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ABSTRACT Dynamic nonlinear equations (DNEs) are essential for modeling complex systems in various
fields due to their ability to capture real-world phenomena. However, the solution of DNEs presents
significant challenges, especially in industrial settings where periodic noise often compromises solution
fidelity. To tackle this challenge, we propose a novel approach called Periodic Noise Suppression Neural
Dynamic (PNSND), which leverages the gradient descent approach and incorporates velocity compensation
to overcome the limitations of the traditional Gradient Neural Dynamic (GND) model. Additionally, the
PNSND model aims to suppress periodic noise by addressing its harmonic properties according to the
method of Fourier decomposition of harmonics. In the paper, we explore the performance of convergence
and robustness of the PNSND model. Moreover, we demonstrate the effectiveness of the PNSND model in
addressing dynamic nonlinear problems under periodic noise interference through its application to robotic
arm, highlighting its practical significance in industrial contexts.

INDEX TERMS Dynamic nonlinear equations (DNEs), periodic noise suppression, neural dynamic, gradient
descent method, robotic arm.

I. INTRODUCTION
Compared to simple linear frameworks [1], nonlinear sys-
tems provide a more precise understanding of complex
problems [2]. Therefore, the comprehension and utilization
of nonlinear systems are paramount for addressing varied
challenges within contemporary scientific and industrial
domains [3]. Nonlinear systems have found extensive
application across various domains, including optimization,
control theory, signal processing, robotics, and more [4], [5],
[6], [7]. In the domain of nonlinear systems, academic and
industrial research converge on the resolution of dynamic
nonlinear equations (DNEs) [8], [9], [10], [11].

Iterative methods, particularly the Newtonian iteration
method, have historically been the primary approach for
tackling DNEs [12], [13], [14]. In order to improve the
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Newton method, many scholars have conducted further
research on Newton-type iterations.

Advanced iterative methods are described in [15], combin-
ing Newton’s approach and its derivatives, achieving fifth and
eighth-order convergence for tackling DNEs, its efficiency
is supported by computational results. Madhu et al. present
three novel iterative approaches of orders four, five, and six
for tackling DNEs. These methods demonstrate enhanced
convergence and decreased computational complexity, and
their effectiveness is validated through numerical experi-
ments and applications to Chandrasekhar’s equation and the
1-D Bratu problem [16]. In [17], an anti-noise Newton-
Raphson-based method for addressing dynamic Lyapunov
equations is introduced. This algorithm showcases enhanced
convergence accuracy and noise robustness compared to tra-
ditional methods, as validated through numerical simulations
and its application to robotic motion tracking. Meanwhile,
Wang et al. introduce a control-theoretic Newtonian iterative
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TABLE 1. Comparative analysis of various models for the DNEs problem.

approach for addressing linear equations in the presence of
noise [18]. This method demonstrates improved convergence
and accuracy compared to traditional approaches, albeit with
a longer convergence duration under noisy conditions.

Neural dynamic models are currently undergoing rapid
development, with a variety of innovative structures being
introduced to tackle dynamic nonlinear problems [19], [20].
These models showcase superior computational capacity
compared to traditional Newtonian or Newton-like iterations
and find extensive utilization in addressing DNEs within
scientific and engineering fields [21], [22], [23]. Scholars
have proposed the Gradient Neural Dynamic (GND) model,
leveraging the gradient descent optimization technique. The
traditional GND model has proven particularly effective in
managing large-scale, static computational challenges [24].
However, its design primarily caters to dynamic problems
and lacks incorporation of derivative information, resulting in
significant lag errors when applied to dynamic scenarios [25].
In response, subsequent scholars have proposed the Zeroing
Neural Dynamic (ZND) model as a viable alternative
for dynamic problem-solving [26]. The ZND model has
demonstrated notable success in improving convergence
performance and solution accuracy [27], [28], [29].
In industrial environments, noise frequently undermines

the precision of solutions [30]. Addressing the challenge
of real-time execution of DNEs amid noise has been a
focal point of research recently. However, previous research
on neural dynamic models has primarily focused on the
accuracy and speed of addressing DNEs [31], frequently
neglecting the robustness of these models [9]. To address
the detrimental impact of noise, the integration-enhanced
zeroing neural network (IEZNN) was introduced in [32].
Engineered to execute dynamic matrix inversion amidst
diverse noise sources, the IEZNNmodel effectively mitigates
their effects, showcasing superior real-time computational
performance and noise resistance. However, it’s essential to
note that common periodic noises encountered in practical
engineering, such as square and triangular waves, often have
high frequencies. These high-frequency emissions can induce
electromagnetic interference, potentially disrupting the func-
tionality of electronic components and corrupting compu-
tational accuracy. Consequently, the aforementioned model
may encounter challenges in achieving precise solutions to
DNEs amidst periodic noise. Therefore, devising strategies
to mitigate the deleterious effects of periodic noise on system
performance is imperative. Introducing a circadian rhythms

neural network (CRNN) addresses challenges associated with
periodic noise, effectively addressing robotic arm problems
caused by such disturbances [33]. Differing from other neural
dynamic models, CRNN introduces a compensation term in
the error term opposite to the periodic noise period, offsetting
its effect and accelerating the approach of the error towards
nil. However, while these approaches contribute to alleviating
the impact of periodic noise, they have not thoroughly
analyzed the inherent properties of periodic noise in their
suppression strategies. Consequently, efficiency significantly
degrades when confronted with high-frequency periodic
noise. In summary, addressing periodic noise challenges
with advanced anti-noise neural dynamic models primarily
focuses on residual aspects rather than the periodic noise
itself. Accurately obtaining and analyzing the properties of
periodic noise remains a challenge in dealing with such
disturbances.

In the paper, the PNSND model is proposed to enhance
the traditional GND model for accurately addressing the
DNEs problem under periodic noise interference. Firstly,
leveraging the gradient design method [21], which drives
the DNEs problem residuals towards zero along the negative
gradient direction as rapidly as possible, we propose a GND
model for addressing DNEs. Secondly, in the absence of
noise, we introduce an improved GND model that effec-
tively eliminates lagging errors by incorporating derivative
information from related equations [34]. Consequently, the
accelerated GND model presented in this paper can also
handle dynamic problems, demonstrating better performance
compared to the ZND model. Furthermore, by leveraging
Fourier expansion to represent periodic noise, we design
harmonic compensation terms by combining the most sig-
nificant frequency characteristics of periodic noise and error
function information [32], [33]. These tailored harmonic
terms counteract the interference caused by periodic noise.
Based on the improved GND model and noise compensation
terms, we develop the PNSND model, which addresses
periodic noise interference from a harmonic perspective,
thereby improving the model’s accuracy in addressing DNEs
under periodic noise interference. Specifically, Table (1)
illustrates a comparative analysis of the characteristics of
several excellent models and the PNSND model.

The primary works presented in the paper are delineated
below:

• Proposing a neural dynamic model (PNSND) to address
DNEs problems under periodic noise interference. Con-
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structed from the perspective of noise itself, the PNSND
model demonstrates superior performance compared to
existing anti-noise models.

• Through mathematical analysis and proofs, the validity
and robustness of the PNSND model in addressing
DNEs problems are strictly analyzed and proven.
Theoretical analysis confirms the model’s excellent
ability to handle the impact of periodic noise.

• Demonstrating the feasibility of the PNSND model
in practical applications through numerical simulations
and successful application to a robot arm. This verifi-
cation confirms the model’s effectiveness in handling
periodic noise interference in real-world scenarios.

The following outlines the composition of the paper.
Section II summarizes the formulation of DNEs problems,
introduces previous advanced anti-noise models, and applies
to the DNEs problem. Section III introduces the PNSND
model which can efficiently address the DNEs problem under
periodic noise. The performance of the PNSND model under
periodic noise interference is proved by rigorous theoretical
analysis in Section IV. In Section V, simulation experiments
of various models are conducted, illustrating the superior
capabilities of the PNSND model via a comparative analysis.
Additionally, the effectiveness of the PNSND model is
validated through its application to a robotic arm. Eventually,
the conclusion of the paper is provided in Section VI.

II. RELATED WORK
A. PROBLEM FORMULATION
With a guarantee of generality, the DNEs can be expressed
as [35]:

2(y(t), t) = 0, t ∈ [ts, te], (1)

in which the variable t denotes time, 2(·) ∈ Rm is a nonlinear
mapping and y(t) ∈ Rn signifies the sought solution to
equations (1), with n = m. This indicates that equation (1)
constitutes a well-posed problem, guaranteeing a unique
solution for each unknown function without ambiguity in its
determination. The variables ts and te respectively represent
the start time and the end time. Clarity is enhanced by stating
that the objective of addressing equations (1) is to ensure the
value of y(t) approaches the expected theoretical limit y∗(t)
at any time t ∈ [ts, te] ⊆ [0, +∞).

B. TRADITONAL GND MODEL
In this subsection, a traditional GND model for addressing
DNEs (1) is derived in detail. Firstly, to derive the GND
model for addressing DNEs (1), the scalar function 4(t) is
chosen as the performance index of the GND model [24].
Below is the expression of the energy function 4(t) based
on the norm.

4(t) =
||2(y(t), t)||22

2
, (2)

where || 2(y(t), t) ||2 denotes the 2-norm of 2(y(t), t). The
GND model is derived by minimizing 4(t) along its negative

gradient direction −∂4(t)/∂y(t):

ẏ(t) =
dy(t)
dt

= −γ (
∂4(t)
∂y(t)

), (3)

where γ > 0 is utilized to control the rate of convergence.
Traditional GND model can be expanded by (3):

ẏ(t) = −γ
(∂2(y(t), t)

∂ y(t)

)T
2(y(t), t) = −γ JT2(y(t), t),

(4)

where JT represents the transpose of the matrix J , given that
the Jacobian matrix J =

∂2(y(t),t)
∂y(t) ∈ Rm×n has full row rank.

C. ZND MODEL
The ZND model for dealing with DNEs (1) problem is
presented in advance [26]:

ė(t) = −γ e(t). (5)

The function used to quantify error is represented by e(t) =

2(y(t), t) and monitor the addressing process of DNEs (1).
The ZND model can be expanded:

J ẏ(t) = −γ2(y(t), t) − 2̇t (y(t), t). (6)

D. ANTI-NOISE MODEL
To assess the capability of the PNSNDmodel (21) to suppress
periodic noise, two anti-noise models, the IEZNN model
and the CRNN model, are given to address DNEs(1) under
periodic noise [32], [33]. The IEZNNmodel can be expressed
as follows in addressing DNEs (1):

J ẏ(t) = −γ2(y(t), t) − 2̇t (y(t), t)

− α

∫ t

0
2(y(g), g)dg+ N (t), (7)

and the CRNN model is given as:

J ẏ(t) = −γ2(y(t), t) − 2̇t (y(t), t) − x(t) + N (t), (8)

where x(t) adheres to the following principles:

x(t) =

{
x(t − T ) + α2(y(t), t), if t ≥ T
0, if 0 < t < T ,

(9)

where T (= 2π f ) represents the period of the periodic noise.

III. METHODOLOGY
A. ACCELERATED GND MODEL
To leverage the efficiency of the ZND model in addressing
dynamic problems, we incorporate derivative information
into the solution process of the GND model. The velocity
compensation term s(t) is introduced to address the dynamic
aspects of the problem. This hybrid approach combines the
strengths of both the GND and ZND models, resulting in
a more efficient solution process for dynamic challenges.
By considering the derivative information through the
velocity compensation term s(t), the accelerated GND model

VOLUME 12, 2024 88929



S. Huang et al.: PNSND: A Novel Solution for DNEs and Its Application to Robotic Arm

FIGURE 1. The construction process of PNSND model.

becomes more capable of effectively addressing DNEs (1)
problems:

ẏ(t) = −γ JT2(y(t), t) + s(t). (10)

Achieving the ideal solution to the problem entails reaching
a state of zero error, denoted as e(t) = 0, which also means
that 2(y(t), t) = 0. Equation (10) reaches equilibrium and
the following states can be obtained:

ẏ(t) = s(t). (11)

Equation (10) is deformed by multiplying both sides by a
Jacobian matrix J :

J ẏ(t) = −γ JJT2(y(t), t) + Js(t). (12)

Subsequently, when the error function reaches its minimum
value and stabilizes, the time derivative of the error ė(t) is
given as:

ė(t) = 2̇t (y(t), t) + J ẏ(t) = 0, (13)

the following states is obtained:

2̇t (y(t), t) = −J ẏ(t). (14)

Substituting (11) and (14) into (12) generates the following
accelerated GND model that can handle dynamic problems
as well as the ZND model (6) and outperforms the ZND
model (6):

J ẏ(t) = −γ JJT2(y(t), t) − 2̇t (y(t), t). (15)

B. IMPROVED GND MODEL
In [36], the neural dynamic model can benefit from a
proper selection of γ , which will increase the convergence
rate. However, we discovered a neural dynamic with a
parameter-changing function can be faster than one utilizing
a fixed parameter in terms of convergence rate through many
experiments. Building on this research, we propose a novel
parameter-changing function that significantly outperforms
other functions in terms of convergence capability, and we
implement it in model (15) within the paper. As done above,
replacing fixed parameters in model (15) with a parameter-
changing function γ (t) ≥ 0 yields the improved GNDmodel
with a better convergence rate. To analyze the performance of

the improved GND model for addressing DNEs (1), we have
the improved GND model:

J ẏ(t) = −γ (t)JJT2(y(t), t) − 2̇t (y(t), t), (16)

where γ (t) = p arctan t + p3, p ∈ N+.

C. PNSND MODEL
Our objective was to design a periodic noise suppression
neural dynamic model, with a particular focus on the
performance of the model under periodic noise. The con-
struction process of PNSND model is shown in Figure 1.
In mathematics, a periodic function is accurately represented
through the Fourier series, which expresses it as an infinite
sum of sine and cosine components, each with distinct
amplitude and frequency. This representation is given by the
following series:

N (t) =
a0
2

+

∞∑
i=1

[ai cos(iw0t) + bi sin(iw0t)] , (17)

where N (t) represents periodic noise, a0
2 represents the

direct component, ai and bi are the Fourier coefficients
determined by properties of the function, i is an integer,
w0 is the angular frequency (2π f , where f is the frequency
of periodic function). Significantly, for the PNSND model,
the key to suppressing periodic noise lies in the suppression
of the superposition of its harmonic components. The
periodic function can be effectively reconstructed through the
combination of a finite number of these terms, with increased
accuracy achieved by using additional terms when necessary.
However, it is not essential to deliberately introduce an
excessive number of harmonic terms in pursuit of extreme
precision, as the desired effect can be achieved within a
limited set. Figure 2 demonstrates the use of a sawtooth
wave, a form of periodic noise, as an example of harmonic
term expansion. In practice, it is unnecessary to add an
excessive number of compensatory terms, which would
only serve to increase the computational load unnecessarily.
When conditions permit, that is, when periodic noise is a
singular function, that is, the direct component and the cosine
component are zero, the harmonic term of periodic noise can
be completely represented by the superposition of finite sine
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FIGURE 2. Taking sawtooth wave noise as an example, the Fourier of periodic noise is expanded into a finite
number of harmonic terms, and then these harmonic terms are superimposed to restore the original signal.

functions as shown below:

N (t) =

k∑
i=1

bi sin(2iπ ft + φi), k ∈ [1, ∞], (18)

where k is the number of harmonic terms, φi is unknown
phase. Taking the derivative of the noise twice can be
obtained:

N̈ (t) = −

k∑
i=1

4i2π2f 2bi sin(2iπ ft + φi), k ∈ [1, ∞]. (19)

It follows that N̈ (t) is proportional to N (t), which is a
characteristic of periodic noise. We proceed by simulating
the behavior of periodic noise, harnessing its distinctive
properties in conjunction with the error function to construct
harmonic terms. The following is the specific information of
the harmonic terms:

ȧi(t) = qi(t) + 4π2f 2i 2(y(t), t),
q̇i(t) = −4π2f 2i ai(t),
fi = f · i, i ∈ [1, k],

(20)

where variables ai(t) and qi(t) are crafted to leverage
the unique property that the second derivative of periodic
noise correlates with the noise itself, effectively intertwining
the error function with periodic noise data. This design
serves to integrate the dynamics of both the error and the
noise, enhancing the responsiveness of model to periodic
disturbances. According to the above method, the appropriate

harmonic terms can be designed by analyzing the character-
istics of the periodic noise, and combining the information
of the error function. These harmonic compensation terms
are specifically crafted to counteract the effects of the
periodic noise, effectively reducing its impact on the solution
process. The PNSND model is constructed by combining the
improved GND model (16) and the harmonic compensation
term to effectively suppress the periodic noise, which is
constructed as follows:

J ẏ(t) = −γ (t)JJT2(y(t), t) − 2̇t (y(t), t)
−

∑k
i=1 fai(t) + N (t),

ȧi(t) = qi(t) + 4π2f 2i 2(y(t), t),
q̇i(t) = −4π2f 2i ai(t),
fi = f · i, i ∈ [1, k],

(21)

where
∑k

i=1 fai(t) is the harmonic compensation term for
periodic noise N (t). By incorporating the designed harmonic
term into the model, the periodic noise can be suppressed,
leading to improved performance and accuracy in addressing
the problem.

IV. THEORETICAL ANALYSIS
In this section, the efficacy of the PNSND model (21)
for addressing the DNEs (1) with periodic noise is proved
through the following theorems. First, we analyze the
convergence of the PNSND model (21) without noise in
Theorem 1. In addition, we further analyze the robustness of
the PNSND model (21) under periodic noise in Theorem 2.
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A. CONVERGENCE OF PNSND
Theorem 1, along with its detailed proof, is provided to
comprehensively analyze the convergence performance of the
PNSND model (21).
Theorem 1: The solution of DNEs derived from the

PNSND model (21) converges exponentially to the theoret-
ical solution (1) in the absence of noise.
Proof: First, when the PNSND model (21) is in the case of

no noise, that is, N (t) = 0 and f = 0, then the harmonic
compensation term is naturally zero. The expression of
PNSND model (21) in the absence of noise is identical
to the one presented for the improved GND model (16),
with additional transformations, we derive the subsequent
equation:

J ẏ(t) + 2̇t (y(t), t) = −γ (t)JJT2(y(t), t). (22)

Next, combining (13) and (22) leads to:

ė(t) = J ẏ(t) + 2̇t (y(t), t) = −γ (t)JJTei(t). (23)

Elementwisely, the i th subsystem is obtained and λi > 0
represents the i th eigenvalue of the matrix JJT:

ėi(t) + λiγ (t)ei(t) = 0, (24)

where i ∈ [1, n]. The proof of convergence for this system
can be converted to solving linear homogeneous differential
equations of first order and its general solution is as follows:

ei(t) = C0e−λi
∫

γ (t)dt

= C0e−λi(p3t+t arctan(t)−
ln(t2+1)

2 +C1), (25)

where C0 and C1 are all constants, let κ(t) = p3t +

t arctan(t) −
ln(t2+1)

2 + C1, and κ̇(t) can be represented:

κ̇(t) = p3 + arctan(t) > 0. (26)

Then κ(t) is an increasing function, when t → ∞,
κ(t) → ∞, and we can get:

lim
t→∞

ei(t) = lim
t→∞

C0e−λiκ(t) = 0. (27)

The following inference can be made:

lim
t→∞

||e(t)||2 = 0. (28)

Therefore, it can be summarized and generalized that the
residual error of the PNSND model (21) in addressing
DNEs (1) exponentially converges to zero in the absence of
noise.

B. PNSND IN THE PRESENCE OF PERIODIC NOISE
In this section, Theorem 2 and the corresponding proof
are provided to investigate the performance of the PNSND
model (21) under the interference of periodic noise.
Theorem 2: The solution of DNEs derived from the

PNSND model (21) converges exponentially to the
theoretical solution (1) under the interference of periodic
noise N (t) =

∑k
i=1 bi sin(2iπ ft + φi), where amplitude bi

and phase φi remain unspecified.

Proof: Based on the properties of the introduced periodic
noise N (t) =

∑k
i=1 bi sin(2iπ ft + φi), adding the following

periodic noise information:
Ṅ (t) =

∑k
i=1 2iπ fbi sin(2iπ ft + φi)

= 2π fiN (t) = n(t),
ṅ(t) =

∑k
i=1 4i

2π2f 2bi sin(2iπ ft + φi)
= −4π2f 2i N (t).

(29)

Multiple noise compensation terms are represented by 1(t),
that is, 1(t) =

∑k
i=1 fai(t). The PNSND model (21) can be

represented as follows:

J ẏ(t) = −γ (t)JJT2(y(t), t) − 2̇t (y(t), t)
−1(t) + N (t),

ȧ(t) = q(t) + 4π2f 2i 2(y(t), t),
q̇(t) = −4π2f 2i a(t),
Ṅ (t) = n(t),
ṅ(t) = −4π2f 2i N (t).

(30)

By defining {
b(t) = 1(t) − N (t),
c(t) = q(t) − n(t),

(31)

a more concise and simple expression can be obtained:
J ẏ(t) = −γ (t)JJT2(y(t), t) − 2̇t (y(t), t) − b(t),
ḃ(t) = c(t) + 4π2f 22(y(t), t),
ċ(t) = −4π2f 2i b(t).

(32)

Combining the definition of ė(t), the above matrix represen-
tation can be converted into the subsequent n-dimensional
subsystem: 

ėi(t) = −λiγ (t)ei(t) − bi(t),
ḃi(t) = ci(t) + 4π2f 2ei(t),
ċi(t) = −4π2f 2i bi(t),

(33)

where i ∈ [1, n] and λi > 0 denotes the i th eigenvalue
of the matrix JJT . Barbalat’s lemma can be used to analyze
the aforementioned system because it can be thought of as a
non-autonomous dynamic system. The immediate corollary
in [37]: the convergence of states in the system can be
examined by employing a Lyapunov-like lemma, which is
commonly utilized to assess the stability of dynamic systems.
For this purpose, the Lyapunov function can be defined as
follow:

V2(t) =
e2i (t)

2
+

b2i (t)

8π2f 2i
+

c2i (t)

32π4f 4i
. (34)

We get V̇2(t) with (33):

V̇2(t) = ėi(t)ei(t) +
ḃi(t)bi(t)

4π2f 2i
+
ċi(t)ci(t)

16π4f 4i
= −λiγ (t)e2i (t) ≤ 0. (35)

It can be obtained that V2(t) ≤ V2(0), and ei(t), bi(t),
and ci(t) are bounded. Due to the nonautonomous nature
of the dynamic system (33), the direct application of the
invariant set theorem for analysis is not possible. To meet the
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requirements of Barbalat’s lemma, it is necessary to establish
the uniform continuity of V̇2(t) and provide proof for it. Then
we take the derivative of V̇2(t) and get V̈2(t)

V̈2(t) = −λi

{
ei(t)

[
γ̇ (t) − λiγ

2(t)
]

− γ (t)bi(t)
}

, (36)

both γ (t) and γ̇ (t) =
p

1+t2
are abounded. Since it has been

demonstrated that ei(t) and bi(t) are bounded, it follows that
V̈2(t) is also bounded. Consequently, the uniform continuity
of V̇2(t) can be inferred. Last, it can be summarized from the
Barbalats lemma:

lim
t→∞

ei(t) = 0. (37)

So it can be deduced:

lim
t→∞

||e(t)||2 = 0. (38)

Therefore, the residual error of the PNSND model (7)
in addressing (1) globally converges to zero with the
interference of periodic noise.

V. SIMULATION EXPERIMENT
A. NUMERICAL SIMULATION
In the previous sections, theoretical analysis was conducted
to prove that the PNSNDmodel (7) exhibits both convergence
and robustness. This section presented numerical simulations
to compare the above models’ performance in addressing
the DNEs (1) problem under different conditions. For
convenience, a simple system of nonlinear equations was
directly chosen for this task. The following are the equations
and their corresponding theoretical solutions:

2(y(t), t) =


ln(y1(t)) −

1
t+1

y1(t)y2(t) − e
1
t+1 sin(t)

y21(t) − sin(t)y2(t) + y3(t) − 2
y21(t) − y22(t) + y3(t) + y4(t) − t

 , (39)

y∗(t) =


e

1
t+1

sin(t)

2 − e
2
t+1 + sin2(t)
t − 2

 . (40)

The corresponding computer simulation of DNEs (1) is
carried out considering the following three cases, that is,
no noise interference, square wave noise interference, and
triangular wave noise interference. The model parameters
γ = 100, p = 100, α = 100, k = 6, and the simulation
duration is 10 s. For controlling the convergence speed,
we have chosen to standardize the coefficient across all
models with γ . Specifically, for the PNSND model, which
typically employs a variable parameter function to control
convergence, we have unified its parameter p with γ to
ensure a single variable is used for convergence control.
Additionally, for the anti-noise component of models, where
α is a coefficient related to the noise reduction capability,
we have set α to a uniform value for two anti-noise
models in order to facilitate the comparison of the anti-noise
performance. For the number of harmonic terms k , we have

determined that a finite number of terms, as illustrated in
Figure 2, can achieve the desired effect, thus k takes a value
that is small and still achieves the desired performance.

1) IN THE ABSENCE OF NOISE INTERFERENCE
Simulation results of the traditional GNDmodel (4), the ZND
model (6), the accelerated GNDmodel (15) and the improved
GND model (16) in the absence of noise interference are
shown in Figure 3. The four models are applied to address
dynamic nonlinear equations under the same conditions
for comparison purposes. As depicted in Figure 3 (a), the
traditional GND model (4) generates large lagging errors,
thus the solution is not well. The accelerated GNDmodel (15)
almost lost its ability to converge within the initial three
seconds due to an exceedingly slow rate of convergence. The
ZND model is specially used to address this kind of dynamic
problem, so the solution effect is bound to be better than the
GND model. Whereas the improved GND model (16) has
better convergence accuracy and faster convergence speed
compared with the above models, even surpasses that of
the ZND model (6) as depicted in Figure 3. The proposed
improved GND model (16) features a velocity compensation
term s(t) which is 2̇(y(t), t) from a control perspective, and
it can control 2(y(t), t) = 0 well. In short, every solution of
the improved GND model (16) converges to the theoretical
solution and achieves good results, as demonstrated in
Figure 3 (b).

2) UNDER THE INTERFERENCE OF PERIODIC NOISE
The section presented numerical simulations to evaluate and
contrast the performance of all the models in the paper under
periodic noise. First, the simulations are carried out to assess
the sensitivity of CRNN model (7) and PNSND model (21)
to high-frequency noise. Figure 4 depicts that the residual
resulting from the CRNN model (7) undergoes notable
harmonic oscillatory behavior. The oscillation becomes more
pronounced as the frequency increases, with the order of
oscillation reaching up to the order of 100. However, the
PNSNDmodel (21) ensures that the residual converges to the
order of 10−4 regardless of the noise frequency. Subsequent
simulations are conducted to compare the resistance of
PNSNDmodel (21), IEZNNmodel (7), and CRNNmodel (8)
to various types of periodic noise. In this comparative
simulation study, square wave and triangular wave noises,
which are prevalent in industrial applications, are selected to
validate the robustness of the aforementioned models. The
waveforms of these two distinct periodic noises are depicted
in Figure 5.

• Under the interference of square wave noise (in
Figure 5 (a)): Simulation outcomes for the trio of
anti-noise models are shown in Figure 6. The residual
error of the IEZNN model (7) exhibits a periodic char-
acteristic, as observed in the simulation results. Because
the construstion of themodel only considered the change
of e(t) and did not involve any information about
noise. Conversely, the CRNNmodel (8) incorporates the
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FIGURE 3. (a) The residual error of four models for addressing DNEs (1) in the absence of noise. (b) The theoretical
solution (cyan-solid line) and computed solution (blue-dotted line) of the improved GND model (16).

FIGURE 4. The residual error of PNSND and CRNN for addressing DNEs (1) under the interference of the sine
function with an amplitude of 10 and different frequency(f1). (a) CRNN (8) with f1 = 1/2π . (b) CRNN (8) with
f1 = 5/π . (c) CRNN (8) with f1 = 10/π . (d) PNSND (21) with f1 = 1/2π . (e) PNSND (21) with f1 = 5/π .
(f) PNSND (21) with f1 = 10/π .

FIGURE 5. Two distinct types of periodic disturbances. (a) Square wave
noise. (b) Triangular wave noise.

periodic noise information, thereby the convergence
effect of residual error is better than the IEZNN
model (7). However, in comparison to the aforemen-
tioned models, the PNSND model (21) obtains the most
important frequency characteristics of periodic noise
and combines it with the information of error function to

suppress the noise from the harmonic perspective of the
periodic noise, which makes the residual convergence
faster and more accurate.

• Under the interference of triangular wave noise (in
Figure 5 (b)): It is theoretically established that the
PNSND model (7) is capable of efficiently suppressing
any form of periodic noise. Under the interference of
triangular wave noise, the PNSND model (21) proposed
in this paper still maintains excellent robustness com-
pared with the previous two models in Figure 7 (a).
In this situation, the PNSNDmodel (7) exhibits the most
superior convergence characteristics and achieves the
order of 10−4, as can be observed from Figure 7 (b),
it is obvious that the PNSND model (21) has a good
addressing ability to address DNEs (1) problem.

In general, when comparing the PNSND model (21) with
the IEZNN model (7) and the CRNN model (8), it can
be concluded that the PNSND model (21) is the optimal
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FIGURE 6. The residual error of three models for addressing DNEs (1) under the interference of square wave noise.
(b) The theoretical solution (cyan-solid line) and computed solution (blue-dotted line) of the PNSND model (21) under
the interference of square wave noise.

FIGURE 7. The residual error of three models for addressing DNEs (1) under the interference of triangular wave noise.
(b) The theoretical solution (cyan-solid line) and computed solution (blue-dotted line) of the PNSND model (21) under
the interference of triangular wave noise.

approach for addressing DNEs problems under the inter-
ference of periodic noise. The PNSND model (21) exhibits
the highest accuracy and the fastest convergence rate among
the aforementioned models. Since the PNSND model (21)
combines the information of the error function and frequency
characteristics of periodic noise, the noise interference is
suppressed from the harmonic angle of periodic noise.
Therefore, in terms of efficiency and effectiveness, the
PNSND model (21) outperforms the IEZNN model (7) and
the CRNNmodel (8) in addressing DNEs problems under the
interference of periodic noise.

B. APPLICATION OF ROBOTIC ARM
In the preceding sections, the PNSND model (21) was
employed to address the DNEs issue (1). In this section,
we further validate the efficacy of the PNSND model (21)
by applying it to a robotic arm for real-world applications.
A robotic arm can be characterized by the linkage between
the joint angles and the location of its end effector, which is
described through forward kinematics [38], [39], [40]. The
location of the end effector is derived from the joint angles,

and this linkage is encapsulated in the following formula:

ϵ(θ (t)) = l(t) ∈ Rm. (41)

θ (t) ∈ Rn denotes the joint angle of the robotic arm, l(t)
denotes the location of the end effector with n = m, and ϵ(·)
represents a nonlinear forward kinematics mapping function.

In this simulation, the two-link planar robotic arm is used
to draw a five-leaf grass pattern under the interference of
square wave noise (in Figure 5 (a)). The robotic arm has
two connecting rods, each measuring 1 meter in length, and
the initial joint state is [0, π/3]T rad. The parameters of
the PNSND model (21) are identical to those utilized in the
preceding simulations. The simulation results of the PNSND
model (21) applied to the motion trajectory of the robotic
arm are illustrated in figure 8. Figure 8 (a) and (c) reveal
that the actual trajectory produced by the PNSNDmodel (21)
is highly close to the desired path and the given task is
completed well under the interference of periodic noise. The
maximum error of the corresponding location of the end
effector is also well controlled within 10−3 m. Furthermore,
it is observed that the joint angles ultimately revert to their
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FIGURE 8. Application of the PNSND model (13) to kinematic control of a two-link planar robotic arm: (a) Desired
path and actual trajectory. (b) Joint-angle profiles θ(t). (c) Motion trajectories. (d) Corresponding location error of
end-effector e(t).

original positions. This indicates that both the resolution
of kinematic redundancy and the occurrence of joint drift
have been altered due to the influence of periodic noise.
Through this simulation experiment, it can be concluded
that the PNSND model (21) can address dynamic nonlinear
problems effectively under the interference of periodic noise.
The practical use of the PNSND model (21) in the industrial
setting further confirms its efficiency and advantageous
performance.

VI. CONCLUSION AND FUTURE
The paper proposes the PNSND model, designed to accu-
rately address DNEs in the presence of periodic noise
interference. To refine solution precision, the traditional
GND model, previously unable to address dynamic issues,
is extended by incorporating a velocity compensation mech-
anism. This modification enables the GND model to effec-
tively handle dynamic problems. Additionally, we propose
a novel parameter-varying function coefficient to enhance
the model’s convergence capacity and speed. By leveraging
Fourier expansion of periodic noise, harmonic compensation
is employed to nullify the effects of periodic noise interfer-
ence. The proposed PNSND model demonstrates superior
performance in eliminating periodic noise interference com-
pared to existing noise suppression neural dynamic models,

leveraging the frequency characteristics of the periodic
noise and the variation of the residual error. Comparative
simulations confirm the PNSNDmodel’s enhanced capability
in suppressing periodic noise during DNEs handling, outper-
forming other neural dynamic models. Furthermore, robotic
arm experiments validate the effectiveness of the PNSND
model. Theoretically, it expands the scope of neural dynamics
by introducing a novel approach to addressing DNEs under
periodic noise, providing a robust framework for future
studies in the field. Practically, the PNSND model serves
as a robust tool for engineers and practitioners, significantly
enhancing the stability and precision of dynamic systems
amidst noise. It optimizes control systems and offers a crucial
solution for precise dynamic system modeling and control,
boosting the efficiency and effectiveness of engineering
systems.

In the forthcoming research, we intend to delve deeper into
the potential of PNSND model, particularly in addressing
the balance between the number of harmonic compensation
terms and computational capacity. As computational power
continues to grow, we can enhance the performance of model
to suppress periodic noise by increasing the number of com-
pensation terms. However, it is crucial to identify the optimal
trade-off between computational complexity and solution
accuracy. This may involve algorithmic optimizations to
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ensure that themodel remains efficient evenwith an increased
number of compensation terms. Given the specialized design
of our model to counteract periodic noise, the current limita-
tion is that it can only be adapted to scenes with mainly peri-
odic noise interference. This targeted approach, while effec-
tive for periodic interference, may not extend as effectively to
environments rife with non-periodic noise. We aim to extend
the applicability of the model to not only periodic noise but
also non-periodic disturbances with periodic characteristics.
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