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ABSTRACT The deterioration of power generation facilities built during the early stages of plant operation
is becoming increasingly severe, raising concerns about potential socioeconomic harm from pipe leaks.
Consequently, there is a pressing need for rapid leak detection and proactive responses. Prior research
primarily relied on various signal processing techniques and supervised learning for leak detection. However,
these approaches struggle with accurate detection amid environments with diverse background noises and
weak leak signals, exacerbated by challenges in gathering sufficient real-world leakage data, which can
lead to overfitting during model learning. Therefore, in this paper, an adaptable leak detection model
suitable for various environments was proposed to ensure precise leak detection. Frequency spectrum feature
extraction and transfer learning were utilized to achieve accurate leak detection, even with limited data.
In addition, an unsupervised learning–based autoencoder model is employed to identify leaks accurately
by learning general patterns, even when leakage data is limited. Experimental results demonstrate that the
proposed model, integrating feature extraction techniques using the Uniform Manifold Approximation and
Projection (UMAP) algorithm and employing transfer learning, achieved a higher accuracy performance
with 6.35 percentage points (%p) compared to the model lacking these techniques. In addition, these findings
confirm a slight decrease in accuracy performance even when using minimal learning data. Moreover, the
leak detection performance was superior to the existing models considered in this study, achieving a high
accuracy rate of 99.19%.

INDEX TERMS Pipelines, leak detection, feature extraction, manifold learning, transfer learning,
unsupervised learning, autoencoder.

I. INTRODUCTION
The deterioration of power plants and generation facilities
constructed during the early stages of operation is accel-
erating, leading to increased deterioration frequency, and
worsening pipe leakage issues.

Pipelines are susceptible to environmental factors such as
high temperature, pressure, and humidity, which may result
in leakage due to corrosion or various external conditions [1].
Moreover, delayed detection of leaks allows them to expand
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over time, leading to greater damage. These pipe leaks pose
a potential hazard that can lead to safety accidents, economic
losses, and environmental pollution issues. Therefore, it is
imperative to develop technology for early leak detection and
continuous monitoring systems [2], [3].

Currently, there is a growing demand for early leak
detection and proactive responses due to aging infras-
tructure, prompting active research to prevent and mini-
mize damage [4]. In existing studies, data from acoustic
or vibration sensors were primarily utilized, employing
various signal processing techniques such as time, fre-
quency, and time-frequency domains for leak detection.
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However, challenges persist in distinguishing microleaks
amid noise and mechanical interference, hindering remote
detection [5].

In the era of the Fourth Industrial Revolution, artificial
intelligence technology is gaining prominence. In particular,
autoencoder (AE) technology, which enables rapid leak
detection and real-time response to leaks in industrial
settings [6], multilayer perceptron (MLP) [7], deep neural
network (DNN) [8], convolutional neural network (CNN)
[9], and utilizing machine learning and deep learning
models based on recurrent neural network (RNN) [10] are
actively researched. Accordingly, this study employed vari-
ous deep-learning technologies to detect pipe leaks. More-
over, given the challenge of obtaining adequate real-world
leakage data [11], this study employed an autoencoder
model [12], [13], [14], representative of an unsupervised
learning approach [15], to detect leaks by identifying normal
data patterns. Furthermore, transfer learning techniques [16],
[17] were applied to improve leak detection accuracy across
diverse environments with limited data. Thus, this paper
proposes an environment-adaptive leak detection model that
achieves high accuracy with minimal data based on both
unsupervised and transfer learning.

The paper presents several key contributions.
1) The proposed model enhances leakage detection by

utilizing the uniform manifold approximation and
projection (UMAP) feature extraction algorithm intro-
duced in this study to extract valuable features from the
frequency spectrum.

2) An unsupervised learning autoencoder model is pro-
posed to address challenges in collecting adequate
leakage data in real environments. This model can
detect leaks by learning normal signals from back-
ground noise.

3) The transfer learning technique is applied to the
autoencoder model mentioned in 2) to mitigate over-
fitting issues in scenarios with limited training data,
ensuring high-accuracy performance across different
environments.

This paper’s structure is outlined as follows: Chapter II
reviews existing literature on leak detection. Chapter III
covers data collection and preprocessing and the model
proposed in the study. In Chapter IV, experimental results are
analyzed, comparing the proposed leak detection model with
existing methods. Chapter V presents concluding remarks,
summarizing the study’s outcomes, and suggesting future
research directions.

II. RELATED WORK
Before the advent of artificial intelligence technology, leak
detection relied on traditional signal processing techniques.
Wang et al. [18] proposed an acoustic-based method employ-
ing time-domain statistical feature extraction. Lee et al. [19]
introduced a leak detection technique involving injecting
fluid transients into a pipeline, followed by the analysis

of the resulting transient trace in the frequency domain.
Furthermore, Yao et al. [20] presented a time-frequency
analysis-based method for hydraulic actuator leak detection.
In a related context, Ferrante et al. [21] employed harmonic
analysis and wavelet analysis for efficient pressure signal
analysis and leak localization. These techniques, adopted as
primary signal processing methods, were mainly conducted
in the early stages of leakage detection research. However,
these methods faced challenges in accurately detecting leaks
in noisy environments.

To overcome these limitations, research focuses on enhanc-
ing leakage detection accuracy using artificial intelligence.
Bae et al. [22] generated root mean square (RMS) patterns
in the time domain and frequency pattern image features
in the frequency domain. These patterns were subsequently
employed in training a convolutional neural network (CNN)-
based artificial intelligence model. The aim was to detect
stable pipe leaks in noisy environments featuring complex
machine operations. Experimental results substantiated the
achievement of satisfactory performance. Mandal et al. [23]
proposed a leak detection technique based on rough set theory
and support vector machine (SVM) algorithm to reduce false
leak detection. Mashhadi et al. [24] evaluated six machine
learning methods for leak location identification in water
distribution systems (WDS), with logistic regression and ran-
dom forest showing excellent performance. Chuang et al. [25]
introduced an acoustic leak detection approach using a CNN
with Mel frequency cepstrum coefficients for groundwater
pipelines.

Furthermore, Yang et al. [26] proposed a Pressure Point
Analysis (PPA) leak detection method based on a Supervised
Optimally-Pruned Extreme Learning Machine (OPELM)
coupled with a bidirectional recurrent neural network for
continuous pressure monitoring. These studies represent
notable deep learning–based approaches, predominantly
employing supervised learning [27]. Whereas supervised
learning methods have demonstrated high accuracy in leak
detection even in noisy environments, challenges arise
in collecting sufficient leak data in real-world settings,
potentially affecting deep learning model training.

To address this, leak detection research using an unsu-
pervised learning method that can detect leaks by learning
normal data is being introduced. Moreover, it is widely used
for anomaly detection in various fields, including cyber-
security, financial fraud detection, and medical equipment
anomaly detection. It identifies leaks by learning normal
patterns without an answer key. Typical examples include
autoencoder [28] and clustering [29], and autoencoder
models are primarily used in time series data. An autoencoder
consists of an encoder [30] and a decoder [31]. This
architecture is designed to compress input data at the encoder
and reconstruct it at the decoder to reinterpret the initial input.
This structural design aims to enhance detection accuracy
and holds the advantage of effectively capturing nonlinear
relationships [32].
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Transfer learning, alongside unsupervised learning, has
garnered attention for transferring knowledge from a source
domain to improve the learning performance in a target
domain [33]. This facilitates efficient knowledge learning
in the target domain environment, enabling high-accuracy
performance even with limited data. Moreover, research
combined with unsupervised learning is in progress [34],
[35], which allows rapid and effective learning of new tasks.
Therefore, this study aims to achieve high-accuracy leak
detection in various environments by utilizing signal process-
ing techniques and deep learning technology. To this end,
the study adopts an autoencoder, an unsupervised learning
technique, as the model structure based on transfer learning.
Given the vulnerability of time domain signals to external
noise environments, only frequency domain characteristics
are considered. The following sections describe the data
utilized and comprehensively describe the proposed pipe leak
detection model.

III. PROPOSED METHOD
This section outlines the data collection and preprocessing
for implementing an environmentally adaptive leak detection
model. In addition, a detailed description of the proposed
model, based on transfer learning and unsupervised learning,
is provided.

A. DATA COLLECTION AND FEATURE EXTRACTION
PREPROCESSING
For the implementation of an environment-adaptive leak
detection model, noise and leak data were collected from
two different environments. The target domain refers to
the environment where the leak detection model will be
applied, whereas the source domain provides knowledge
for transfer to the target domain. Noise data, obtained
by measuring various mechanical noises around pipes,
represents steady-state data typical in living environments.
Normal and leakage time series data were collected from both
domains using four microphone acoustic sensors installed on
a plant piping system testbed, as shown in Figure 1 [36].

In the source domain environment, normal and leakage
data were initially collected at a sampling frequency of
100 kHz for each channel. Leakage data was measured at
100 locations of leaky pipes. A total of 25 combinations
comprising 5 types of leakage pressure (1, 2, 3, 4, 5 bar)
and 5 types of leakage size (0.5, 1.0, 1.5, 2.0, 2.5 mm) were
created to collect a diverse range of leakage data, including
microleakage conditions. Moreover, 450,000 leakage data
points were collected for each sensor.

Subsequently, in the target domain environment, normal
and leakage data were collected at a sampling frequency
of 100 kHz for each channel, with leakage data measured
at eight locations of leaky pipes. Low-level leak data were
gathered with a leak size set to 0.5 mm, and leak pressure
varied from 1 to 2 bar, resulting in 500,000 leak data points
per sensor.

FIGURE 1. Data collection environment for implementing the proposed
leak detection model using transfer learning.

B. FREQUENCY FEATURE EXTRACTION PREPROCESSING
This section aims to extract useful information from raw data
collected through measurements by utilizing signal charac-
teristics in the frequency domain. Although signal analysis
in the time domain can also be applied for leak detection
in this study, approaches utilizing amplitude information in
the time domain are generally easily affected by background
noise and surrounding mechanical noise, which can degrade
detection performance. In addition, given the commercial
availability of leak detection devices that utilize filtering and
spectral signal processing analysis in specific sections of
the frequency domain, this study considers feature extraction
preprocessing in the frequency domain rather than the time
domain. Figure 2 illustrates the application of the frequency
feature extraction signal processing to both normal and leaky
sample data collected in the testbed depicted in Figure 1.
Initially, the sampled data underwent low-pass filtering (LPF)
[37] to retain frequencies below 45 KHz. Subsequently,
a band-pass filter (BPF) was applied to extract the specific
band where the leakage signal is distributed (set to 4 kHz
to 45 kHz in this study), aiming to eliminate background
noise [38]. After applying these filters, the Fourier transform
(FT) was then applied to the normal and leakage data using
equation (1), with the result converted to a frequency domain
spectrum signal using the absolute value function [39].

FT =

∣∣∣∣∫ ∞

−∞

st · e−j2πstdt

∣∣∣∣ , (1)
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FIGURE 2. Data signal processing for frequency feature extraction.

where st refers to the time domain input signal and e−j2πst

represents the complex exponential function corresponding
to each frequency component in the frequency domain.
Next, to reduce the computational workload and simplify
the complexity required for model learning, the signal
output in (1) was divided into 100 sections, where the
average value of the spectral sample magnitude for each
section is calculated as a representative value, result-
ing in a spectrum magnitude vector with 100 frequency
samples. Therefore, through appropriate signal filtering,
including (1), as shown in Figure 2, observing the maximum
magnitude and spectral shape differences between normal
and leaky signals within a specified frequency range is
possible.

Lastly, the data preprocessing techniques for extracting
key features from the frequency spectrum magnitude vectors
involve the UMAP algorithm [40]. The UMAP algorithm
is a nonlinear neighborhood graph-based algorithm, and
calculations are made through the construction of a specific
weighted k-neighbor graph. This algorithm attempts to pre-
serve the dataset’s local environment rather than preserving
its large-scale structure by assigning higher weights to
closer neighbors. Therefore, it operates by identifying a
preset number of nearest neighbors and assigning more
weight to the nearest neighbors based on their distance [41].
The application of the UMAP algorithm is illustrated by
equation (2).

UMAP = exp(−
d(FT(a)FT(b))2

σaσb
), (2)

where d(FT(a)FT(b)) refers to the distance between data
points, a and b, and σaσb refers to the Gaussian kernel widths.
The position of the data is measured through Euclidean
distance calculation and squaring the result, quickly reducing
the weight of the distance between distant data points.
In addition, dividing the value by the Gaussian kernel width
properly adjusts weights and distances between data points.

The UMAP algorithm generally focuses on very local
structures when the number of neighbors is small. When it
is large, it forces the user to look at larger neighbors of each
point when estimating various data structures [42]. In this
study, Euclidean distance was used to measure distance, and
the number of neighbors was set to five. This value was
selected experimentally and set to the small neighborhood’s
value to preserve the local structure. The results obtained by
applying the UMAP algorithms to the frequency spectrum
magnitude vector are defined as the UMAP-Freq feature
(UMAP). Therefore, in this study, a feature extraction
algorithm is applied to the frequency spectrum magnitude
vector, as depicted in Figure 2, and the resulting feature vector
is utilized for model learning.

C. AUTOENCODER-BASED LEAK DETECTION MODEL
USING TRANSFER LEARNING
This section presents an autoencoder-based leak detection
model applicable to various environments through transfer
learning. The proposed process structure, as shown in
Figure 3, undergoes a two-stage model learning process
(Stage 1, Stage 2) and a leak detection phase. As the stage
progresses from Stage 1 to Stage 2, transfer learning is
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FIGURE 3. Proposed model architecture for leak detection.

applied. Stage 1, the initial step in the proposed model,
utilizes source domain data and undergoes the frequency
feature extraction processing, as illustrated in Figure 2.
Specifically, the UMAP-Freq feature data extracted from the
source domain data through (1) and (2) serves as input for the
unsupervised learning–based autoencoder model presented
in (3) and (4). The model is trained solely on normal data,
excluding leakage instances.

z = Wencoder · x + bencoder , (3)

x̄ = Wdecoder · z+ bdecoder , (4)

whereWencoder refers to the encoder’s weight matrix, x refers
to the input data, and bencoder refers to the encoder’s bias
vector. Equation (3) produces the latent expression ‘‘z,’’
used in the decoder computation. Moreover, Wdecoder in (4)
denotes the decoder’s weight matrix, and bdecoder presents
the decoder’s bias vector. The decoder is computed using the
latent vector calculated in the encoder, resulting in the output
of x̄, the reconstructed value for the input data. In this study,
four autoencoder series model structures are considered,
including multilayer perceptron (MLP), deep neural network
(DNN), one-dimensional convolutional neural network (1D
CNN), and separable one-dimensional convolutional neural
network (Separable 1D CNN). MLP and DNN handle
two-dimensional input data through a fully connected neural
network, adjusting weights between neurons in each layer.
Conversely, 1D CNN and Separable 1D CNN operate on
three-dimensional input data, utilizing 1D convolution and
depth-wise separable convolution operations for feature
extraction from the input data. In Chapter 4, the leak detection
accuracy performance of the four models described above are
compared. Upon completing Stage 1 learning, the encoder

model is saved and transferred to Stage 2 for incremental
transfer learning.

Stage 2 utilizes target domain data, applying the same
frequency feature extraction processing techniques as Stage
1. To utilize source domain knowledge, the weights of the
pretrained encoder model from Stage 1 are frozen, and the
decoder model is applied to perform retraining.

Upon completing Stage 2 learning, the leak detection
algorithm is executed to determine leak presence, as depicted
in the ‘‘Leak detection algorithm block’’ in Figure 3. Initially,
the reconstruction error is computed by calculating the
difference between the encoder input signal and the decoder
output signal, as expressed in equation (5).

RE =
1
N

∑N

i=1
|x − x̄|, (5)

where N refers to the number of data samples, x refers to the
input signal, and x̄ refers to the reconstruction signal output
through the decoder. The calculated reconstruction error
value is used to set the threshold (T ), and the abnormality
detection threshold for normal signals is calculated as in
equation (6).

T = µ (RE) + σ (RE) , (6)

where µ(·) denotes the average, σ (·) denotes the standard
deviation, and RE denotes the reconstruction error in (5).
The presence of leaks is determined using the model created
through step-by-step transfer learning of Stage 1 and Stage
2. This determination relies on the sum of the mean (µ) and
standard deviation (σ ) for RE. A threshold is established with
the combined value, set within the range where a normal
signal exists, and calculated using the reconstruction error
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Algorithm 1 Overall Procedure for the Leak Detection
Process Based on Transfer Learning and Unsupervised
Learning
•Stage 1: By applying the frequency feature extraction tech-
nique, an unsupervised learning-based autoencoder model is
learned.

1) Time series data from the source domain is converted
into a frequency spectrum magnitude signal, as depicted in
the ‘‘Model Training Structure of Stage 1 block’’ in Figure 3.
Subsequently, the UMAP-Freq feature is extracted using (2).

2) Based on the extracted UMAP-Freq feature data,
an autoencoder model utilizing an artificial neural
network–based structure is trained.
•Stage 2: The transfer learning technique is utilized to
implement a leak detection model in the target domain by
transferring the pre-trained encoder from Stage 1.

1) Time series data from the target domain is converted
into a frequency spectrum magnitude signal, as shown in the
‘‘Model Training Structure of Stage 2 block’’ in Figure 3.
Subsequently, the UMAP-Freq feature is extracted using (2).

2) Using the extracted UMAP-Freq feature data, the
weights of the encoder model obtained in Stage 1 are frozen,
and the decoder model is additionally applied to perform
retraining.
•Leak detection phase: Utilizing the autoencoder model
with transfer learning completed from Stage 1 to Stage 2,
leakage is determined by establishing a threshold based on
the reconstruction error.

1) As depicted in the ‘‘Leak detection algorithm block’’ in
Figure 3, the threshold is determined from (6) based on the
reconstruction error value.

2) Based on the set threshold, the presence of leakage in
the new input signal is determined.

values of normal data through (6). Normal and leak states are
determined based on this threshold: if the reconstruction error
value exceeds the threshold, it is identified as a leak; if it is
below the threshold, it is classified as normal.

An overview of the leak detection technique, applying
transfer learning and unsupervised learning as proposed in
this study, is outlined in Algorithm 1, which is then utilized
to compare the performance of leak detection based on data
feature extraction and transfer learning.

IV. EXPERIMENT RESULTS
Chapter 4 comprises three sections, outlined as follows. First,
Section IV-A evaluates leak detection performance with and
without the feature extraction technique. In Section IV-B,
we assess leak detection performance with and without
the transfer learning technique, also examining performance
changes based on the training data utilization ratio. Lastly,
in Section IV-C, we conclude by comparing the leak detection
performance of the proposed model against an existing
supervised learning model.

A. LEAK DETECTION PERFORMANCE OF THE PROPOSED
MODEL USING FREQUENCY FEATURE EXTRACTION
In this section, leak detection performance is assessed by
exclusively training Stage 2 of the model structure depicted
in Figure 3. This evaluation focuses on the application of
feature extraction techniques, namely the UMAP algorithm,
to the frequency spectrum data. Notably, transfer learning is
excluded, and Stage 1 is not considered. Leak detection per-
formance is compared between unsupervised learning–based
autoencoder models across four neural network structures,
including MLP, DNN, 1D CNN, and Separable 1D CNN.

To train the model, 7,500 pieces of normal data were
randomly sampled for each sensor from the target domain
data, totaling 30,000 pieces of data. These were divided into
a 2:1 ratio composed of 20,000 training data and 10,000
test data. In addition, 10,000 test data points were extracted
from the leak data in the target domain for executing the
leak detection algorithm. Ultimately, 20,000 test data points
representing both normal and leak scenarios were utilized.

The four autoencoder models implemented for leak
detection were categorized into two-dimensional input-based
models (MLP and DNN) and three-dimensional input-based
models (1D CNN and Separable 1D CNN). The structures of
each model are detailed in Tables 1 to 4.

TABLE 1. Detailed structure of autoencoder model based on MLP
structure.

TABLE 2. Detailed structure of autoencoder model based on DNN
structure.

In the notation, Dense denotes a fully connected layer,
Conv1d denotes a 1D convolution layer, Separable Conv1d
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TABLE 3. Detailed structure of autoencoder model based on 1D CNN
structure.

TABLE 4. Detailed structure of autoencoder model based on separable
1D CNN structure.

for a 1D depth-separating convolution layer, Maxpooling1d
for a 1D maximum pooling layer, and Upsampling1d denotes
a data dimension expansion layer.

Learning parameters suitable for the four models were
determined using validation data, setting the learning rate
to 0.001 with the RMSprop learning algorithm [43]. The
number of learning epochs and batch size were determined
based on the model structure. For the 2D input-based model,
the number of epochs was set to 30, with a batch size of 32.
For the 3D input-based model, the number of epochs was
set to 50, with a batch size of 64. The loss function was
set to mean squared error (MSE) because all four models
were regression models using unsupervised learning, and the

performance evaluation metric was set to mean absolute error
(MAE).

The performance comparison of the four models, along
with the results of leak detection performance measurements
based on the application of the UMAP extraction algorithm,
is presented in Table 5. Through the test methodology of
three-fold cross-validation, each model underwent a total
of five learning sessions, with leak detection performance
described based on the average of the measured values.
UMAP-Freq represents features extracted by applying the
UMAP algorithm. Analysis of the experimental results in
Table 5 indicates that models applying the feature extraction
technique outperformed those that did not.

TABLE 5. Leak detection accuracy (%) by autoencoder models depending
on the application of feature extraction technique.

Furthermore, another feature extraction method, principal
component analysis (PCA) [44], [45], was considered for
comparison with UMAP, as shown in Figure 4. The notation
PCA-Freq represents features extracted by applying the PCA
algorithm to the frequency spectrummagnitude signal (Freq).
The output feature dimension using PCA and UMAP was
set to match the original frequency spectrum size vector
dimension for comparison purposes. Notably, the UMAP
algorithm showed superior performance compared to PCA.
In addition, Table 5 and Figure 4 illustrate that among
the models utilizing the UMAP algorithm, the MLP model
exhibited the highest leak detection performance, achieving
98.83% accuracy.

FIGURE 4. Comparison of leak detection model performance based on
the application of feature extraction techniques.

Furthermore, the autoencoder model based on the
MLP structure with UMAP-Freq features demonstrated
excellent signal restoration performance, as shown in
Figure 5.

VOLUME 12, 2024 88945



S. Park et al.: Unsupervised Learning-Based Plant Pipeline Leak Detection

FIGURE 5. Signal restoration results of an autoencoder model based on
the MLP structure applying UMAP-Freq features.

B. LEAK DETECTION PERFORMANCE DEPENDING ON
TRANSFER LEARNING TECHNIQUE APPLICATION
This section presents a comparison of the leak detection per-
formance of an MLP-structured autoencoder model utilizing
the UMAP-Freq feature, which showed the best performance
in Section IV-A. The comparison is based on whether the
transfer learning technique presented in Figure 3 is applied.
For models without transfer learning techniques, only the
‘‘Model Training Structure of Stage 2 block’’ is performed
in Figure 3, defining this as the base model.
First, Table 6 presents the experimental result evaluating

the impact of applying the UMAP algorithm in the proposed
method for transfer learning. The objective of this experiment
is to evaluate leak detection performance using the original
frequency spectrum data and UMAP-Freq feature data under
the same transfer learning condition. Through this analysis,
we aim to quantify the degree of performance enhancement
resulting from the application of the UMAP algorithm.
Analysis of the experimental result in Table 6 indicates
that the application of the UMAP algorithm in transfer
learning yielded the best performance. This represents a 6.02
%p improvement compared to the transfer learning model
without the UMAP algorithm.

TABLE 6. Leak detection accuracy (%) depending on the application of
UMAP to the proposed model with transfer learning.

Next, leak detection performance, depending on the
application of transfer learning techniques, is provided in
Table 7. In this study, to investigate changes in leak detection
performance with decreasing training data utilization ratios,
the number of test data was fixed at 10,000. The training
data was systematically reduced to 100%, 70%, 50%, 30%,
10%, and 5% of its original size, and accuracy was measured
for each ratio. Here, the model’s performance was evaluated
using three-fold cross-validation.

TABLE 7. Leak detection accuracy (%) based on training data utilization
ratio.

The performance measurement results of the proposed
model using both the base model and transfer learning
technique across different training data utilization ratios
are presented in Table 7 and Figure 6. Analyzing Table 7
reveals that the model’s accuracy performance with the
applied transfer learning technique remains relatively stable,
even with reduced training data, whereas the model without
transfer learning shows a noticeable decrease in accuracy as
the training data decreases. Specifically, the proposed model
achieves a higher accuracy performance with 0.36 percentage
points (%p) compared to the base model without transfer
learning, based on 100% training data utilization. This
performance gap widens as the training data utilization
ratio decreases, as quantitatively shown in Table 7 and
Figure 6.

FIGURE 6. Comparison of leak detection model performance according to
training data utilization ratio.

C. COMPARISON WITH EXISTING SUPERVISED LEARNING
MODEL
This section presents a comparison of the leak detection
performance of existing supervised machine learning models
with the proposed model. Models such as 1D CNN,
logistic regression, long short-term memory (LSTM), and
SVM were considered supervised learning leak detection
models. Performance comparison was conducted using
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various training data ratios, where ‘‘Train data rate (%)’’
in Table 8 and Figure 7 represents the utilization rates
of the training data at 100%, 70%, 50%, 30%, and 1%.
The model’s performance was evaluated using a three-fold
cross-validation test methodology. Binary Crossentropy was
selected as the loss function because of the binary label
setup in supervised learning. In addition, leak detection
performance was evaluated using the same data configuration
as the proposedmodel, allowing frequency spectrum size data
from the target domain to be input into the supervised learning
model.

TABLE 8. Leak detection accuracy (%) performance comparison between
the proposed model and a supervised learning–based model.

FIGURE 7. Results of leak detection accuracy performance comparison
according to training data utilization ratio.

Analysis of the experimental results in Table 8 and Figure 7
indicates that the proposed model exhibited superior leak
detection performance, achieving an accuracy of 99.19%.
Furthermore, whereas the accuracy of the existing models
based on supervised learning notably decreases with reduced
training data, the proposed model shows minimal perfor-
mance degradation. Leveraging transfer learning, where the
pretrained encoder model from Stage 1 is utilized for step-by-
step learning, the proposed model consistently demonstrates
high-accuracy performance, reaching 98.14% accuracy even
with limited training data.

In addition, confusion matrix–based performance mea-
surements of precision, recall, and F1-score demonstrate that
the proposedmodel outperforms existingmodels, as shown in

Table 9. Precision refers to the proportion of cases predicted
as leaks by the model that are actually leaks. Recall refers to
the proportion of actual leak cases that the model correctly
predicts as leaks. F1-score is the harmonic mean of precision
and recall, effectively distinguishing between leaks and
normal cases and ensuring a good balance between precision
and recall. Analysis of the experimental results in Table 9
indicates that the proposed model shows superior precision,
recall, and F1-score compared to the existing models. This
represents a significant improvement in leak and normal
detection accuracy compared to previous research models.

TABLE 9. Leak detection performance (%) results using the precision,
recall, and F1-score performance metrics.

FIGURE 8. Experimental environment for inference on the proposed
model deployed on Raspberry Pi 4.

Finally, we performed an inference experiment by deploy-
ing the leak detection model—after completing the proposed
stagewise transfer learning for theMLP-based autoencoder—
onto a lightweight embedding board, as shown in Figure 8.
We converted the proposed model into a lightweight version
using TensorFlow Lite [46] for deployment on the Raspberry
Pi. Inference performance was measured by the time taken
to distinguish between leaks and normal conditions after
preprocessing the data through frequency feature extraction.
The proposed model’s performance was evaluated using a
total of 20 mixed datasets, consisting of 10 normal instances
and 10 leak instances, with the inference results shown
in Figure 8. The average inference time for 20 consec-
utive normal and leak data instances was 0.72 s. This
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experimental result indicates that the proposed method can
perform reasonably fast inference within 1 s, meeting the
required operational runtime despite the constraints of limited
computing resources.

V. CONCLUSION
In this study, an unsupervised learning–based leakage
detection model using a transfer learning technique designed
for versatility across various environments was proposed.
By applying the transfer learning technique, which leverages
knowledge gained from the source domain to enhance learn-
ing in the target domain, the proposed model demonstrated
experimentally high accuracy in leak detection performance,
even with limited training data. In addition, employing
unsupervised learning autoencoder models aids in leak
identification by learning background noise patterns, which is
particularly beneficial in scenarios with limited leak data. The
proposed model works by initially learning to interpret data
patterns through an encoder that compresses the input data
and a decoder that reconstructs it. The reconstruction error,
which is the difference between the original input and the
reconstructed output, helps define a threshold for determining
normal and leak states: reconstruction error values above this
threshold indicate leaks, while those below are classified as
normal. Furthermore, applying the UMAP algorithm to fre-
quency spectrum signals enhances the model’s performance
by utilizing meaningful data information.

Moving forward, leveraging the model proposed in this
study, we aim to explore the development of a continuous
monitoring system capable of providing real-time feedback
on countermeasures to mitigate issues through constant
surveillance. Furthermore, based on this study’s successful
application experiments on transfer learning from a source
domain emulating the actual environment to a target domain,
we plan to conduct future experiments to assess model
transfer reliability and generalization. These experiments will
involve applying the proposed approach to real-world leakage
detection and extending the research to include a deeper
investigation of data distributions for leak detection beyond
the distance-based threshold technique considered in this
study.
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