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ABSTRACT In recent years, there has been a significant increase in the development of autonomous
vehicles. One critical task for ensuring their safety and dependability, is obstacle avoidance in challenging
weather conditions. However, no studies have explored the use of data augmentation to generate training
data for Deep learning (DL) models aimed at navigating obstacles in extreme weather conditions. This study
makes a substantial contribution to the field of autonomous vehicle obstacle avoidance by introducing an
innovative approach that utilizes a Generative Adversarial Network (GAN) model for data augmentation,
with the objective of enhancing the accuracy of DL models. The use of a GAN model to generate a training
dataset and integrate images depicting challenging weather conditions has been pivotal in enhancing the
accuracy of the DL models. The extensive training dataset, consisting of 64,336 images, was created using
three cameras installed in VSim-AV, an autonomous vehicle simulator, thereby ensuring a diverse and
comprehensive dataset for training purposes. Three DL models (ResNet50, ResNet101, and VGG16 transfer
learning) were trained on this dataset both before and after applying the data augmentation techniques. The
performance of the augmented models was evaluated in a real-time environment using the autonomous
mode of the VSim-AV simulator. The testing phase resulted in the highest accuracy rate of 97.2% when
employing Resnet101 following the implementation of GAN. It was observed that the autonomous car
could navigate without any collisions, showcasing a remarkable reaction time of 0.105 seconds, thus
affirming the effectiveness of the approach. The comparison between the original and augmented datasets
demonstrate the originality and value of this study, showcasing its significant contribution to the advancement
of autonomous vehicle obstacle avoidance technology. This paper makes significant advances to the field of
autonomous vehicle navigation by exploiting Generative Adversarial Networks (GANs) to improve obstacle
avoidance capabilities in severe weather conditions, hence increasing safety and dependability in real-world
applications.

INDEX TERMS Autonomous-vehicles, obstacle-avoidance, avoiding collision, VSim-AV, deep learning
(DL), generative adversarial network (GAN), severe weather conditions, data augmentation, fine-tuning.
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I. INTRODUCTION
The field of autonomous vehicles has seen significant
advancements in recent years, with the goal of creating
safer and smarter transportation systems [1], [2]. The ability

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 89679

https://orcid.org/0000-0003-1351-6973
https://orcid.org/0000-0002-3360-9440


L. H. Meftah et al.: Improving Autonomous Vehicles Maneuverability and Collision Avoidance

of autonomous vehicles to perceive and navigate their
surroundings efficiently is a critical aspect. However, due to
a scarcity of diverse and realistic training data, training DL
models for obstacle avoidance in autonomous vehicles can
be challenging [3], [4].

There are numerous approaches for avoiding obstacles
that use DL techniques. However, enhancing reaction time,
performance, precision, and error rate remains crucial,
especially when considering challenging weather circum-
stances [5], [6]. To enhance the maneuvering capabilities of
obstacle-avoidance systems in adverse weather conditions,
extensive research has been conducted focusing on both
manned and unmanned ground vehicles [7], [8].

The challenge lies in detecting and avoiding each obstacle.
Although existing techniques havemade substantial progress,
they still encounter several limitations that raise concerns
about safety and reliability. One such limitation is the ability
to avoid obstacles in severe weather situations with limited
time for decision-making and reaction.

To verify the capacity of DL models built to avoid
obstacles for autonomous vehicles, the use of simulation
is crucial. In fact, it facilitates the examination of a wide
variety of edge scenarios, which, despite their rarity in real-
world testing, are essential for guaranteeing the durability
of obstacle avoidance algorithms [8], [9]. Thus, the use
of autonomous vehicle simulators not only accelerates
development but also enhances the safety and reliability of
obstacle avoidance systems before their deployment in real-
world scenarios. Several simulators have been developed to
replicate realistic driving conditions. These simulators are
essential for algorithm testing and refinement, autonomous
system training, and evaluating self-driving car performance.
Among the various solutions available, the VSim-AV virtual
platform for AV simulation is preferred due to its open-source
nature and its capability to incorporate any type of element.

Besides, a high-quality dataset is crucial for training DL
models to recognize patterns and make accurate decisions.
A large and representative dataset is extremely necessary
in the context of autonomous vehicle research to ensure
that models can navigate real-world scenarios efficiently.
In this context, Generative Adversarial Networks (GAN) are
employed. GAN can augment small datasets by generating
synthetic data that closely resembles the original dataset’s
distribution, thereby expanding the training data. This
synthesized data helps to mitigate the limitations posed
by small datasets, enabling more robust training of DL
models and improving their performance on various tasks.
None of the previous research investigations have examined
the crucial area of utilizing data augmentation techniques
specifically designed to incorporate images simulating severe
weather for training DL models in obstacle avoidance. This
reveals a significant research gap, as such an approach could
greatly enhance the robustness and real-world applicability
of autonomous systems operating in adverse weather con-
ditions. To fill this gap, we investigate the integration of
an augmented dataset using VSim-AV 1. By incorporating

GANs into the dataset refinement process, we aim to enhance
its diversity and precision, thereby encompassing a broader
range of real-world scenarios. This innovative approach
has the potential to significantly improve the generalization
capabilities of deep learning models for autonomous driving
tasks.

Our research endeavors to revolutionize the authenticity
and quality of training data, laying the foundation for the
development of resilient and efficient autonomous vehicle
systems. Our study of GAN as a data-enrichment method
focuses on adding more diverse and useful samples to the
dataset. These include synthetic training examples that mimic
real-world obstacles in different weather conditions, like rain,
snow, fog, or low-light situations. Through this methodology,
we aim to empower the models to learn more effectively,
ultimately driving substantial advancements in autonomous
vehicle technology.

The remainder of this paper is organized as follows:
Section II reviews the approaches used to assist autonomous
vehicles in avoiding obstacles. Section III explains the
recommended methodology. Section IV discusses simulation
and research results. Section V summarizes the paper’s
conclusions and suggestions for future work.

II. RELATED WORKS
Autonomous vehicles are poised to revolutionize transporta-
tion systems, as their capacity to perceive and respond
to their surroundings is pivotal for ensuring safety and
efficiency. Deep learning has emerged as a potent tool in
this realm, empowering vehicles to dynamically sense and
navigate their environments. Several studies have delved
into the application of deep learning models in the context
of autonomous vehicles. In this section, we will scrutinize
pivotal research on the utilization of deep learning in
intelligent transportation, with a specific emphasis on its
applications in obstacle avoidance and navigation under
diverse weather conditions.

To address the prioritization of factors contributing to
rear-end crashes and mitigate injury severity, the authors
in [10] developed a deep learning model based on a
deep residual neural network architecture that incorporates
residual shortcuts. This model achieved an accuracy rate
of 87%, demonstrating its effectiveness in identifying crit-
ical explanatory factors and potentially enhancing traffic
safety measures. Moreover, in [11], the authors proposed
a deep learning model to address the integrated problems
of origin-destination estimation and traffic sensor location.
This innovative model achieved an accuracy exceeding
90%, showcasing its potential to significantly enhance the
precision and efficiency of traffic management systems.
The applications of deep learning in various maneuvers
related to autonomous vehicles have yielded promising
results. These successes inspire the use of deep learning for
obstacle avoidance, particularly under challenging weather
conditions. This approach holds significant potential to
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enhance the reliability and safety of autonomous navigation
in diverse environments.

A. OBSTACLE AVOIDANCE
One of the early breakthroughs in the development of DL
models for obstacle avoidance in autonomous driving was
the introduction of convolutional neural networks (CNNs).
CNNs have proven to be highly effective in image classifica-
tion tasks by automatically learning feature representations
directly from raw image inputs [12]. This capability has
made them well-suited for interpreting visual data obtained
from sensors such as cameras, lidar, and radar. Researchers
have explored various approaches to leverage CNNs for
obstacle avoidance. For instance, [13] proposed a CNN-based
architecture that combines a feature extraction module and
a decision module. The feature extraction module captures
relevant visual information from input images, while the
decision module employs a fully connected layer to predict
the steering actions required to avoid obstacles. The model
was trained on a large dataset of annotated images captured
in diverse driving scenarios and demonstrated robust obstacle
avoidance in real-world environments. However, a drawback
of this model is its lack of training to navigate obstacles in
severe weather conditions.

Another strategy is the use of recurrent neural networks
(RNNs) to capture temporal dependencies in sequential
sensor data. Indeed, autonomous vehicles often rely on both
spatial and temporal information to make accurate decisions
regarding obstacle avoidance. By using RNNs, models can
take advantage of information from previous time steps to
inform their current decision-making process. Li et al. [14]
proposed an end-to-end RNN-based model that takes lidar
point cloud data as input and outputs steering commands. The
model was trained on a dataset collected from an autonomous
vehicle platform and achieved impressive results in terms of
obstacle avoidance performance. However, there is a need
to enhance the model’s accuracy and train it to effectively
navigate obstacles in adverse weather conditions.

In addition to CNNs and RNNs, other DL architec-
tures have also been explored for obstacle avoidance in
autonomous driving. For instance, Arvind and Senthilnath [3]
proposed a hybrid architecture that combines reinforcement
learning and DL. The model learns to navigate and avoid
obstacles through interactions with the environment using
reinforcement learning techniques, while a deep CNN is
used to learn visual representations for obstacle detection.
This hybrid approach combines the strengths of both
reinforcement learning and DL to achieve effective obstacle
avoidance, but, the accuracy of the model needs to be
improved.

In the study by Zaghari et al. [15], a You Only Look
Once (YOLO) deep learning model was implemented to
navigate and avoid obstacles. This approach demonstrated
an accuracy rate of 88.7%, showcasing the efficiency of
YOLO in real-time object detection and obstacle avoidance

TABLE 1. Accuracy of DL models for autonomous vehicle obstacle
avoidance.

tasks. Building on similar objectives, Pehlivan et al. [16]
proposed using the Single Shot MultiBox Detector (SSD)
approach. The SSD model achieved a higher accuracy rate
of 91.2% in detecting and avoiding obstacles. The SSD’s
advantage lies in its ability to perform object detection and
localization in a single forward pass, making it particularly
suitable for applications requiring rapid processing and
decision-making. In another study, Das et al. [17] introduced
a model based on DeepLab, a deep learning architecture
designed for semantic image segmentation. The DeepLab
model was employed to detect and avoid collisions, attaining
an accuracy rate of 89.8%. The use of atrous convolutions
by DeepLab, which enables it to effectively capture
multi-scale contextual information, significantly improves its
performance in complex environments. Furthermore, Sun et
al. [18] presented a novel approach named PointMoSeg for
obstacle avoidance. Despite having a slightly lower accuracy
rate of 87.4%, PointMoSeg offers unique capabilities in
segmenting point clouds for obstacle detection. This method
emphasizes the importance of spatial information and
3D segmentation in improving the understanding of the
environment for obstacle avoidance tasks.

Numerous solutions have been proposed, e.g., [15], [16],
[17], [18] (refer to Table 1) and have shown substantial
potential for obstacle avoidance in autonomous driving.
However, these models require improvement in terms of
accuracy and the ability to handle adverse weather condi-
tions. Indeed, autonomous navigation in bad weather poses
additional obstacles due to reduced visibility, slick roadways,
and unpredictable environmental factors. Recently, there has
been an exploration of DL models to enhance autonomous
navigation in severe weather conditions.

B. MANOEUVRABILITY IN ADVERSE WEATHER
CONDITIONS
Zhang et al. [19] proposed a novel DL model called RainNet
to enhance driving safety in rainy conditions. RainNet
utilizes a specially designed neural network architecture and
a large-scale synthetic dataset to learn how to eliminate
rain streaks from input images. The results demonstrated
significant improvements in model performance under rainy
conditions, effectively reducing visibility degradation.

Similarly, fog poses another major challenge for
autonomous navigation. To address this, Kamangir et al.
[20] introduced a model named FOGNet, which leverages
an encoder-decoder architecture to estimate the transmission
map of foggy images. By reconstructing the clear scene from
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foggy inputs, FOGNet successfully enhances visibility in
foggy conditions and enables more accurate perception for
autonomous vehicles.

In the work by Notarangelo et al. [21], a Convolutional
Neural Network (CNN) was developed to specifically
address the issue of rain removal from images captured by
autonomous vehicles. Their approach achieved an accuracy
rate of 65%, demonstrating the potential of CNNs in
mitigating the adverse effects of rain on visual data. The
authors [22] explored the use of CNNs for detecting and
mitigating the impact of fog on the perception systems of
autonomous vehicles. Their model focuses on enhancing
visibility and compensating for the loss of detail caused by
foggy conditions. Cao et al. [23] introduced an innovative
approach to handle ‘‘invisible’’ obstacles, particularly those
obscured by adverse weather conditions like snow and heavy
rain. They proposed a hybrid DL model that combines
Convolutional and Recurrent Neural Networks (RNNs) to
enhance the detection of such obstacles. Messaoud et al.
[24] developed a relational deep learning framework aimed
at understanding and interpreting complex weather-affected
scenes. Zeng et al. [25] proposed an adaptive neural network
model designed to dynamically adjust its parameters based on
real-time weather conditions. Their model uses a feedback
mechanism to continuously monitor and adapt to changes
in the environment, maintaining high performance even in
rapidly changing weather scenarios.

The DLmodels discussed in [21], [22], [23], [24], and [25]
and shown in 2 take into account adverse weather conditions
in autonomous driving. However, as indicated in table 2,
there is a need for significant improvement in the accuracy
of these models. Indeed, ensuring a high level of accuracy
is imperative for safe and effective autonomous driving
systems.

C. DATA AUGMENTATION
Data augmentation plays a crucial role in training object
detection models for autonomous vehicles. Indeed, current
datasets for autonomous driving are often constrained by
limitations in diversity, scale, and quality. To address these
challenges, numerous studies have suggested employing data
augmentation strategies. These strategies aim to enhance
dataset coverage and maximize the utility of existing training
data, thereby improving the performance and robustness
of deep learning models in autonomous driving applica-
tions [26].

Several approaches have been suggested to augment
datasets for risk identification, pedestrian detection, and
driving safety area classification. However, none have
considered adverse weather conditions. These studies will
serve as benchmarks for evaluating the effectiveness of
our proposed methodology. In [27], a more comprehen-
sive data augmentation method is introduced, focusing on
pedestrian detection using image descriptions and diffusion
models. This method aims to encompass a broader range of

TABLE 2. DL models accuracy and precision for obstacle avoidance in
adverse weather conditions.

scene variations, including diverse conditions and lighting
situations. A classifier is designed to select data samples
for augmentation. Visual features are then extracted from
image captions and transformed into high-level semantic
information as textual descriptions corresponding to the
samples. This approach enhances the robustness and accuracy
of pedestrian detection models. The study by Lee [28]
introduces an innovative framework designed to improve
the discriminative ability of classifiers in identifying safe
driving areas for autonomous vehicles (AVs). This framework
utilizes advanced data augmentation algorithms, including
generative models such as generative adversarial networks
(GANs) and diffusion-based models. By leveraging these
cutting-edge techniques, the framework aims to enhance the
accuracy and reliability of identifying safe driving zones,
thereby contributing to the overall safety and efficiency of
AV operations. In [29], a deep learning model is utilized
for data augmentation to tackle the issue of identifying
risks associated with autonomous buses. The article explores
various image data augmentation strategies to mitigate the
challenge of uneven sample distribution and evaluates the
efficacy of different approaches. We observed that the results
obtained from using deep learning models for data aug-
mentation are highly promising. However, no existing work
has specifically applied this approach to obstacle avoidance
in diverse weather conditions. This insight motivated us to
explore the potential of deep learning models in tackling this
particular challenge.

III. RESEARCH METHODOLOGY
This study introduces fine-tuned DL models for autonomous
vehicle obstacle avoidance, as illustrated in Figure 1.
By leveraging GAN for data augmentation and integrat-
ing challenging weather conditions, we aim to enhance
the performance of the proposed models, which will be
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FIGURE 1. Autonomous vehicle obstacle avoidance maneuver in adverse
weather conditions.

assessed using the VSim-AV autonomous vehicle simulator.
The primary objective of this research is to enhance the
performance and accuracy of specific DL models tailored
for applications such as identifying and evading obstacles
in adverse weather conditions. This section offers a compre-
hensive explanation of the technique employed in the study,
following the steps outlined in Figure 2. Initially, we utilized
the Vsim-AV simulator to generate training data by recording
the driving experiences of a human driver in avoiding
obstacles. Afterward, we conducted data augmentation and
preprocessing operations to train a variety of deep learning
models. Ultimately, we evaluated the performance of each
model in the autonomous simulator mode.

A. TRAINING DATA COLLECTION
The process of collecting training data is a crucial task in
DL (DL). It serves as the foundation for all DL models as
well as the fuel that drives their learning and development.
The quality and quantity of training data directly impact the
accuracy and performance of DL models. With more and
better data, a model can learn to recognize patterns, make
predictions, and perform tasks with greater precision and
efficiency. Moreover, a diverse and representative training
dataset helps the DL model generalize its knowledge and
adapt to new situations. Training a self-driving car only on
sunny days would lead to a navigation model that struggles
to navigate rainy streets. By including data under various
weather conditions and environments, theDLmodel can learn
to handle diverse scenarios. Moreover, images acquisition
is crucial for model performance as it allows for accurate
and fast obstacle identification to guarantee road safety and
efficient traffic management.

Image acquisition for obstacle detection and avoidance
systems can be done by several techniques, such as cameras
mounted on cars or infrastructure. Monocular cameras are
more popular than stereo cameras due to their lower cost
and ease of installation. In the present study, we use three
strategically cameras placed in the VSim-AV to capture

images from diverse perspectives. The driving simulator
saves frames from three front-facing cameras, capturing data
from the car’s perspective, including throttle, speed, and
steering angle. Then, the data collected from the cameras is
sent to train the model to avoid obstacles.

B. DATA AUGMENTATION
Data augmentation is the process of artificially increasing the
training dataset by performing various modifications to the
original data, such as rotation, scaling, flipping, cropping, and
changes in brightness or contrast. It is critical for improving
the performance and durability of DL models when training.
This approach has several advantages in the area of DL. For
instance, it reduces overfitting by exposing the model to a
broader range of samples, preventing it from memorizing the
training data and enhancing its ability to generalize to new
data. Second, data augmentation helps create a more invariant
representation, allowing the model to recognize patterns
despite fluctuations in input appearance. Furthermore, this
technique encourages the creation of models that are robust
to real-world variability and noise. Finally, the proper use
of data augmentation allows DL models to reach higher
levels of accuracy and performance over a wide range of
tasks, making them more versatile and useful in real-world
applications [30].

GANs have emerged as an effective technique for training
DL models, especially in situations where acquiring diverse
and realistic training data is difficult, such as in the case
of autonomous vehicles. In this context, GANs serve an
important role in creating synthetic training data that may
include a variety of environmental circumstances, including
bad weather scenarios. Indeed, GANs allow to generate a
wide set of images that imitate difficult conditions such
as heavy rain, fog, or snow, which is critical for training
autonomous vehicles to navigate safely in a real-world
environment. Figure 3 shows the architecture of GAN and
how it is used in our research. GANs consist of two
neural networks: a generator and a discriminator, which are
trained adversarially. The generator, denoted as G, creates
synthetic data samples from random noise, whereas the
discriminator, denoted as D, distinguishes between real and
fake samples. Through iterative training, the generator learns
to produce samples that closely resemble actual data, while
the discriminator enhances its ability to detect fake samples.
This adversarial process drives the generator to generate
high-quality, realistic data samples. GANs are designed
to learn the underlying data distribution from a finite set
of high-dimensional training samples. GANs comprise two
neural networks: the generator (G) and the discriminator (D),
which engage in a zero-sum game with the following value
function V(D, G) illustrated in equation 1:

min
G

max
D

V (D,G) = Exreal∼pdata(xreal)[logD(xreal)]

+ Exgen∼pz(xgen)[log(1 − D(G(xgen)))]

(1)
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FIGURE 2. Flow chart of the proposed methodology.

FIGURE 3. The generative adversarial networks (GAN) architecture.

The description of terms in this value function is:

Exreal∼pdata(xreal )[logD(xreal)] (2)

This term in equation 2 represents the expectation over all real
data points xreal . The discriminator D tries to maximize this
term by assigning a high probability to real data points being
real.

Exgen∼pz(xgen)[log(1 − D(G(xgen)))] (3)

This term in equation 3 represents the expectation over
all noise samples xgen. The generator G aims to generate
data points G(xgen) that are similar to the real data. The
discriminator aims to minimize the probability assigned to
generated data points being real, thereby improving its ability
to distinguish between real and synthetic data. Conversely,
the generator seeks tomaximize this probability by producing
data points that the discriminator incorrectly classifies as real.
This adversarial process drives both networks to enhance their
performance continuously.

The overall process is illustrated in Algorithm 1. First,
we initialize a generator network G and a discriminator
network D. In each iteration, real VSim-AV data with clear
weather is sampled, and random noise vectors are also
sampled. Bad weather masks simulating rain, fog, or snow
are generated. These masks are then applied to the real
data to create masked versions. The generator takes both
the noise and masked data to produce synthetic weather-
affected data. The discriminator is trained to distinguish

Algorithm 1 GAN for Bad Weather Data Generation
1: Setup:
2: Initialize generator G and discriminator D

Set training iterations T and batch size B
3: repeat t = 1 to T
4: Sample data:
5: Sample real VSim-AV data xreal with clear weather

(B samples)
6: Sample random noise vectors z (B samples)
7: Generate bad weather data:
8: Generate badweathermasksmbad simulating rain, fog,

or snow
9: Apply masks to real data: xmasked = mbad ⊙ xreal

10: Generate synthetic weather-affected data: xgen =

G(z, xmasked )
11: Train discriminator D:
12: for i = 1 to D steps do
13: Compute discriminator loss LD(xreal, xgen)

Update D using gradients of LD
14: end for
15: Improve generator G:
16: for i = 1 to G steps do
17: Compute generator loss LG(xgen,D, xreal)
18: Update G using gradients of LG
19: end for
20: Output: Trained generator G for bad weather data

generation

between real and synthetic data. The generator is trained
to fool the discriminator and generate realistic bad weather
data. The final output is the trained generator G, which can
now generate new training data with diverse bad weather
conditions.

Figure 4 presents various samples of training data, that
include meteorological conditions such as fog, snow, rain,
and sandstorms.
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FIGURE 4. Samples of generated data under different weather conditions.

C. DL MODELS
This section introduces the DL models utilized in this study,
specifically, Resnet 50, Resnet 101, and VGG16 transfer
learning models.

1) RESNET50 MODEL
ResNet50 [31], a member of the ResNet family, is a powerful
convolutional neural network (CNN) that revolutionized
the field of image recognition. It achieved record-breaking
accuracy in the 2015 ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) [32], signifying a significant
advancement in the capabilities of computer vision models.
ResNet50 addresses the challenge by introducing residual
connections, which resolve the problem of vanishing gra-
dients [32]. The skip connections, also known as shortcut
connections or residual connections, are a fundamental
component of Residual Neural Networks (ResNets). The
skip connections traverse these blocks, allowing the network
to learn and preserve knowledge at varying levels. These
skip connections, as depicted in Figure 5 between blocks
of layers, bypass multiple network layers by directly adding
earlier layer activations to later layer outputs. This simple yet
effective concept enables the network to learn both low-level
features and the long-term correlations between them,
thereby significantly enhancing performance. Comprising
50 stacked convolutional layers, ResNet50 is organized into
four residual blocks (see Figure 5), each containing multiple
convolutional layers.

2) RESNET101 MODEL
ResNet-101 [33] has a remarkable 101 convolutional layers
stacked like building bricks. These layers are divided into
four residual blocks, each with multiple convolutional layers.
Information goes through several convolutional layers before
ascending residual connections to the next level. ResNet-101
has the following benefits:

• High Accuracy: ResNet-101 [34] indeed addresses
the vanishing gradient problem effectively, which can
occur in very deep neural networks. By introducing skip
connections or residual connections, ResNet-101 allows
gradients to flow more easily during backpropagation.

• Deep Networks, Better Learning: Residual con-
nections enable deeper networks without sacrificing
performance [35].

• Fast and Efficient Training: By bypassing layers
and using residual connections, the network has fewer
parameters to learn. This translates into faster training
times and less computational power required.

Algorithm 2 illustrates the process of training Resnet
101 model with the used dataset after augmentation by GAN.

3) TRANSFER LEARNING USING VGG16
Deep neural network training needs a large amount of compu-
tational power. Transfer learning [36] has been investigated
to reduce this initiative, and it aids in the employment
of neural networks presented by many significant firms
with substantial funding. The trained models provided by
them can be utilized for academic research projects and
companies. The hypothesis is that we applied the concept
of learning transfer. Transfer learning is a technique for
employing high-quality models that have been trained on
huge existing datasets. According to the transfer learning
theory, the characteristics learnt are likely to be transmitted
to another dataset in the algorithm’s lower levels. These
lower level attributes will be useful in the present dataset.
Indications of transfer learning usage for image recognition,
object identification and categorization, and so on. According
to current publications, the two articles [37], [38] were
illustrated. For the transfer learning strategy to accomplish
the required goal, a pre-trained model is applied, i.e.
by freezing some levels and training only a few other layers.
According to research, models trained on huge datasets
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FIGURE 5. Resnet 50 architecture.

Algorithm 2 Training ResNet-101 With GAN-Augmented
Dataset
1: Input: Training data X , ResNet-101 modelM
2: Output: Trained ResNet-101 model
3: Initialize GAN models D and G
4: Initialize training parameters
5: Pre-train GAN to generate weather-augmented samples
6: Pre-train discriminator D on real and generated samples
7: repeat
8: for each training iteration do
9: Sample real images and labels from X

10: Sample noise vectors Z
11: Generate augmented samples Xaug using G and Z
12: Train D on X and Xaug with labels
13: Freeze D, train GAN using G, D, and Z
14: Update M using Xaug
15: end for
16: until convergence or stopping criteria
17: return Trained ResNet-101 modelM = 0

such as Imagenet can often perform well for various image
identification problems [39]. According to research, starting
amodel with the weights of a pre-trainedmodel leads to faster
convergence than starting the model with random weights
[39]. VGG16 has been used to enforce the transfer learning
process, and all of the blocks have been frozen from testing
with the exception of the final block, which includes a
max-pooling layer and three convolution layers.

The process of using transfer learning with VGG16 is
illustrated in figure 6.

IV. TESTING RESULTS AND DISCUSSION
The experimental investigation is introduced in this sec-
tion. It delves into the intricate framework encompassing
methodologies, results, and insightful discussions. In the
following, we present our experiment comparing the perfor-
mance of ResNet50 and ResNet101 models, along transfer
learning usingVGG16, for obstacle avoidance in autonomous
vehicles. We explore the impact of dataset augmentation

FIGURE 6. Transfer learning with VGG16 process.

with Generative Adversarial Networks (GANs) on model
accuracy and loss. The evaluation dataset comprises images
from real-world driving scenarios. We assess performance
metrics, such as accuracy and loss, for eachmodel and dataset
combination.

A. EVALUATION METRICS
Several metrics can be utilized in the evaluation phase. These
include:

1) ACCURACY
is the proportion of correct predictions to total number of
input samples.

Accuracy =
Number of correct predictions
Total number of input samples

(4)

2) MEAN-SQUARE-ERROR(THE LOSS)
We chose themean-square-loss function for our study (MSE).
This loss function is applicable to all regression issues. The
MSE imposes severe penalties for significant deviations. This
function is straightforward; in a summary, it is the mean
of the sum of the squared variances between the actual and
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FIGURE 7. Resnet50 loss value curve.

FIGURE 8. Transfer learning with VGG16 loss value curve.

anticipated values, as shown in Equation 4:

MES =
1
n

∑
((y1 − ŷ1)2)) (5)

RMSE is just the square root of the MSE:

RMES =

√
1
n

∑
(y1 − ŷ1)2 (6)

3) LOSS OPTIMIZATION
The study utilized the Adam optimizer (Adaptive Moment
Estimation) to optimize the loss. For DL applications, this
optimizer is often the preferred choice as it consistently
outperforms more general stochastic gradient descent opti-
mization solutions [40]. Initial testing of these models
revealed a slowdown in the rate of loss change after only
a few epochs. Adam calculates an adaptive learning rate
and incorporates learning rate decay in its computation. The
learning rate divided by the number of epochs served as the
new starting point for the optimizer’s decay rate. Throughout
the training process, the default parameters of the Keras
Adam optimizer yielded satisfactory results. In this study,
the Adam optimizer was employed with a lower-than-default
learning rate (1e-(3) of 1e-4, which proved to be effective.

FIGURE 9. Resnet101 model loss value curve.

B. TESTING RESULTS
1) RESNET50 MODEL RESULTS
First, we compare the performance of the ResNet50 model
on the original and augmented datasets generated via GAN.
The accuracy and loss values for each dataset are presented
in Table 3.

We observe that adding GAN-generated samples to
the dataset significantly improved the ResNet50 model’s
accuracy to 95.3%, demonstrating their positive impact on
model performance. The loss value of 0.05, as depicted in
figure 7, indicates fewer errors compared to the original
dataset.

2) TRANSFER LEARNING WITH VGG16 RESULTS
Similarly, we evaluate the performance of transfer learn-
ing using the VGG16 model on both the original and
GAN-augmented datasets (see Table 3).

Results show the efficiency of using pre-trained weights
to appropriately classify obstacles. The low loss value of
0.04 adds to the model’s capacity to minimize errors during
training. The GAN-augmented dataset resulted in a 2.8%
increase in accuracy for the transfer learning strategy utilizing
VGG16. The decreased loss value of 0.02 demonstrates
improved performance over the original dataset. The figure 8
shows the loss value.

3) RESNET101 MODEL RESULTS
Lastly, we compare the performance of the ResNet101
model on the original and GAN-augmented datasets. Table 3
provides the accuracy and loss values for each dataset.

The ResNet101 model outperformed the ResNet50 and
VGG16 transfer learning models, achieving 97.2% accuracy
on the original dataset. The lower loss value of 0.02 indicates
the model’s capacity to reduce errors throughout training.
Adding GAN to the dataset improved the model’s accuracy
by 2.8%, highlighting its potential for improving obstacle
recognition and avoidance.

C. SIMULATION PHASE USING VSIM-AV
In order to validate the proposed approach, we utilize the
virtual simulation platform VSim AV [41], which resembles
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TABLE 3. Testing results.

a car racing game and has been set up on two distinct
routes. One route was utilized for acquiring training data,
while the other was dedicated for testing purposes. The
driving simulator captures frames from three front-facing
cameras, recording data from the car’s viewpoint, along
with various driving parameters such as throttle, speed,
and steering angle. The camera data is then fed into the
model with the expectation that it will learn to navigate
obstacles. We modified the road layout, designed a new
track, and introduced obstacles to the scenario. Among these
obstacles, we selected yellow cubes that are randomly placed
along the course, as depicted in Figure 10. Following these
modifications, the simulator is prepared to gather data on safe
driving behavior. The objective is to collect road navigation
data using the car’s three cameras and then utilize this data
as training data to develop a model for use in the simulator’s
autonomous mode.

The evaluation phase is conducted in the autonomousmode
of the simulator, where it emulates the behavior of a real
autonomous vehicle, underscoring the significance of this
research and development work. No collision were observed
in the designated area. The vehicle handled surprisingly well
on the test track, especially since it was its first time there.
It quickly adapted to the new environment. Although there
were some minor performance variations on the practice
track, we consider them acceptable. They illustrate the car’s
responsiveness to changing surroundings rather than simply
following a predetermined path. In fact, these variances
underscore the robustness of the model. The vehicle adeptly
navigated a few challenging situations, executing precise
maneuvers. It’s noteworthy that none of these maneuvers
were pre-planned, showcasing the model’s genuine capacity
to handle unexpected challenges posed by diverse weather
conditions.

D. DISCUSSION
This study compared the performance of the ResNet50
and ResNet101 models, as well as transfer learning with
the VGG16 model, for obstacle avoidance in self-driving
vehicles in adverse weather conditions. Additionally, the
study examined the effect of dataset augmentation with
GAN on model performance and loss. It delved into
the effectiveness of various models and the value of
GAN-based dataset augmentation strategies. The proposed

TABLE 4. Comparative study.

approach outperformed previous studies in the autonomous
vehicle domain, as illustrated in table 4. This study is
significant as it is one of the first to apply GAN-based
data augmentation specifically for obstacle avoidance in
extreme weather conditions. This approach stands out in the
field of autonomous driving, where previous research has
primarily concentrated on sensor fusion, classical computer
vision techniques, and direct deep learning methods without
leveraging advanced data augmentation strategies like GANs.
Traditional data augmentation methods, such as rotation,
scaling, and flipping, have been used to enhance training
datasets. While these techniques are beneficial, they do not
provide the same level of diversity and complexity as GAN-
generated data. GANs can create highly realistic and varied
training samples, significantly improving the robustness and
performance of models, particularly for autonomous vehicles
navigating unpredictable environments. Earlier studies have
often relied on integrating data from multiple sensors (e.g.,
LiDAR, radar, and cameras) to enhance obstacle detection
in adverse weather conditions. Although these sensor fusion
methods are effective, they can be hardware-intensive and
may not be as cost-efficient as improving software-based
image augmentation techniques. GAN-based augmentation
offers a software-centric solution that can enhance model
performance without the need for expensive and complex
hardware setups. However, this study should also recog-
nize potential limitations, such as the computational cost
associated with training GANs and the need for substantial
computational resources. Additionally, while GANs can
generate highly realistic data, the true test of robustness
and reliability lies in rigorous real-world deployment and
testing beyond simulated environments. Ensuring that models
trainedwith GAN-augmented data performwell in real-world
conditions is crucial for the successful application of this
technology in autonomous driving.

The study’s findings will contribute to enhancing the
accuracy of obstacle avoidance systems for self-driving
cars. Subsequent research could explore the utilization of
different DL architectures, such as DenseNet, InceptionNet,
and Transformers, and experiment with diverse data aug-
mentation methodologies to improve performance. Future
endeavors will be confronted with the challenge of real-world
tests and validation using autonomous cars in real-world
environments.
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FIGURE 10. Virtual simulation platform: VSim-AV.

V. CONCLUSION AND FUTURE WORK
Autonomous vehicles are poised to revolutionize the trans-
portation industry, offering enhanced mobility and safety.
The identification and avoidance of obstacles, particularly
in adverse weather conditions, are crucial aspects of
autonomous driving. DL models play a pivotal role in
promptly and accurately recognizing and avoiding obstacles.
However, achieving both a swift reaction time and high
accuracy remains a key objective. One method to enhance
performance is to train a DL model to detect and avoid obsta-
cles in specific settings, such as severe weather conditions
(e.g., snow, fog, etc.).

In this study, we evaluated the performance of the
ResNet50, transfer learning with VGG16, and ResNet101
models for obstacle avoidance in autonomous vehicles.
Additionally, we explored the impact of enriching the
dataset with Generative Adversarial Networks (GAN). Our
assessments utilized training data from the VSim - AV real-
time simulator, demonstrating the models’ ability to navigate
obstacles in autonomous mode, even in severe weather
conditions.

The proposed study is innovative in its advancement of
GAN-based data augmentation for obstacle avoidance, par-
ticularly in challenging weather conditions. Future research
may focus on evaluating the efficacy of the proposed
models in intricate driving scenarios, encompassing field
tests on various road surfaces, and exploring the integration
of alternative deep learning models for enhanced obstacle
recognition and decision-making processes.

DATA AVAILABILITY
The authors used data (Colab notebooks and training
datasets) saved in this drive link:

https://drive.google.com/drive/folders/
1UiAHl7LIhNf2MG6QwQgB3csrC9puCbb7?usp=sharing.
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