training speed and SOH estimation performance may differ
for two battery datasets of different sizes. Table 3 shows
the hyperparameters of the deep learning model used in this
research.

B. EVALUATION INDEX
Root mean square error (RMSE) and mean absolute error
(MAE) were used to quantitatively evaluate the SOH
estimation results. RMSE and MAE can be calculated as

RMSE =

√√√√ 1
N

N∑
i=1

(SOHi,est − SOHi,real) (11)

MAE =
1
N

N∑
i=1

∣∣SOHi,est − SOHi,real
∣∣ (12)

where N represents the size of the data, SOHi,est represents
the estimated SOH value, and SOHi,real means the real SOH
value. In this research, the performance of the LSTM model
was compared using RMSE and MAE, and the performance

TABLE 4. Estimation error of the conventional method and the proposed
method.

of the LSTMwas verified according to the split proportion of
the dataset.

C. SOH ESTIMATION RESULT
This subsection verifies the performance of the proposed
deep learning-based SOH estimation model. Deep learning
models learn patterns from training data and estimate states,
and the quantity and quality of training data significantly
impact state estimation performance. This paper uses the
Pearson correlation analysis technique to quantitatively
evaluate the quality of HIs based on the integral value of
the DTV curve. As a result of correlation analysis, it was
confirmed that the integral value of different DTV curves in
a specific voltage range has a high correlation with battery
capacity. SOH estimation performance can be improved
by additionally utilizing HIs, which are highly correlated
with battery capacity degradation, to train a deep learning
model. Therefore, this paper compares the performance of
the proposed method with the conventional method using
only the peaks and valleys of the DTV curve. The SOH
estimation results for the LCO/NCO battery and NCM/NCA
battery data sets are shown in Fig. 12 and Table 4. The
proportion of training data and test data for SOH estimation
is 6:4.
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FIGURE 12. Comparison of SOH estimation performance between the
conventional method and the proposed method: (a) LCO/NCO battery,
(b) NCM/NCA battery.

Fig. 12(a) is the SOH estimation result of the LCO/NCO
battery. The blue dot represents the SOH estimation per-
formance of the LSTM model trained using only the peak
and valley information of the DTV curve. As in the existing
literature, for the LSTMmodel trained using only the position
and height of the peak and valley of the DTV curve as
HIs, the MAE was 0.009978, and the RMSE was 0.01274.
However, for the LSTM model trained by additionally using
the integral value of the DTV curve as proposed in this
paper, the MAE is 0.00882, and the RMSE is 0.01146.
Fig. 12(b) is the SOH estimation result of the NCM/NCA
battery. Aswith the LCO/NCObattery, the blue dot represents
the SOH estimation performance of the LSTMmodel trained
using only the peak and valley information of the DTV
curve. For the existing method, the MAE was 0.01172, and
the RMSE was 0.01415. The SOH estimation performance
of the proposed method is MAE of 0.01038 and RMSE
of 0.01288.

By additionally utilizing the integral value of the DTV
curve over a specific voltage range as HI, the MAE
was reduced by 11.6% and the RMSE by 10.01% for
the LCO/NCO battery. In the case of the NCM/NCA
battery, MAE decreased by 11.43%, and RMSE decreased
by 8.98%. The proposed method achieved more accurate

TABLE 5. Estimation error according to data split proportions.

SOH estimation performance because the LSTM model was
trained by additionally introducing good quality HIs.

The amount of training data may vary depending on the
size of the collected data, which can affect the model’s
performance. In this paper, the SOH estimation performance
according to the data split proportion was further analyzed.
The results are shown in Fig. 13 and Fig. 14. The training
data split proportions of the two battery data sets are set as
6:4, 7:3, and 8:2. The estimated performance according to the
corresponding proportion is shown in Table 5. When 80% of
the training data was used, it can be confirmed that SOH is
estimated with high accuracy because learning is performed
for various patterns. When 60% of the training data was
utilized, the estimation performance was slightly lower than
that of 80%, but it still showed good performance with an
MAE of 0.0082. This is because integral-based HIs were
added to learn various patterns, and overfitting was prevented
through the dropout method. These results confirm that the
proposed method can achieve high performance even with a
small data split proportion for training.

D. DISCUSSION AND FUTURE WORK
In the proposed method, the LSTM model was trained
by extracting the integral value of the DTV curve as
HIs in the CC charging of the LCO/NCO battery and
NCM/NCA battery. DTV curves can be easily derived
using simple temperature measurements without additional
hardware such as electrochemical impedance spectroscopy
(EIS). The proposed method is also readily applicable to
real-world applications since CC-CV charging is a standard
protocol for Li-ion batteries. Generally, the CC charging
current in normal charging mode does not exceed 1C rate,
and the LCO/NCO battery and NCM/NCA battery cases
studied in this paper were charged at 1C rate and 0.5C rate,
respectively. This means the proposed method can be easily
implemented and effectively estimate SOH.

But there are still limitations. First, in real applications,
data measured by sensors contains noise. Analysis techniques
based on incremental calculations, such as ICA and DTV, are
significantly affected by noise due to differential operations.
In this study, the noise was effectively removed through an
SG filter, but the estimation performance may deteriorate
depending on the performance of the filter; hence, great
care must be taken in filter design. Second, deep learning
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FIGURE 13. SOH estimation results according to data proportion ratio of
LCO/NCO battery: (a) 6:4 proportion of dataset, (b) 7:3 proportion of
dataset (c) 8:2 proportion of dataset.

models trained with specific batteries and environments can
only be applied under the same conditions [33]. Different
types of battery packs are used in real-world applications,
and the DTV curve may vary accordingly. Additionally,
the DTV curve may change depending on the outside
temperature. Therefore, it is necessary to build an extensive
database for various batteries and temperatures to apply it
to practical applications. Lastly, additional verifications of
various charging protocols are required. Typically, ICA and
DTV are extracted under CC charging conditions. However,

FIGURE 14. SOH estimation results according to data proportion ratio of
NCM/NCA battery: (a) 6:4 proportion of dataset, (b) 7:3 proportion of
dataset (c) 8:2 proportion of dataset.

recently, in the case of electric vehicles (EVs), various fast
charging techniques have been proposed to solve the problem
of long charging times [34], [35]. When the current profile
changes during charging, such as pulse charging (PC) and
multistage constant current- constant voltage (MCC-CV)
charging, the battery voltage and temperature also change.
To the author’s knowledge, no literature extracts and analyzes
DTV curves for these various charging techniques.

As explained above, many challenges remain in applying
the proposed method to practical applications. The authors
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plan to build large-scale datasets from different battery
models and environmental conditions for SOH estimation
in future work. These are expected to provide a basis for
applying the proposed method to various battery models and
environmental conditions.

V. CONCLUSION
In this research, the differential thermal voltammetry curve
was analyzed using the degradation data of the LCO/NCO
battery and the NCM/NCA battery, and the state of health
estimation method based on this was studied. A differential
thermal voltammetry curve was extracted using battery
voltage and temperature data obtained under constant current
charging conditions, and the calculated peak, valley, and
integral values were selected as health indicators. The chosen
health indicators were used to train a deep learning model,
and the existing and proposed methods were compared. The
summary and main contributions of this paper are as follows:

1) To analyze the differential thermal voltammetry curves
of various batteries, two battery datasets consisting of cathode
materials of LCO/NCO and NCM/NCA, respectively, were
used;

2) Noise was removed based on the Savitzky-Golay filter to
extract accurate differential thermal voltammetry curves and
health indicators;

3) The peak, valley, and integral value calculated during
the battery degradation process were selected as HIs,

4) Pearson correlation analysis was used to quantita-
tively analyze the correlation between the extracted health
indicators and battery capacity, and it was verified that
integral-based health indicators have a high correlation with
capacity degradation;

5) When integral-based Health indicators were added and
used as input to Long short-term memory, mean absolute
error decreased by 11.6%, and Root mean square error
decreased by up to 10.01%. It is also confirmed that high
accuracy can be achieved even with small training data.

In conclusion, this study verifies that the proposed method
can improve the performance of state of health estimation
based on differential thermal voltammetry.
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