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ABSTRACT As the popularity of cryptocurrencies grows, the threat of phishing scams on trading networks
is growing. Detecting unusual transactions within the complex structure of these transaction graphs and
imbalanced data between Benign and Scams remains a very important task. In this paper, we present
Disentangled Prototypical Graph Convolutional Autoencoder, which is optimized for detecting anomalies in
cryptocurrency transactions. Our model redefines the approach to analyzing cryptocurrency transactions by
treating them as edges and accounts as nodes within a graph neural network enhanced by autoencoders. The
DP-GCAE model differentiates itself from existing models by implementing disentangled representation
learning within its autoencoder framework. This innovative approach allows for a more nuanced capture of
the complex interactions within Ethereum transaction graphs, significantly enhancing the ability of the model
to discern subtle patterns often obscured in imbalanced datasets. Building upon this, the autoencoder employs
atriplet network to effectively disentangle and reconstruct the graph. Reconstruction is used as input to Graph
Convolutional Network to detect unusual patterns through prototyping. In experiments conducted on real
Ethereum transaction data, our proposed DP-GCAE model showed remarkable performance improvements.
Compared with existing graph convolution methods, the DP-GCAE model achieved a 37.7 percent point
increase in F1 score, validating the effectiveness and importance of incorporating disentangled learning
approaches in graph anomaly detection. These advances not only improve the Fl-score of identifying
phishing scams in cryptocurrency networks, but also provide a powerful framework that can be applied
to a variety of graph-based anomaly detection tasks.

INDEX TERMS Graph autoencoder, anomaly detection, triplet network, graph neural network,
representation learning.

I. INTRODUCTION phishing scams, posing significant challenges in ensuring

The advent and proliferation of cryptocurrencies have dra-
matically transformed the financial landscape, offering ben-
efits like independent transaction methods, rapid transfer
speeds, and lower fees [1], [2], [3]. However, inherent char-
acteristics of cryptocurrencies such as anonymity and decen-
tralization [4], [5], [6], while providing numerous advan-
tages, also leave these networks vulnerable to sophisticated
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secure transactions [7], [8], [9], [10]. This escalating threat
underscores the urgent need for advanced and reliable fraud
detection methods in cryptocurrency transactions.
Recognizing this issue, our research focuses on addressing
the inherent vulnerabilities in cryptocurrency transactions.
The transparency of the blockchain technology, particu-
larly within the Ethereum network, allows anyone to access
all transaction records [11]. This accessibility provides a
complete dataset for researching various Ethereum users,
offering an invaluable resource for our study. The primary
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challenge lies in the difficulty of distinguishing between
legitimate and fraudulent transactions within the complex
and often imbalanced data of transaction graphs [12], [13].
Traditional graph analysis methodologies reveal inadequacies
in effectively identifying these subtle differences, thereby
highlighting the necessity for a more sophisticated approach.
Particularly, the patterns of fraudulent transactions often
mimic those of legitimate ones, making detection of scams
challenging. Developing advanced analytical tools capable of
detecting and analyzing these similarities is a crucial research
task in this field. Figure 1, Table 1 shows transaction pat-
terns according to benign and scam nodes. The transaction
patterns of benign nodes (Figures d, e, f) and scam nodes
(Figures a, b, ¢) are very similar. Similarity in transaction
patterns between benign and scam nodes is difficult to detect,
making the proposed methodology very important to solve
this problem.

We address the escalating challenge of scams within cryp-
tocurrency transaction networks. One of the critical issues
in these networks is the subtle distinction between benign
and scam transactions, which are often masked by the com-
plex nature of the transaction graphs. To address nuanced
challenge, we have developed the Disentangled Prototypical
Graph Convolutional Autoencoder (DP-GCAE) model. The
DP-GCAE is specifically designed to detect anomalous activ-
ities in these complex networks. The model treats transactions
as edges and accounts as nodes, utilizing graph neural net-
works and autoencoders to process and analyze the data. The
core mechanism of DP-GCAE involves an autoencoder that
disentangles the graph’s features through a triplet network
and then reconstructs the graph by processing the features of
nodes and edges. The reconstructed graph, processed through
the autoencoder, then serves as input to a Graph Convolu-
tional Network (GCN). Then, the model utilizes a prototyping
approach to detect unusual patterns, excelling in distinguish-
ing between legitimate and fraudulent transactions within the
Ethereum network. This approach is particularly effective in
handling the complexities of the transaction graph, making
the DP-GCAE model a potent tool for identifying scams in
cryptocurrency transactions.
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FIGURE 1. Scam and benign patterns according to similar number of
nodes and edges.

Our study addresses the inherent vulnerabilities in cryp-
tocurrency transactions. A key obstacle is the complexity of
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TABLE 1. Distribution of scam and normal nodes and edges.

Scam (a) (b) (c)
Benign (d) © ®
Node, edge distribution
Nodes 100-150 150-200 600-650
Edges 50-80 100-150 300-350

distinguishing between legitimate and fraudulent transactions
amidst the often-imbalanced data characteristic of transaction
graphs.

The contributions of our work can be summarized as
follows:

1) Advanced Disentanglement: The DP-GCAE’s inno-
vative use of disentangled prototyping approaches
with triplet networks has significantly improved
the ability of the model to identify and classify
scams in cryptocurrency networks, marking a substan-
tial advancement in graph-based anomaly detection
methods.

2) Empirical Validation: Demonstrated through exhaus-
tive testing with real Ethereum transaction data, the
DP-GCAE model exhibits remarkable improvements
over traditional detection methods. It proves its effi-
cacy in analyzing and classifying transactions within
extensive cryptocurrency networks, underscoring its
practical relevance and superior performance.

The rest of paper is structured as follows: Section II pro-
vides an overview of related research in graph data analysis,
focusing on the trends and methodologies prevalent in this
field. Section III details our proposed model, DP-GCAE,
explaining its design and functionalities. In Section IV,
we compare the performance of our DP-GCAE model
against various conventional methods, showcasing its effi-
cacy in anomaly detection within cryptocurrency transac-
tions. Finally, Section V offers a discussion on our findings
and conclusions drawn from this research.

Il. RELATED WORKS

In the area of transaction security within blockchain net-
works, research trends have described two main defense
mechanisms: anomaly detection and classification. However,
despite these advances, existing methodologies often strug-
gle with the high complexity and evolving nature of fraud
in blockchain networks, particularly in Ethereum transac-
tions. This complexity frequently results in false positives or
negatives, undermining the effectiveness of traditional meth-
ods. Table 2 summarizes existing defense mechanisms and
methods for graph data.

Anomaly detection techniques, such as Graph Autoen-
coder (GAE) [14], base their structure on autoencoders that
map input data into a latent space before reconstructing
it back into the original space. This approach calculates
anomaly factors by comparing the original and reconstructed
features of each node, identifying deviations from stan-
dard patterns. Additionally, methods like the Heterogeneous
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Transaction Subnet-based Graph Convolutional Network
(HTSGCN) [15] considers the heterogeneity of Ethereum
transaction data, using different weight matrices based on
transaction types and directions. This method employs
GCN layers to aggregate features from neighboring nodes,
capturing the complex relationships inherent in Ethereum
transactions.

TA-Struc2Vec [16] employs a multi-layer weighted graph
to encode structural similarities between nodes, using the
Dynamic Time Warping (DTW) algorithm for similarity
assessment. This technique builds a structural context for
each node, allowing the model to learn patterns that are
indicative of fraud. Dual-Augment Graph Neural Network
(DAGNN) [17] operates on a dual-path framework incorpo-
rating Disparity Augment (DA) and Similarity Augment (SA)
paths. The DA path highlights differences, while the SA path
emphasizes similarities between nodes. This model combines
information from both paths to enhance anomaly detection.
Ego-graph embedding [18] is designed for Ethereum trans-
action data, using individual account-centric ego-graphs and
relabeling strategies based on Ethereum transaction attributes
like transaction amounts, counts, and directions. This method
focuses on the local network structure around each node.

Similarly, Local and Global Aware Memory-Based Graph
Neural Network (LGM-GNN) [19] generates relation-aware
embeddings for nodes and fuses local and global informa-
tion through its memory networks. This approach allows the
model to maintain a comprehensive view of the graph struc-
ture, which is crucial for detecting complex fraud patterns.

Moreover, advancements in graph-based anomaly detec-
tion and classification have been made with Neural
Meta-Graph Search (NGS) [20], optimizes message pass-
ing structures for graph-based fraud detection by using
meta-graphs to finely control information aggregation across
various relations. NGS’s meta-graph approach also improves
interpretability, offering insights into detected anomalies.
Similarly, the S_HGTNs model [21] has shown notable
efficacy in detecting anomalous activities within Ethereum
smart contracts. This approach constructs Heterogeneous
Information Networks from complex smart contract data,
extracting features based on meta paths and generating node
embeddings with a transformer network.

The Explainable fraud detection framework [22] inno-
vatively uses Multi-modal Information Graphs (MIG) and
example-based explanations to assist in understanding
detected frauds. This method indexes and extracts similar
and diverse fraud subgraphs from past cases, providing a
new perspective on fraud detection in complex networks like
social media. Addressing the challenge of imbalanced data
distributions in multi-relation graphs, the IMINF model [23]
introduces an Imbalanced and Interactive Learning Frame-
work that uses feature mapping modules and relationship
aggregation to distinguish fraudulent actors effectively.
IMINF’s interactive learning component allows it to contin-
uously improve its performance as it encounters new data.
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The MS_HGNN model [24] takes a hybrid approach to
online transaction fraud detection, focusing on mitigating the
imbalance issues inherent in graph-based data. This model
combines hybrid sampling techniques with reinforcement
learning-based reward/punishment mechanisms to optimize
relational sampling weights.

GTN2Vec [25], designed to detect money laundering activ-
ities within the Ethereum network, integrates gas prices and
timestamps as new weights to adjust random walk sampling
tendencies. This method leverages these transaction-specific
features to better capture the behavior patterns of money
laundering nodes, enhancing the accuracy of the detection
process. For phishing scam detection, the SIEGE model [26]
employs self-supervised incremental deep graph learning
to process and analyze large-scale Ethereum transaction
data. It utilizes spatial and temporal pre-text tasks to learn
high-quality node embeddings that capture the intricate
details of phishing scams.

In addition, TTAGN [27] utilizes LSTM, attention
mechanisms, and structural enhancements to detect phish-
ing addresses. This framework is tailored for analyzing
transaction patterns and interactions within the Ethereum
blockchain. Lastly, the PDTGA method [28] implements tem-
poral graph attention mechanisms specifically designed for
phishing detection within Ethereum. This method focuses on
the temporal characteristics of nodes and edges, allowing it to
accurately identify phishing accounts by understanding how
fraudulent activities evolve over time. These findings extend
our understanding of the diverse methods and approaches
employed for anomaly detection and classification within
Ethereum and similar complex networks, highlighting the
continual evolution and sophistication of these models.

In summary, existing methods have provided a solid foun-
dation for the detection and classification of anomalies within
blockchain networks. However, there remains an evident gap
in crafting a comprehensive solution equipped to dynamically
adapt to the ever-changing nature of blockchain fraud. While
some related works have approached aspects of this chal-
lenge, they often lack an integrated framework that combines
anomaly detection with classification in a manner that adapts
to the shifting patterns of fraud.

Our research addresses this gap by proposing a singu-
lar, adaptive framework that unites these two critical facets.
By implementing an Autoencoder for the initial detection
of anomalies, followed by a GCN for robust classification,
our hybrid method is designed to meet the complex chal-
lenges presented by the security of Ethereum transactions.
To conclude, our study augments the existing corpus of
research by providing a nuanced perspective on the synergy
between anomaly detection and classification in blockchain
networks. Our comparative analysis of various methods and
their performance on diverse datasets reveals the integral role
of an adaptive, integrated approach [29]. This strategy does
not merely enhance the F1-Score for anomaly detection in
Ethereum transactions but also charts a course for future
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TABLE 2. Summary of defense mechanism and methods for graph data.

Defense

Mechanism Method Dataset Performance year
. . Graph Neural Ethereum F1-Score
Classification Network [30] transaction 0.95 2021
Anomaly Graph Auto- QCD boost-
Detection encoder [31] ed jet AUCO.84 2021
Anomaly GAE[14]  Benchmark  AUC096 2022
Detection
. . Amazon, F1-Score
Classification = DAGNN [17] YelpChi 91.47,70.61 2022
Ego-graph
Classification ~ Embedding ~ Luereum Fl-Score )
[18] transaction 0.82
Amazon F1-Score
Classification NGS [20] Yel Chi’ 0.9228 2022
P (+0.0046)
S HGTN Eth Fl-Score
Classification ~21] s ransaction 0.8900 2022
(£1.430)
Classification HTSGCN[15] ~ Lhereum Fl-Score 553
transaction 0.85
. . TA-Struc2Vec Ethereum F1-Score
Classification [16] transaction 0.74 2023
. . LGM-GNN Amazon, AUC 96.57,
Classification [19] YelpChi 32 83 2023
Explainable Books, F1-Score
Classification fraud detection Amazon, 0.9000 2023
[22] YelpChi ’
Classification  IMINF [23] Amazon, Fl-Score 5053
YelpChi 94.86
. . MS _HGNN Amazon,
Classification [24] YelpChi AUC 0.9430 2023
. . GTN2Vec Ethereum F1-Score
Classification [25] transaction 0.9590 2023
. . Ethereum F1-Score
Classification SIEGE [26] transaction 0.720 + 0.01 2023
. . Ethereum F1-Score
Classification =~ TTAGN [27] transaction 0.8200 2023
. . Ethereum F1-Score
Classification PDTGA [28] transaction 0.8423 2023

innovations in the domain of blockchain security. Our work
is pivotal as blockchain technology evolves, contributing to
the critical discourse on safeguarding the integrity and safety
of digital transactions at an international scale.

lll. PROPOSED METHOD
A. OVERVIEW OF THE PROPOSED METHOD
Our proposed model, DP-GCAE, offers a novel approach
to detecting anomalies in cryptocurrency trading networks.
DP-GCAE integrates the concepts of disentangled represen-
tation learning with a prototyping network, utilizing a unique
triplet network architecture. This integration is key to achiev-
ing a more nuanced and sophisticated analysis of Ethereum
transaction data, enabling the model to effectively distinguish
between benign and scam transactions.

In DP-GCAE, the Ethereum network is represented as
a graph G = {V,E}, where V denotes accounts (V =
{vi,va,...,v,}), with each v; representing an individual
account, and E denotes transactions (E = {eq, e2, ...,ep}).
The architecture of the model, as shown in Figure 2, processes
transaction data through two critical stages: disentanglement
and prototype formation. The disentanglement stage uses
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the triplet network to separate the key features of the graph
data, which helps in isolating the characteristics of scam
transactions from benign ones.

This process of disentangling is crucial for focusing on
relevant patterns within the data. The prototype formation
stage of DP-GCAE then uses these disentangled features
to create prototypes that are representative of both normal
and anomalous transaction patterns. These prototypes aid in
effectively classifying transactions by comparing new data
points with the established patterns.

B. DISENTANGLED GRAPH CONVOLUTIONAL
AUTOENCODER

1) AUTOENCODER-BASED ANOMALY DETECTION
MECHANISM

The Graph Convolutional Autoencoder (GCAE), a core com-
ponent of our DP-GCAE model, is specifically designed to
process graph-structured data. It leverages the unique prop-
erties of graphs to effectively encode relational information,
playing a pivotal role in anomaly detection within cryptocur-
rency transaction networks. The autoencoder operates by
encoding the input data into a latent space of lower dimen-
sions, focusing on capturing the essential characteristics of
the graph data. During the encoding phase, the autoencoder
identifies and distills significant features from the transaction
data, preserving vital structural information that is critical in
understanding the nature of transactions within the Ethereum
network.

In Figure 3, GCN use the same parameters and opti-
mization function in the encoder and decoder. GCN in both
the encoder and decoder phases offers feature consistency,
which is essential for maintaining the integrity of the graph’s
structural information throughout the encoding and decod-
ing processes. Moreover, it enhances learning efficiency by
allowing the model to symmetrically apply learned transfor-
mations, thus improving the overall model performance by
more effectively leveraging the graph’s inherent properties.
Once the data is encoded into the latent space, the decoding
phase begins. Here, the autoencoder attempts to reconstruct
the original graph structure from the distilled features. This
phase is crucial as it tests the ability of the model to accurately
capture and represent the data’s inherent characteristics.

The main goal of reconstruction process is to minimize the
error between the original and reconstructed data, as repre-
sented by the optimized objective function in Equation (1).
6 represents the parameters of the autoencoder, while fp (x;)
denotes the reconstructed data output by the model. The
objective is to minimize the sum of squared differences
between the original data x; and the fy (x;).

0* = argming Z Lp (0; x;)

Xi € Xtrain

= argming " lfy () — xill> M

Xi € Xtrain
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FIGURE 2. Overview of the disentangled prototypical graph autoencoder
(DP-GCAE) architecture.

Benign data generally shows higher reconstruction accu-
racy than scam data, as detailed in [32]. This distinction
aids in flagging transactions with significant reconstruction
discrepancies as potential anomalies, leveraging the differ-
ence in reconstruction quality to identify deviations from
standard transaction patterns. By employing autoencoder-
based anomaly detection mechanism, our DP-GCAE model
efficiently identifies transactions that deviate from the norm,
thereby enhancing its capability to detect within the Ethereum
blockchain. This approach represents a significant advance-
ment in the field of graph-based anomaly detection, offering a
more sophisticated and effective tool for identifying potential
security threats in cryptocurrency transactions.

Algorithm 1 Triplet Selection for Graph Autoencoder
Training
Input:
- Node labels (data.y)
- Graph data (data.x, data.edge_index)
Output:
- Triplets tensor (anchor, positive, and negative nodes)
Main Process:

1: Initialize Variables (Identify unique labels = data.y)
2: Generate Triplets:
3: Identify Anchor and Positive Nodes

label_indices = (data.y == label).nonzero(as_tuple=False).view(-1)
4: Identify Negative Nodes
other_indices = (data.y != label).nonzero(as_tuple=False).view(-1)
5: Two nodes for the anchor/positive and at least one node for the negative
selection within each label
6: Form Positive Pairs and Select Negatives
positive_pairs = list(combinations(label_indices.cpu(). numpy(), 2))

7: triplets =[]

for pair in positive_pairs:

anchor, positive = pair

negative = random.choice(other_indices).item()

triplets.append([anchor, positive, negative])
: Output Triplets:

o

triplets_tensor = torch.tensor(triplets, dtype=torch.long)
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2) LEARNING GRAPH REPRESENTATION VIA DISENTANGLED
GRAPH AUTOENCODER

DP-GCAE introduces a disentanglement strategy that
employs a triplet network to enhance the ability of the model
to differentiate and isolate transactional patterns within the
Ethereum network. This function refines the embedding
space to distinctly separate nodes of similar transactional
behavior from those that differ, a fundamental step in accu-
rately identifying anomalies.

In Figure 3, the DP-GCAE architecture begins with
the input data, which represents transactional activities
within the network. These transactions are first processed
through a searching algorithm, such as Breadth-First Search
(BFS). Once the subgraphs are determined, the data is
passed to the triplet network, composed of anchor (g,),
positive (gp), and negative (g,) nodes. z is used to recon-
struct the original graph structure, enabling us to dis-
cern and classify anomalies based on their reconstruction
errors.

Algorithm 1 is described as the process used for sam-
pling triplets—composed of anchor, positive, and nega-
tive nodes—critical for training the GAE. This algorithm
specifically selects anchors and positives from the same
class to underscore similarities in transactional char-
acteristics, while negatives are chosen from different
classes to introduce the necessary contrasts and com-
plexities. The design and execution of Algorithm 1
are thus central to the GAE in learning discriminative
and meaningful node embeddings that are essential for
accurate and effective anomaly detection within transaction
networks.

The triplet loss function (Lyyipier) is then applied to this net-
work to optimize the process of disentangling the transaction
patterns. The core idea behind the triplet loss function is to
learn a representation in which transactions of the same class
are brought closer together, while those from different classes
are pushed further apart in the embedding space. The mathe-
matical formulation of the triplet loss function, expressed in
Equation (2), ensures that the distance between the anchor
and the positive nodes (similar transactions) is minimized,
while the distance between the anchor and the negative nodes
(dissimilar transactions) is maximized, exceeding a defined
margin «. The margin « is a critical hyperparameter that
governs the separation between matched (anchor-positive)
and unmatched (anchor-negative) pairs in the latent space.
Equation (2), plays a pivotal role in fine-tuning the sensi-
tivity of the model to the diverse spectrum of transactional
behaviors, thereby significantly augmenting its efficacy
in isolating, and identifying anomalies with heightened
accuracy.

Ltriplet =L (a, D, n)
N
=0 () —f () 1P=11F () —f () 1P + o
2)
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FIGURE 3. Disentangled graph convolutional autoencoder.

where f (x#), f (x7) and f (x!) represent the embeddings
for the anchor, positive, and negative nodes respectively,

as clarified in Equation (3):
V() f () f (i) eT 3)

The anchor and the positive nodes are transactions that
belong to the same class, reflecting similar transactional pat-
terns, whereas the negative node represents a transaction that
diverges from the anchor, illustrating a different behavior or
class. The effectiveness of the triplet loss function hinges on
its ability to simultaneously pull together similar transactions
while pushing apart those that are dissimilar, beyond the
margin «. This fosters a robust embedding space where trans-
actions are organized in a manner that intuitively reflects their
underlying relationships and patterns, thereby facilitating the
detection of anomalies based on the learned representations.

Algorithm 2, detailed in the manuscript, plays a critical
role in dynamically updating the loss weights during the
training of the GAE. This algorithm ensures that the emphasis
is appropriately balanced between the accuracy of recon-
struction and the efficacy of disentanglement, as clarified in
Equation (4):

L = Wyecon - Lrecon + Wtriplet * Ltriplet

= Wreeon - D, lfo (x1) — xilI?
X €Xtrain
N
+ Waripler - D LI () = () 117 = 11F (x)
—f (&) 1P + @] “)

It calculates the change in loss between iterations, subtly
shifting the balance towards the reconstruction or triplet loss
based on which aspect of the model requires refinement. This
real-time adjustment, informed by the loss history, allows for
anuanced tuning of the model, which actively responds to the
evolving complexity of the data it processes. The algorithm’s
role is to adjust the contribution of reconstruction and triplet
losses, refining the focus of the model during the learning
process.

Within this framework, wy..,, represents the updated
weight for the reconstruction loss, whereas wyp; denotes

91080

Lrecon = L(xi fo (1))

the updated weight for the triplet loss, calculated as wyyipjer =
1 — Wrecon. Furthermore, Lo, Symbolizes the reconstruc-
tion loss, and Lyyp; signifies the triplet loss. The term o
denotes the margin, integral to the calculation of the triplet
loss. By leveraging this loss function, DP-GCAE effectively
captures and magnifies the subtle distinctions between typical
transaction patterns, enabling the model to detect anomalies
with enhanced F1 score.

C. PROTOTYPICAL GRAPH CONVOLUTIONAL NEURAL
NETWORK

1) LEARNING ABNORMAL THRESHOLD VIA GRAPH
CONVOLUTIONAL NETWORK

The GCN within our DP-GCAE model is a sophisticated
component that significantly enhances the capability of the
model to detect anomalies. The process begins with the
calculation of a ‘Scam Score’ for each transaction, a met-
ric derived as per Equation (5). This score quantitatively
reflects the discrepancy between original transactions and
their reconstructed counterparts, serving as a preliminary
indicator of potential anomalies. Once obtained, these scam
scores, alongside the transaction data, are inputted into the
GCN.

ScamScore = ||fp (x;) — x,-II2 5)

The GCN’s architecture is adept at capturing the relational
nuances present in the transaction graph by leveraging the
inherent graph structure. It aggregates and synthesizes infor-
mation from each node’s local neighborhood, leveraging the
structural properties of the graph.

Through such a process, the GCN progressively refines
the representations of nodes across its layers, enhancing the
transactional features iteratively. This methodical enhance-
ment of features empowers the GCN to extract pivotal
information from the complex transaction network, which
is crucial for the precise classification of transactions.
Equation (6) outlines how the learned weights in the GCN’s
layers contribute to this feature aggregation process:

+1) _ 1 w,0
h _U(zjeN(i) C,»,-W Ky (©6)
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FIGURE 4. Prototypical graph convolutional neural network.

where hglﬂ) denotes the feature representation of node i at
layer [ + 1, o represents a non-linear activation function, W)
is the weight matrix at layer /, N (i) is the set of neighboring
nodes of 7, and Cj; is the normalization constant for edge (i, /).
This equation is critical for integrating the information from
a node’s neighbors into its updated feature representation,
enhancing the ability of the model to discern nuanced patterns
indicative of fraudulent activities.

To address the optimization of the threshold for anomaly
detection, we introduce Equation (7), which formalizes the
optimization objective for determining the threshold value:

0 = argming > (Lanomaly (03 %) + AlI011*)  (7)

Xi€Xtrain

where Lgnomary represents the loss function specific to
anomaly detection, A is the regularization parameter, and
0 encapsulates the parameters of the GCN model, includ-
ing weights and biases. This optimization seeks to balance
the sensitivity of the model to anomalies with the need
to minimize overfitting, ensuring robustness across diverse
transaction patterns. Through such a process, the GCN
progressively refines the representations of nodes across
its layers, iteratively enhancing transactional features. This
methodical enhancement of features empowers the GCN to
extract pivotal information from the complex transaction
network, crucial for the precise classification of transactions.

GCN’s role extends to learning the threshold that delineates
normal behavior from potential scams. By employing an
optimized threshold value, the network ensures that the clas-
sification of transactions is not only accurate but also reliable,
minimizing the incidence of false positives and negatives.
Furthermore, this approach of setting a dynamic threshold
allows the model to adjust its sensitivity based on the evolving
landscape of the blockchain transactions, ensuring that it
remains robust against both known and emerging fraudulent
patterns.

2) PROTOTYPING OF CRYPTOCURRENCY TRANSACTIONS

In the DP-GCAE model, the GCN’s prototyping approach
is operationalized through the implementation of a proto-
type network, which serves to categorize nodes within the
transaction network into distinct classes. This approach is
particularly effective in capturing the essence of transactional
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Prototyping
(Scam, Benign)

Distance based
anomaly Detection

GCN(x;, fo(x1))

behavior and is central to the ability of the model to discern
between different categories of transactions. To clarify, pro-
totyping involves the creation of a representative ‘prototype’
for each class of transaction within the network. These pro-
totypes are essentially the centroid vectors in the embedding
space, calculated as the mean of all node embeddings belong-
ing to the same class. For each class c, a prototype P, is
derived as the mean vector of the embeddings of all nodes
belonging to that class, as shown in Equation (8):

1
Pe=iem 2 @ @®)

where |C,| represents the number of nodes within class C,
and f (x) denotes the embedding function mapping nodes
to the embedding space. Equation (8) represents a foun-
dational step in distilling the core characteristics of each
transaction class. This process not only facilitates a clear
demarcation between different transactional behaviors but
also enhances the interpretability of the model by providing
tangible reference points within the embedding space.

Algorithm 2 Updating Loss Weights in Graph Autoencoder
Training

Input:

- Reconstruction loss(recon_loss) history and Triplet loss(t_loss) history

- Current reconstruction loss and triplet loss

Output:

- Updated weights for reconstruction and triplet losses
(new_recon_weight, new_t_weight)

Main Process:

1: set initial weights: return 0.5, 0.5.

2: Calculate the difference between the current loss and the previous loss for
both recon and triplet:

3:  delta_recon_loss = current_recon_loss - recon_loss_history[-1]

4:  delta_t_loss = current_t_loss - t_loss_history[-1]

5: Adjust the weights based on the change in losses:

6: if delta_recon_loss > delta_t_loss

7: Increase the weight of t_loss and decrease the weight of recon_loss.

8 adjustment = min (0.05, delta_recon_loss - delta_t_loss)

9 new_recon_weight = max (0.1, recon_loss_weight - adjustment)
10: else (triplet loss has increased more than reconstruction loss):

11:  Increase the weight of recon_loss and decrease the weight of t_loss.
12: adjustment = min (0.05, delta_t_loss - delta_recon_loss)

13: new_recon_weight = min (0.9, recon_loss_weight + adjustment)
14: Calculate the new weight for t_loss:

15:  new_t_weight = 1 - new_recon_weight

16: Return the updated weights: return new_recon_weight, new_t_weight
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In Equation (9), where each prototype is adjusted to
account for variance within the class:

1
Tl e, f @ =P O

where, « is a scaling factor that adjusts the influence of intra-
class variance, providing a more representative prototype that
captures not just the average, but also the spread of the node
embeddings within each class. This nuanced consideration
ensures that our prototypes are not merely static centers but
dynamic entities that reflect the true diversity of transactional
patterns within each class. The prototypical loss Ly is
then calculated to minimize the intra-class variations while
maximizing the inter-class separation, utilizing a softmax
over distances from class prototypes defined in Equation (10)
[33]:

P, = P.+a(

_ exp(—d(f (x), P))
Lpruto - Zceclasses log( Zc’eclasses exp(—d (f (X) s Pé,))
(10)

)

The prototypical loss function acts as a sophisticated
mechanism that finely tunes the sensitivity of the model to
the nuances of transactional data. In training, loss function
encourages the model to position the embeddings of nodes
closer to their corresponding class prototype than to others,
thereby achieving a clear distinction between transaction
classes in the embedded space. Figure 4 depicts the Proto-
typical Graph Convolutional Neural Network, highlighting
how it uses scam scores to distinguish between normal and
anomalous transactions. It shows the process of training the
model with prototypical loss and then using it to predict
new transactions as either normal or anomalous based on
learned prototypes. To operationalize this conceptual frame-
work within the DP-GCAE model, Algorithm 3 delineates
a systematic procedure for initializing, computing, and uti-
lizing class prototypes to classify nodes in the Ethereum
transaction graph. The process begins with followed by the
initialization of class prototypes and the computation of
prototypes for each transaction class.

The crucial steps of calculating distances between node
embeddings and prototypes, converting these distances to
similarity scores, and ultimately classifying nodes based on
these scores. This algorithmic flow culminates in the predic-
tion of labels (scam/benign) for each node, underscoring the
practical implementation of our prototyping approach. This
algorithmic process, along with the prototypical loss func-
tion, enables the DP-GCAE model to effectively prototype
anomalies in cryptocurrency transactions, leading to a more
nuanced detection capability as reflected in the enhanced F1
score.

IV. EXPERIMENTAL RESULTS

A. DATASET AND PREPROCESING

Our empirical analysis was conducted using data from the
Ethereum blockchain, specifically targeting a substantial con-
nected subgraph within the transaction network. The graph is
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Algorithm 3 Prototypical Network in Graph Neural Network

Input:
- Node embeddings(z), node labels(data.y)
Output:
- Predicted scam/benign labels in Ethereum Transaction Graph
Main Process:
1: Preprocess Node Embeddings:
Normalize the node embeddings: z_norm = normalize(z)
2: Initialize Prototypes:
Create a zero tensor for prototypes of each class
: zeros (2, size of z_norm [1])
3: Calculate Prototypes for Each Class:
For each class index i (0 for benign, 1 for scam):
Extract embeddings for class I = z_norm [data.y == i]
Compute the mean: prototypes[i] = mean(class_embeddings)
4: Compute Distances:
Calculate the distance between node embeddings and prototypes:
dists = distance (z_norm, prototypes)
5: Convert Distances to Similarity Scores:
: similarity_scores = exp(-dists)
6: Classify Nodes:
Assign each node to the class with the highest similarity:
predicted_labels = argmax (similarity_scores, axis=1)
7: Output Predicted Labels:

Return the predicted labels for each node in the graph.

homogeneous, with nodes representing individual transaction
accounts, which further adds to the complexity and realism of
our study. The rationale behind selecting this dataset, sourced
from the comprehensive study by Chen et al. [34], stems from
its inherent complexity, realism, and the challenging nature of
the data, particularly in terms of class imbalance.

The Ethereum blockchain, with its vast and intricate net-
work of transactions, provides a realistic and challenging
environment for testing our DP-GCAE model, making it an
ideal candidate for our study. To obtain the connected sub-
graph, we utilized a series of random walks originating from
1,165 seed nodes. This method was chosen for its effective-
ness in capturing a comprehensive yet manageable segment
of the network, ensuring a balance between depth and breadth
of data. The resulting subgraph, comprising 2,973,382 nodes
connected by 13,551,214 edges, presents a challenging yet
insightful dataset for anomaly detection due to its scale,
complexity, and the prevalence of class imbalances.

TABLE 3. Analysis of statistical characteristics by graph size of the
Ethereum transaction network.

Graph size 10,000 20,000 30,000 40,000
Centrality avg 0.0006 0.0003 0.0002 0.0001
Centrality std 0.0020 0.0019 0.0012 0.0013
Maximum de- 0.1017 0.2084 0.1208 0.1863
gree Centrality

Class imbalance ~ 0.1319 0.0619 0.0404 0.0300

Community 0.05% 0.02% 0.01% 0.01%

average rate (%)

Table 3, which provides valuable insights into the net-
work’s structural properties [35]. It includes data points
such as average and standard deviation of centrality, maxi-
mum degree centrality, class imbalance, and the community
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TABLE 4. Number of parameters for the autoencoder and the graph
convolutional network (GCN) models.

Layer (type:depth-idx) Param #

GAEWithTriplet --

—GCNConv: 1-1 80
L_SumAggregation: 2-1 --
LLinear: 2-2 1,603,200

—GCNConv: 1-2 40
L—SumAggregation: 2-3 --
L—Linear: 2-4 3,200

—BatchNorm1d: 1-3 160

|—BatchNorm1d: 1-4 80

Total params: 1,606,760
GCNWithPrototypes --

—GCNConv: 1-1 64
L _SumAggregation: 2-1 --
LLinear: 2-2 1,282,560
—BatchNorm1d: 1-2 128
—GCNConv: 1-3 2
L_SumAggregation: 2-3 --
L Linear: 2-4 128
|—BatchNorm1d: 1-4 4

Total params: 1,282,886

average rate for varying graph sizes (10,000 to 40,000 nodes).
Particularly notable is the community average rate, which
serves as an indicator of how nodes are distributed across dif-
ferent communities. A lower average rate implies that nodes
are dispersed across many diverse communities, reflecting the
network’s complexity and diversity.

B. IMPLEMENTATION DETAILS AND EVALUATION
METRICS

Our experiments were conducted in an environment
equipped with NVIDIA GeForce RTX 4060 Ti GPU
and Intel Core i5-13400f CPU, running on Windows
11 operating system. For software, we utilized the Ana-
conda virtual environment with Python version 3.8.18.
The deep learning framework PyTorch, version 2.1.0,
was our primary tool for modeling. Given the notable
class imbalance present in our dataset, our evaluation
metrics were centered around precision, recall, and the
F1 score.

The F1 score is crucial as it represents the harmonic mean
of precision and recall, providing a balanced measure that is
especially relevant in scenarios with skewed class distribu-
tions. The F1 score is calculated using the formula:

2 X precisionxrecall
Fl1=

precision + recall

Table 4 in our study provides a detailed of the num-
ber of parameters for both the Autoencoder and the GCN
models. This table highlights the complexity and scale
of each model by quantifying the individual components
that contribute to their overall architecture. The inclusion
of these parameter counts serves to offer a comprehen-
sive perspective on the structural aspects of each model,
reflecting their respective computational requirements and
intricacies.

VOLUME 12, 2024

C. PERFORMANCE COMPARISION OF DP-GCAE AND
OTHER MODELS

Table 5,6 provides a comprehensive evaluation of precision,
recall, and F1 scores for various graph sizes (10,000-50,000)
nodes. We conduct a comparative analysis of our proposed
DP-GCAE method against established graph traversing and
embedding techniques. We look at Deep Walk [36], a pio-
neering graph embedding method that utilizes random walks
to capture the sequential nature of paths in a graph, translating
the structural information of the graph into a low dimensional
space. Next, Node2Vec [37], an extension of Deep Walk.
Node2Vec uses a biased random walk procedure to efficiently
explore diverse neighborhoods, allowing it to learn richer
representations. Another method is LINE [38] designed to
preserve both first order and second order proximities in large
networks, effectively capturing the structure of the network.
In addition, LSTM [39], a type of recurrent neural network
known as Long Short Term Memory networks, which are
adept at learning from sequences, making them suitable for
analyzing graph structures that evolve over time.

Our analysis also includes graph neural networks (GNN)
[40], which generalize deep learning concepts to graph data,
enabling the learning of node representations through their
neighborhood. We compare with GCN [41], Graph Convo-
lutional Networks, which use a convolutional architecture
to exploit the natural graph structure, aggregating neighbor-
hood features to learn a node’s representation. Another is
GAT [42], Graph Attention Networks, introducing an atten-
tion mechanism to graph neural networks, allowing for more
nuanced weight assignment to neighboring nodes.

TTAGN [27] is a network framework tailored for detecting
phishing addresses in the Ethereum blockchain, utilizing a
combination of temporal edge representations and advanced
node analysis. It employs LSTM to analyze transaction
patterns, attention mechanisms for understanding interac-
tions, and structural enhancements for comprehensive node
representation. The GA-GNN model [43] applies Neural
Architecture Search (NAS) specifically for Graph Neural
Networks (GNNs), a domain less explored than traditional
data structures like images or text. Through an evolutionary
process, GA-GNN efficiently finds optimal configurations,
enhancing performance in graph representation learning and
node classification. Lastly, we scrutinize a variant of our
model, the DP-GCAE without Autoencoder-based anomaly
detection [44], to assess its impact on performance.

The table 5,6 demonstrates that our DP-GCAE model
achieves higher F1 scores than the existing methods. This
trend is evident across all graph dimensions, highlighting the
efficacy of our disentangled prototyping approach in classi-
fying transactions within the Ethereum blockchain network.
In comparison, the DP-GCAE without Autoencoder-based
anomaly detection shows a slight decline in performance,
with precision, recall, and F1 scores. This decline under-
scores the importance of the Autoencoder component in our
approach.
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TABLE 5. Precision, recall, and F1 score comparison of different methods for graphs of sizes 30,000, 40,000, and 50,000.

Graph size = 30,000

Graph size = 40,000 Graph size = 50,000

Model (Runtime = 79.41s) (Runtime = 171.72s) (Runtime = 543.04)
Precision Recall F1 Precision Recall F1 Precision Recall F1
Graph traversing/embedding
Deep Walk [36] 0.1251 0.7108 0.2049 0.1453 0.5754 0.2227 0.1575 0.5945 0.2426
Node2Vec [37] 0.1094 0.6956 0.1832 0.1424 0.6689 0.2267 0.1554 0.6475 0.2426
LINE [38] 0.1409 0.5352 0.2163 0.1332 0.5597 0.2087 0.1726 0.5222 0.2538
LSTM [39] 0.5145 0.9657 0.6713 0.5073 0.9971 0.6724 0.4993 0.9914 0.6641
Comparatives (graph neural networks)
GNN [40] 0.8447 0.5536 0.5658 0.6382 0.6267 0.6117 0.6458 0.6284 0.6079
GCN [41] 0.9000 0.2800 0.4271 0.9375 0.3036 0.4587 0.9022 0.3578 0.5123
GAT [42] 0.8483 0.5662 0.5818 0.6629 0.6485 0.6381 0.9717 0.6392 0.6338
TTAGN [27] 0.8550 0.7210 0.7830 0.8330 0.8070 0.8200 0.8590 0.7770 0.8160
GA-GNN [43] 0.8469 0.7743 0.8090 0.8486 0.7686 0.8066 0.8442 0.7743 0.8077
Ours
DP-GCAE 0.7664 0.9831 0.8614 0.7303 0.9867 0.8393 0.7158 0.9684 0.8305
w/0 Autoencoder-
based Anomaly 0.6893 0.8042 0.7423 0.8140 0.7609 0.7865 0.8121 0.8089 0.7902
detection
(DP-GCN)
TABLE 6. Precision, recall, and F1 score comparison of different methods for graphs of sizes 10,000, and 20,000.
Graph size = 10,000 Graph size = 20,000
Model (Runtime 43.78s) (Runtime = 57.37s)
Precision Recall F1 Precision Recall F1
Graph traversing/embedding
Deep Walk [36] 0.1022 0.9789 0.1851 0.1170 0.9789 0.2090
Node2 Vec [37] 0.0834 0.9855 0.1538 0.0877 0.9808 0.1610
LINE [38] 0.1077 0.9553 0.1936 0.1145 0.9893 0.2053
LSTM [39] 0.5014 0.9886 0.6654 0.5029 0.9971 0.6686
Comparatives (graph neural networks)
GNN [40] 0.8371 0.4571 0.5913 0.8057 0.4483 0.5761
GCN [41] 0.9440 0.2876 0.4217 0.7248 0.3086 0.4329
GAT [42] 0.8584 0.5371 0.6608 0.8213 0.4857 0.6104
TTAGN [27] 0.9023 0.7893 0.8320 0.8977 0.6771 0.7720
GA-GNN [43] 0.8480 0.7971 0.8218 0.8429 0.7971 0.8194
Ours
DP-GCAE 0.8533 0.9884 0.9159 0.7644 0.9961 0.8650
w/0 Autoencoder-based
Anomaly detection 0.7307 0.7829 0.7559 0.6651 0.8171 0.7333

(DP-GCN)

The enhanced performance of the DP-GCAE across differ-
ent graph sizes suggests its adaptability and scalability, key
factors for models intended for real world applications.

D. PERFORMANCE COMPARISION BASED ON
DISENTANGLEMENT AND PROTOTYPICAL APPROACHES
In Table 7, we elucidate the comparative analysis of anomaly
detection models based on the presence and absence of disen-
tanglement and prototypical mechanisms. We scrutinize the
performance across graph sizes of 5,000, 10,000 and 20,000
nodes.

The models in comparison include (a) devoid of dis-
entanglement (w/o Disentangle), (b) lacking prototypical
network components (w/o Prototypical), missing both (w/o
Disentangle/Prototypical), and our full DP-GCAE model.
The inclusion of disentanglement and prototypical mech-
anisms distinctly enhances model performance, suggesting
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FIGURE 5. Feature space visualization using t-SNE technique for (a) input
space, (b) GCAE embedded space, and (c) our DP-GCAE model.

their synergistic effect is pivotal for the nuanced task of
anomaly detection. In our experiments, we found that the
DP-GCAE model achieved a superior F1 score compared to
the other models for all three graph sizes. The findings sug-
gest a pronounced contribution of both disentanglement and
prototypical processes in refining the accuracy of fraudulent
transaction detection within Ethereum’s complex transaction
landscape.
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TABLE 7. Performance comparison based on disentanglement and prototypical.

Graph size = 5,000

Graph size = 10,000 Graph size = 20,000

Model (Runtime = 36.83s) (Runtime 43.78s) (Runtime = 57.37s)
Precision Recall F1 Precision Recall F1 Precision Recall F1
w/o disentanglement 0.9075 0.9626 0.9342 0.7542 0.9825 0.8533 0.6904 0.9882 0.8129
w/o prototyping 0.9707 0.9045 0.9365 0.7424 0.9879 0.8478 0.7012 0.9916 0.8215
GCAE 0.8936 0.9251 0.9091 0.7298 0.8889 0.8015 0.6278 0.9826 0.7661
DP-GCAE 0.9266 0.9796 0.9524 0.8533 0.9884 0.9159 0.7644 0.9961 0.8650

Notably, the removal of disentanglement results in a
marked decline in performance, underscoring the critical role
of disentangled representations in capturing nuanced patterns
of benign and scam transactions. Similarly, the absence of
prototypical networking curtails the ability of the model to
generalize from representative samples, leading to dimin-
ished performance. The compounded effect of omitting both
is the most significant, further corroborating the individual
contributions of these methods.

E. EFFECTS OF DISENTANGLED PROTOTYPING

To demonstrate the efficiency of our disentangled prototyp-
ing approach, DP-GCAE model, t-SNE visualization was
performed on various models. Figure 5 provides a visual
representation of the feature space derived from (a) the orig-
inal input, (b) the space embedded via a traditional GCAE,
and (c) the refined feature space represented by the DP-
GCAE model. In the original input space, features tend to be
distributed without any noticeable structure, obfuscating their
intrinsic grouping.

The visualization indicates overlapping regions where tra-
ditional GCAE methods struggle to discern distinct groups,
leading to potential misclassifications. The transition to the
GCAE embedded space shows beginnings of clustering.
However, the functionality remains complex, blurring the
boundaries between different classes. The DP-GCAE models
feature space, on the other hand, reveals a clear delineation of
clusters, suggesting a significant reduction in intra-class vari-
ance and an enhancement in inter-class margin. In conclusion,
this stark contrast in the visualizations not only highlights the
DP-GCAE’s superior feature separation but also affirms the
practicality of our approach in extracting meaningful patterns
from complex data.

F. ADAPTABILITY OF SCAM DETECTION MODEL
As scams continue to evolve and diversify, the number
of available scam samples for training naturally decreases.
This reduction poses significant challenges for maintaining
model performance in detecting new and varying scam types.
To address this, we conducted an experiment to evaluate how
our models, DP-GCAE and the baseline GCAE, perform as
the number of scam samples diminishes, focusing particularly
on changes in the F1 score. This experiment is crucial in test-
ing the adaptability of our models to evolving scam scenarios.
In Figure 6, we observe that both models experienced
a decline in F1 scores as the number of scam samples
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FIGURE 6. F1 score across different scam sample sizes.

progressively decreased. However, the performance drop was
considerably less severe for DP-GCAE compared to GCAE.
The substantial decline in GCAE’s performance underscores
its sensitivity to the reduced availability of scam samples,
whereas DP-GCAE demonstrated greater robustness under
similar conditions. This resilience of DP-GCAE suggests that
the integration of the triplet networks and the prototypical
network significantly bolsters the adaptability of the model.

G. CASE ANALYSIS OF GCAE AND DP-GCAE

We delve into a comparative case analysis to elucidate the
performance distinctions between the Graph Convolutional
Autoencoder (GCAE) and our model, DP-GCAE. Two key
scenarios are explored: instances where GCAE misclassi-
fied but DP-GCAE succeeded, and cases where both models
misclassified. Figure 7, Table 8 presents the cases ‘Mis-
classified by GCAE but correct in Ours’, which offers an
insightful glance into transactions exhibiting a wide range of
volumes and frequencies. Notably, despite the subtle dispar-
ities between normal and scam transactions, the DP-GCAE
demonstrates a remarkable aptitude for accurate prediction.
This precise discernment is especially crucial in a field like
cryptocurrency, where the cost of misclassification can be
high. The enhanced discernment capability of our model,
which effectively differentiates between classes that appear
indistinguishable to the conventional GCAE, stems from its
ability to disentangle and prototype features in a manner that
is conducive to high stakes decision making.

H. DISCUSSION
The transaction patterns shown in Figure 8, Table 9 are asso-
ciated with a much smaller number of edges, suggesting a
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FIGURE 7. Transaction distribution of nodes that are misclassified by GCAE but are correct by Ours.

TABLE 8. Detailed transaction history information of nodes that were misclassified by GCAE but correct by ours.

Node Report- Value
Edges Block From To
name ed as (ETH)
Total: 39 5967270 Binance 2 Self 0.0741
(a) in: 39
Case 1 5964208 Gemini Self 4.0395
Phishing out: 0
Misclassi-
(Misclassi scam Total: 27 5713890 Self 0x239937CS.. 1.0000
fied by
(b) in: 15 5674417 0x3f5CESFB.. Self 0.4900
GCAE but
. out: 12 5674232 0x0681d8Db.. Self 0.5236
correct in
Total: 44 4315810 Fake Phishing167 Self 0.0100
Ours)
(c) Benign in: 16 4263934 Self Fake_ Phishing58 0.9951
out: 28 4263931 Self Golem Token 0.0000
° ° ]
o o
' 0
o °
° °
0 ° o
(d) (e) ()

FIGURE 8. Transaction distribution of nodes that misclassified by both GCAE and Ours.

potential correlation between the sparsity of the network and
the prediction accuracy of the model. This lack of connec-
tivity can often camouflage transaction patterns, making it
challenging for models to discern fraudulent activity. Conse-
quently, the insights gathered from these patterns underscore
the importance of incorporating a more holistic view of the
transactional ecosystem, including temporal dynamics and
transaction flow trends, which could provide further discrim-
inatory power for our model. These observations have led us
to consider the integration of additional contextual data, such
as transfer destinations and temporal information, to improve
identification of complex transaction behaviors. By enriching
the model with these layers of context, we anticipate a marked
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improvement in the ability of the model to detect nuanced
discrepancies between benign and scam.

The goal is not only to improve the accuracy of cur-
rent models, but also to mitigate the risk of misclassi-
fication, which can have significant implications for the
parties involved. We therefore advocate a balanced approach
that accounts for the complexity of trading networks
while remaining alert to the ethical implications of detec-
tion capabilities. As we continue to evolve the DP-GCN
model, we continue to adhere to ethical Al principles to
ensure that our efforts to protect the Ethereum trading
network do not inadvertently compromise user privacy or
fairness.
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TABLE 9. Detailed transaction history information of nodes that were misclassified by both GCAE and ours.

Node
Reported as Edges Block From To Value (ETH)
name
Total: 3 6216765 Self 0xA019ae3D.. 1.1715
(d) in: 2 6207897 0x5D64ae45.. Self 0.6724
out: 1 6206705 0xa91739ds.. Self 0.5000
Total: 6 5508396 Self 0xCbd02526.. 0.3116
Case 2 (Both Phishing
(e) in: 3
misclassified) scam 5505414 0x3f5CESFB.. Self 0.3121
out: 3
Total: 3 4315810 Fake Phishing916 Self 9.0924
® in: 3 4263934 Fake Phishing1157 Self 20.4013
out: 0 4263931 0x0845F48B.. Self 0.6300

V. CONCLUDING REMARKS

In this paper, we introduced the Disentangled Prototypi-
cal Graph Convolutional Autoencoder (DP-GCAE), a novel
approach for detecting phishing scams within cryptocur-
rency transaction networks. Our model uniquely integrates
representation learning via triplet networks and prototyping
approach, housed within a graph convolutional autoencoder
framework. The comprehensive experiments conducted on
Ethereum transaction data demonstrate the significant supe-
riority of DP-GCAE in accurately identifying anomalous
transactions, outperforming existing methods by a notable
margin.

Our case analyses revealed that, while the DP-GCAE
model exhibits robust performance in most scenarios, chal-
lenges arise when dealing with transactions having fewer
graph connections. This observation points to the potential
necessity of incorporating additional contextual data into the
model, such as transfer destination information, to better
capture the nuances of transaction behaviors. Looking for-
ward, we aim to refine and enhance the DP-GCAE model
to address the identified limitations. This includes experi-
menting with various forms of additional data inputs and
exploring advanced network architectures to further improve
the accuracy and F1 score of the model.

To conclude, we hope that our contributions in this paper
will serve as a steppingstone for future research in this area,
ultimately leading to a safer and more secure digital transac-
tion environment. Our goal is to foster an ecosystem where
innovations in anomaly detection not only enhance security
but also uphold the core values of transparency and integrity
that are fundamental to the blockchain and cryptocurrency
domains.
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