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ABSTRACT Edge server-assisted computation offloading enables vehicles to leverage server compute
resources to deliver connected services, overcoming the limitations of onboard resources. Understanding the
compute workloads of edge servers is crucial for effective resource management and scheduling, yet this task
is challenging due to the complex interplay of factors such as vehicle mobility and computation offloading
patterns. To address this, we propose an empirical analysis framework that systematically characterizes the
compute workloads of edge servers. We begin by formalizing the relationships among three key aspects:
local load (generated by vehicles), composite load (imposed on edge servers), and traffic flow (vehicle
mobility patterns). Our framework then uses models of the local load and traffic flow as inputs to generate the
composite loads on edge servers. Experiments were conducted by injecting between 600 and 5,000 vehicles
per hour in two distinct geographical areas, New York City and Tampa. We provide a quantitative analysis
demonstrating how the composite loads on edge servers vary with changes in traffic flows, geographical
areas, and offloading patterns.

INDEX TERMS Connected vehicles, computing workload, edge servers, computation offloading.

I. INTRODUCTION
An edge server is designed to process computing workloads
generated in a designated geographical region. Compared
to an enterprise cloud server, the edge server is equipped
with relatively smaller compute resource capacity, such as
CPU/GPU and storage (e.g., memory), enough to process
a regional workload. However, its geographical proximity
with end devices (e.g., vehicles, drones, smartphones)
provides several benefits, such as lower network latency or
localizing privacy-sensitive data within the region. In the
automotive domain, the edge server is becoming popular as
an infrastructure component that supports V2I (Vehicle-to-
Infrastructure) communication-based services [41].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ivan Wang-Hei Ho .

One usage of the edge server in the V2I service is
computation offloading. To overcome the vehicle’s limited
compute resources, some compute workloads are offloaded
to proximate edge servers with larger compute capabilities.
For example, a vehicle may periodically send camera images
to an edge server that can update the distributable local map
using the server’s computing capability instead of using the
vehicle’s. Diverse V2I services that utilize the edge server
are proposed to increase road safety or driving convenience
by industrial consortium [49], [50], [55] and government
agency [51], [52].

As the applicability of the edge server-assisted compu-
tation offloading expands, a higher volume of compute
workload offloaded from vehicles will be imposed on the
edge servers. Given that the edge servers’ compute capability
is comparatively smaller than that of data centers or cloud
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servers, the resources of the edge servers need to be
intelligently managed; for example, one can distribute some
offloading requests to other under-utilized servers, or one can
extend the capacity of CPU or memory to meet a sudden
surging workload at a particular time. Resource management
can be more effectively designed once we understand the
unique aspects of the target workloads.

There has been much workload characterization research
and their applications in other domains such as cloud services
or data centers [34]. Such workload characterization was
used for performance evaluation, capacity planning, resource
provisioning in conventional web workloads, online social
networks, video services, mobile apps, and cloud computing
infrastructures [26]. Based on the characterized workload,
computation offloading research has been conducted to
execute time-sensitive applications such as augmented reality
(AR) and map-based navigations [28]. Those computation
offloading works targeted various optimization objectives,
such as minimizing execution delay [16], power consump-
tion [13], reduction of financial cost [29].
However, characterizing the edge server’s workload in the

domain of the connected vehicle services is non-trivial and
unique since it is collectively formed by many vehicle’s
offload requests that are intertwined in both temporal and
spatial domains in a complex fashion. That is, each vehicle
may have different patterns of offloading timings and sizes;
the vehicles’ mobility is also coupled with such offloading
patterns, making it much harder to know the exact timing
and size of the edge servers’ compute workloads that are
geographically distributed.

By extending our previous preliminary research [20],
we propose the empirical analysis framework that can
systematically characterize the edge server’s workload,
which is collectively formed by many computation offloads
from vehicles. Firstly, we present the semantics of the two
separate workload types that comprise V2I services. The
local load (denoted as Rc(t)) is generated by a vehicle
independently of its offloading decision, and some of the
local loads are subject to the offloading to the edge servers;
the composite load (denoted as Rs(t)) that is collectively
formed by some local loads offloaded from vehicles within
the edge server’s coverage. Then, we provide the analytic
workload characterization showing that a naïve composition
of multiple local loads without considering the mobility
patterns of the vehicles results in highly over-approximated
composite loads.

Secondly, to abstract the vehicles’ mobility patterns
(denoted as E (t)), we introduce the three traffic flow
variables, the volume, density, and speed, which are widely
used to characterize macroscopic traffic in the intelligent
transportation domain [56], [57], [58]. Then, we show the
relationship between these traffic flow variables and the
aforementioned workload types (i.e., the local load and
the composite load). This relationship is implemented as the
synthetic data generator that can produce the edge server’s

composite loads using varying combinations of traffic flow
variables and local loads.

Thirdly, we present the quantitative analysis based on the
generated data to characterize the edge server’s composite
load, which is comprised of the local loads and the mobility
patterns. Our findings show that, while the edge server’s
composite load takes a highly non-linear relationship with the
factors above, there exist uniform patterns of the workloads
among different edge servers that hold across different
parameter combinations in terms of the aggregate load, the
peak loads, and the load similarity. The analysis validates the
generality of the findings by injecting 600 to 5,000 vehicles
per hour in two very distinctive geographical areas, NewYork
City and Tampa, where the connected pilot project of the U.S
Department of Transportation (USDOT) is conducted [51].

We make the following contributions:

• Formalization of the edge server’s composite workload
based on the traffic flow variables and the computation
offload patterns;

• RTC (Real-Time Calculus) curve-based workload
characterization to show the gaps between the
over-approximated and the actual composite loads;

• Implementation of the synthetic data generator that
systematically generates a large realistic edge server’s
composite workload;

• Quantitative analysis to show the relationship among the
traffic flows, the local workloads, and the edge servers’
composite workloads.

Section II gives the background and the analysis objective.
Section III presents the semantics of the workload and
analytic characterization. The systemmodel with themobility
pattern is given in Section IV. We show the analysis design
in Section V, and present the empirical analysis result in
Section VI. In Section VII, we discuss how our findings
can be used for the ongoing V2I infrastructure design and
deployment activities, then conclude in Section VIII.

II. OBJECTIVE OF EMPIRICAL ANALYSIS
A. BACKGROUND AND MOTIVATION
When it comes to the computing concept in designing auto-
motive systems, the traditional engineering decision-making
mainly focused on the capacity of in-vehicle computing
resources (e.g., ECU power), and their placement minimizing
the side effects, such as the vehicle dynamics and heat-
ing. However, the computing landscape has significantly
changed by many automakers that started to equip vehicles
with connectivity. Such connectivity opens a new way of
performing computation, especially allowing the vehicles
to offload some part of the computation to the external
infrastructures (e.g., cloud servers) with higher computing
capacity. For example, USDOT (United States Department
of Transportation) awarded more than $45 million for the
pilot study of using the infrastructure with connected vehicle
technologies to enhance road safety in three sites in the
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United States [51], [52]. In addition, multiple industrial
consortiums, such as AECC [49], ETSI [50], 5GAA [55],
proposed a way to architect the computing infrastructure to
support new revenue sources created by the connected vehicle
services.

However, it is challenging to design such a computation
offloading concept due to the sheer number of connected
vehicles; for instance, it is estimated that the number
of connected vehicles will grow to about 100 million
globally [49]. There is a consensus that one centralized
server, such as a centralized data center, cannot meet the
diverse requirements of all computation requests generated
from such a large number of vehicles [41]. Instead, multiple
regional servers, called edge servers in our work, need to
distribute the regional workloads of vehicles so that some
requests are processed in a particular edge server while other
requests are forwarded to other servers when the former
server’s resources are being over-utilized. To make such a
decision, it is essential to precisely characterize theworkloads
engaged in the computation offloading, such as howmuch the
workloads are generated from vehicles and how their patterns
differ across the geographical regions where different servers
are located.

B. OBJECTIVE
Fig. 1 illustrates the computation offloading concept. Sup-
pose a vehicle generates a series of workloads according to
some patterns that need to be processed by some compute
resources as it drives (e.g., generating road images to
synthesize the local HD map); we call it the local load
(illustrated as R1c, . . . ,R

4
c in Fig. 1). Such compute resources

may reside inside the vehicle or in remote edge servers
(servers), and a vehicle can selectively determine those
resources to process the workload. When no servers are
available in its vicinity, the local load should be processed
by the vehicle’s local compute resources (e.g.,, in-vehicle
ECUs). On the other hand, when a vehicle drives within a
geographic area where a server is installed, the vehicle is
eligible to offload its local load to the server. Since multiple
vehicles may drive in the area simultaneously, the server
needs to process the workloads that are collectively formed
from those vehicles; we call it the composite load (illustrated
as R1s (t), . . . ,R

3
s (t) in Fig. 1).

We use empirical analysis to characterize the server’s
composite load in various traffic flow scenarios. More
precisely, the analysis objective is given as follows.

Ris(t) = f (Rc(t),E
i(t)), (1)

where Rc(t) is the local load generated by a set of vehicles
{R1c(t), R

2
c(t), . . . ,R

m
c (t)}; E

i(t) is the traffic flow occurring
in the area covered by a server i; Ris(t) is the composite load
imposed on a server i. The analysis objective is to find insight
into the complex function f that determines the composite
load from the local load and the traffic flows.

However, such characterization is challenging due to its
unique aspect originating from the (vehicular) traffic flow.

FIGURE 1. Illustration of the local workload and the composite workload.

For example, as a vehicle drives faster, the road images
need to be sent more frequently to the servers in order to
maintain the required coverage of HD maps; conversely, as a
vehicle significantly decelerates, more data needs to be sent
to the servers to indicate potential road safety hazards such as
accidents or construction sites. Furthermore, when multiple
vehicles generate their local loads together, the composite
load’s magnitude and growing rate are formed differently
depending on the traffic flow characteristics.

C. RELATED WORK
Workload characterization has been extensively studied in
other highly dynamic environments such as cloud data
centers [34]. For example, it has been used for conventional
web workloads, online social networks, video services,
mobile apps, and cloud computing infrastructures [26].
Despite the extensive literature on workload characterization,
it has yet to be studied in the context of vehicular networks,
where the complex relationship of workload with traffic flow
parameters needs to be considered.
Computation offloading has also been significantly studied

to provide resource-constrained devices with computing-
intensive services by distributing the computational burdens
to other resource-rich devices via communication [33]. The
applied domain includes augmented reality (AR), map-
based navigation [28]; code partitioning in mobile cloud
computing [18]. Various types of optimization objectives in
computation offloading were considered, such as execution
delay [3], [6], [16], [17], [19], [40], power or energy
consumption [6], [13], [31], [32]. While these works consider
computation offloading techniques in the context of a mobile
device, they lack consideration of a unique aspect of the
vehicle flow model, which is essential to understanding
the composite load on a server. These works also do not
consider the modeling of local computation workloads and
the derivation of composite workloads based on traffic flow
parameters.
RSU (Road-Side-Unit) placement is a problem domain that

determines the distance among RSUs and their locations to
enhance the communication coverages and distribute their
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compute workloads. In [36], the authors propose an RSU
deployment strategy considering a 2-D road network and
finite RSU capacity. A density-based RSU deployment strat-
egy is explored in [24], where the RSUs are deployed using
an inverse proportion to the expected density of vehicles. The
capital and operating expenditures are minimized for RSU
deployment [37]. Although these works on RSU placement
consider coverage, road topology, and cost, the dependency
on their effect on the workload models has yet to be explored.
Analytic Analysis of Workloads: There has been extensive

work to characterize the workloads in the real-time systems
domain. In particular, the Real-Time Calculus (RTC) [4], [60]
abstracts an event stream (i.e., a workload) using the arrival
curve that expresses the maximum and minimum number
of event occurrences within any interval, which can then be
used to analyze the delay and backlogs. The RTC works
have been extended into many forms. Moy studied a way
to compute tighter arrival curves, proposing a definition of
causality [35] Kunzil et al. proposed a hybrid approach to gain
the benefits of a simulation approach (e.g., sliding window)
and an analytic approach (e.g., RTC) [7]. Salem et al.
proposed a variation of arrival curves, called inter-arrival
curves, that count the number of event occurrences within
an interval since the occurrence of a particular event of
interest [14]. Carvajal et al. proposed constructing arrival
curves empirically to find the upper and lower bounds of the
event occurrences in intervals [27]. Li et al. proposed a way
to characterize the delay upper bound better when a system
consists of multiple asynchronous flows by introducing
offsets to the Network Calculus [9]. Beyond these works,
there are other RTC works that try to compute tighter bounds
of the input and output curves [10], [15], and to improve the
analysis efficiency [5]. In addition, to overcome the limited
expressiveness of RTC curves, there were several works to
interface RTC with other formalisms such as Lustre [2],
Timed Automata [8] and AADL [39].

III. SEMANTICS OF COMPUTATION OFFLOADING
A. COMPUTATION OFFLOADING SEMANTICS
When a vehicle requests a series of computations to be
offloaded to the servers on the move, it should meet
the requirements of the connected services (e.g., latency
requirements). We present the two representative offload
patterns inspired by the service requirements of the use cases
extensively studied in the literature [41], [52].

1) PERIODIC OFFLOADING
Fig. 2 and Fig. 3 illustrate how two clients’ workloads
produce a server’s composite workload in two different
offloading patterns (Type-A and Type-B). The figures have
three timelines that indicate the event occurrence timings
(upward arrows) for Client 1 (first row), Client 2 (second
row), and Server A (third row). When multiple events occur
simultaneously, we usemultiple overlapped arrows to explicit

FIGURE 2. Example of Clients’ and Server’s Workloads (Type A). The
active periods are highlighted in gray.

FIGURE 3. Example of Clients’ and Server’s Workloads (Type B).

FIGURE 4. Example of Clients’ and Server’s Workloads (Speed-Dependent
Workload).

the number of event occurrences; for example, Server A has
two simultaneous event occurrences at times 3 and 5 in Fig. 2.

Examples of client events are requests for processing
a graphical image transformation or invoking a machine
learning training task for object detection. In this example,
we assume Server A processes such events offloaded by
Client 1 and 2 only but does not generate its own event. Some
of those client events (first and second rows) can be offloaded
to Server A (third row), that is deemed to be more appropriate
to process them.1 To scope the offloading period, we use the
gray boxes with an annotation of the server identifier. For
example, the first three events of Client 1 within the gray box
in Fig. 2 and 3 are to be offloaded to Server A.

Even though Client 1 and 2 generate the event streams with
exactly the same periods (period 2 for Client 1 and period 1
for Client 2) in both Fig. 2 and 3, the offloading timing of
Client 2 is different; Client 2 starts offloading at time 3 and
finish at time 9 in Fig. 2, while the offloading starts at time 9
and finishes at time 15 in Fig. 3. We call such an interval an
active period. Consequently, Server A experiences different

1Note that such offloading decisions are made based on application
dependent criteria such as monetary cost, energy consumption or latency,
but we do not discuss them here as it is out of the scope of this paper.
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patterns of the composite workloads in the two cases; that is,
the composite workload in Fig. 2 is denser than that of Fig. 3,
and one reason is that the clients’ offloading periods in the
former case overlapped and closer each other, while the latter
is not.

2) SPEED-DEPENDENT OFFLOADING
Fig. 4 illustrates the speed-dependent offload pattern. A vehi-
cle produces different sizes of compute loads at different
frequencies in proportion to its speed. As a vehicle moves
faster, larger (or smaller) local loads are generated more (or
less) frequently. In the upper two timelines, for example,
as vehicles 1 and 2 accelerate, their local loads are generated
more frequently, gradually reducing their interval from four
time-unit to one time-unit. Vehicle 1 enters the Server-B
area when its local load is generated more frequently, while
vehicle 2 enters the Server-B area when its local load is
generated less frequently; the resulting Server-B composite
load is shown in the bottom timeline.

B. ANALYTICAL GAPS BETWEEN OVER-APPROXIMATED
AND ACTUAL COMPOSITE WORKLOADS
One easy way to approximate the upper-bound of the
server’s composite workload (Rs(t)) is to add up the
maximum local workload of each vehicle (Rc(t)), ignoring
their arrival/departure times at/from the server (e.g., t1 and
t1′ in Fig. 2). That is, all vehicles are assumed to stay
within the server’s region all the time, expecting all local
workloads to be offloaded to the server. However, such
a naïve assumption tends to significantly overapproximate
the composite workload. In this section, we analytically
characterize the overapproximated composite load with the
arrival curves used in Real-Time Calculus (RTC).

Real-Time Calculus (RTC) is one promising formal
framework to characterize various types of workloads and
analyze their impact on system performances [4], [60].
Extending the concept of Network Calculus [25], RTC
abstracts an event stream (i.e., a workload) using the arrival
curve that expresses the maximum and minimum number of
event occurrences within any interval1; the arrival curve can
then be integratedwith a servicemodel expressing the amount
of resources available and a processing model expressing the
semantics of processing input streams into output streams;
several performance criteria can then be formally analyzed
such as delays or backlogs.

We use the following definition of the arrival curve
typically used in RTC works [5], [15], [60].
Definition 1 (Arrival Curve): Let R[s, t) denote the total

number of events that arrived in the interval [s, t). The
corresponding upper and lower arrival curves are denoted as
αl and αu, respectively, and satisfy the following condition:

∀ s < t , αl(t − s) ≤ R[s, t) ≤ αu(t − s),
where αl(0) = αu(0) = 0.
We give examples of the arrival curves using the event

streams of Fig. 2 and Fig. 3 as follows:

Example 1 (Arrival Curves of Client 1 and 2): Consider
two periodic event streams from Client 1 (Period 2) and
Client 2 (Period 1) in Fig. 2 and Fig. 3. Then, according to
Definition 1, the dotted green-lines in Fig. 5a and Fig. 5b
express the arrival curves of Client 1 and 2, respectively. Note
that we plotted the interval only up to 12 in the x-axis due to
the space limit, but the periodic patterns of the curves can be
further stretched out to the infinite interval.

Given two arrival curves that represent the local loads, one
can compute the upper/lower bounds of the composite load
using Equation 2 [60].

αuOR = αu1 + αu2

αlOR = αl1 + αl2 (2)

Now we show why this approach—summing up the upper
and lower bound of the local loads without considering
when each vehicle arrives at or departs from the server—is
insufficient to characterize the server’s composite load in the
offloading scenarios.

Consider the offloading scenario in Fig. 3. In Fig. 5c,
the orange solid lines are the composite arrival curve of
Server A computed from the two client arrival curves in
Fig. 5a and Fig. 5b via Equation 2. On the other hand, the
green-dotted lines are the composite arrival curve computed
directly over the server’s event stream RAs using a sliding-
window approach; note that we assume such server’s real
composite event streams are unknown a prior (also, this is our
target to characterize), and their composite arrival curves are
unknown.

Here are two issues in the bounds (i.e., the orange-solid
lines) computed by Equation 2:

• The upper bound is too pessimistic; in Fig. 3, the two
offloadings from Client 1 and 2 never overlap. Hence,
a naïve sum-up in Equation 2 results in an overly
conservative upper-bound, as it is originally designed
assuming that all events of the input streams are to
appear in the composite workload, which is not the case
in offloading where partial events are to appear.

• The lower bound is inappropriate; in Fig. 3, there is a
period [t

′

1, t2) where no event occurs in the composite
workload since no offloading is made either from
Client 1 or 2. Hence, a naïve sum-up over the lower
bounds in Equation 2 also results in an inappropriate
lower bound.

Necessity of the Empirical Analysis: The analytic analysis
shows that the composition of the local loads (Rc(t)) with-
out explicitly considering their active periods significantly
over-approximates the actual composite load (Rs(t)). Such an
over-approximated composite load may allocate unnecessary
compute resources, resulting in higher consumption of the
monetary cost, energy, or storage of CPU or memory.
Therefore, we need to explicitly consider (i) the length of
the active period and (ii) the overlapped patterns of multiple
active periods to characterize the composite load precisely.

A tighter approximation of the composite load can be
obtained by explicitly modeling the active periods using
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FIGURE 5. (a) Arrival curves of Client 1 in Fig. 2 (Green-dotted line: Original arrival curve, Red-solid line: Active arrival curve) (b) Arrival curves of
Client 2 in Fig. 2 (c) Arrival curve of the composite workload of Server A in Fig. 3: the orange-solid lines are the analytic upper/lower bounds
computed by Equation 2, while the green-dotted lines are the real upper/lower bounds computed directly over the server’s event stream RA

s .

stateful information. For example, Linh et al. extended the
original RTC to accommodate state information more explic-
itly, and other techniques, such as the Timed Automata [23],
LUSTRE [30], can construct such a stateful model and verify
the property of the composite load. However, such active
periods also depend on the traffic flow (E i(t)); in general,
this is difficult to represent and analyze in an analytic form,
especially when a large number of vehicles go through
complex traffic conditions. In the next section, we design
the empirical analysis framework to better characterize
the composite load by abstraction of the traffic flow and
draw insights into the spatio-temporal aspects encoded in
Equation 1.

IV. SYSTEM MODEL FOR TRAFFIC FLOWS
The macroscopic traffic flow variables are one of the widely
used models that quantify the demand and the quality
of the traffic service [47], [56], [57], [58]. In particular,
we introduce the three traffic flow variables to characterize
E i(t) in our empirical analysis: Volume, Density, and Speed.

A. VOLUME (V )
The volume is the variable that quantifies the number of
vehicles passing through a specific area during a time interval,
which is defined as:

Vi =
ni
T

, (3)

where i is the area identification (area ID), ni is the number
of vehicles passing the area i, T is the length of time period.
The customary unit is [veh/hour] and [veh/min].

The volume observed in a geographical area covered
by a server implies the collective demand of the offload
requests generated by vehicles that pass through the area.
Assuming every vehicle generates a certain amount of a local
load, an area that experiences a higher volume would also
experience a larger size of the server’s composite load.

B. DENSITY (K )
The density is the variable that quantifies the number of
vehicles occupying a certain area size at a particular moment,

which is defined as:

Ki =
mi
L

, (4)

where L is the unit distance, mi is the number of vehicles
present in the area i. The customary unit is [veh/km] and
[veh/m]. Unlike the volume whose definition relies on the
time interval, the density measures the number of vehicles per
distance. This subtle difference in their definitions sometimes
results in a notable difference in the server’s composite load.
Example 2 Impact of Volume and Density on the Composite

Load: Consider two areas A and B that have road lengths of
50 meters and 100 meters, respectively; further, suppose that,
both areas have the same volume of vehicles as 4 [veh/hour];
for every 15 minutes, there exists a vehicle that exits areas A
and B; this means that each vehicle that passes through the
areas have 15 minutes of time gap between each other in
both areas. On the other hand, at any point in time, since
there exist 4 vehicles present in both areas, A and B have
different densities as 0.08 [veh/meters] and 0.04 [veh/meters],
respectively. However, to achieve the volume and density
above, the vehicles in B need to drive at a higher speed
than those in A due to the difference in the driving distances
(50 meters v.s. 100 meters). If the frequency and size of
some offload requests increase proportionally to the vehicle
speeds, more compute offload requests would be generated
from the vehicles in B thanA, leading to two different server’s
composite loads in A and B.

C. AVERAGE SPEED (S)
The average speed is the variable that measures the quality of
the traffic services [42]. There are several definitions of the
average speed, and one typically used definition is the space-
mean speed, defined as follows:

Si =
Li

1
ni

∑
j t
j
i

, (5)

where ni is the number of vehicles, Li is the length of the
area the vehicle travels, and t ji is the travel time for vehicle j
to cross the area i. The customary unit is [km/hour].

Intuitively, this variable is the average speed of vehicles
traveling a particular road segment during a specific period.
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FIGURE 6. The implementation design of the data generator for the
analysis of the composite load.

This definition is slightly different from the conventional
time-mean speed that averages the speed of individual
vehicles at a specific point. Despite such subtle differences,
the space-mean speed is better matched to the property of
the composite load occurring in a given road segment (not
at a specific time). The average speed also plays a role in
changing the server’s composite load. For example, a higher
average speed implies that the vehicles tend to pass through
the area faster, making them stay there for a shorter period;
this would sometimes reduce the server’s composite load.
In addition, if a specific offload request depends on the
vehicle speed, the speed affects the server’s composite load
positively or negatively.

V. DESIGN OF COMPOSITE LOAD GENERATOR
The most challenging part in characterizing the function f
in Equation 1 is that the two inputs, the local load (Rc(t))
and the traffic flow (E i(t)), affect the server’s composite load
(Ris(t)) together at very different abstraction levels, and their
interplay is complex. While many traffic flow analysis tools,
such as VISSIM [22] or SUMO [11] support modeling E i(t),
the interface with the computing load, such as Rc(t) and
(E i(t)) is lacking. We introduce a layered analysis design in
Fig. 6 that systematically constructs various types of Ris(t) by
superimposing Rc(t) and E

i(t).

A. DATA GENERATOR IMPLEMENTATION
In Fig. 6, the three colored oval boxes —(a), (b), (c) —rep-
resent the processes of characterizing the three time-series
variables —E i(t), Rc(t), R

i
s(t)—used in Equation 1.

In (a), we use the state-of-the-art tool, called VISSIM,
to generate realistic traffic flows [22], [38] based on complex
road geometries such as intersections, highways, merging

FIGURE 7. Illustration of the Load Composition Scheme; N i indicates the
number of vehicles present within the coverage of server i .

or exit; the example is shown in Fig. 8. For each selected
road geometry, several road segments are chosen where a
volume of vehicles is to be injected, and we call it the vehicle
input. In addition, the traffic signals are placed at several
locations to produce various patterns of stop-and-go traffic,
which would result in a range of traffic congestion scenarios.
The artifact produced by the traffic flow generation process
is the time-series vehicle data that characterizes the changes
in each vehicle’s position, speed, or direction over time.

In (b), the local load of each vehicle is generated according
to a particular offload pattern, such as the periodic or
the speed-dependent offload, defined in Section III. Then,
a collection of multiple local loads becomes the artifact
produced by the local load generation. Note that the produced
local loads (i.e., Rc(t)) from (b) do not have the spatial
semantics of which geographical area they are generated.
In other words, from the perspective of the server’s composite
load (i.e., Ris(t)), only a subset of each local load occurring
within its coverage area is meaningful, so there exists a gap
between Rc(t) and R

i
s(t).

In (c), the composite load generation process assigns such
a server’s spatial semantics to the temporal semantics of the
local load. More specifically, the local load is categorized
according to the geographical areas covered by each server
where it occurs; each category of the local load is combined
with other local loads in the same area to collectively form
the server’s composite load within a particular geographical
region. Finally, the server’s composite load is analyzed
according to the metrics of the aggregate load, the peak loads,
and the load similarity among different geographical areas.

We do not give the details of the computation complexity
required to generate the composite load; the complexity
grows proportionally to the size of the simulation and
sampling interval, the number of vehicles, their states, and
the offloading frequency of the local load.

B. LOAD COMPOSITION SCHEME
We explain the load composition scheme as to how (a),
(b) are used to generate (c) in Fig. 6. Fig. 7 illustrates
a driving scenario where three vehicles (red, green, blue)
move at different speeds performing offloading in the
areas (A1, A2, A3) covered by three servers from time t0 to t3.
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FIGURE 8. Selected geographical areas with the traffic flow visualizations: (a) New York City (NYC), (b) Tampa (THEA). Maximum queue length (Green),
Traffic volume (Purple: The darker the purple color becomes, the higher traffic volume present); the selected locations of the traffic signals are indicated
using the traffic signal icons; the locations of the vehicle input are indicated as the yellow arrows; the areas surrounded by the black lines are where the
vehicle data is collected; the examples of the congested and free flow traffics for each area are given.

Suppose the red and green vehicles utilize speed-dependent
offloading while the blue vehicle utilizes periodic offloading
according to the offloading semantics in Section III. Fig. 7.a
shows the speed changes of the three vehicles over time; the
red and green vehicles drive gradually faster at different rates,
while the blue vehicle drive at a constant speed. Fig. 7.b
shows the size of the local loads generated by the three
vehicles over time. Initially, for each offloading, the red,
green, and blue send 1 unit, 2 units, and 3 units of computation
loads to the servers, respectively. The local load of the blue
vehicle remains constant in between t0 and t3 as the size
does not change by the speed factor; the periodic load is
characterized by Equation 6.

Rjc(t) =

{
wprd (Case 1-a)
0 (Case 1-b),

(6)

where j is the vehicle identification, and wprd indicates the
unit compute size of the periodic load. That is, the size ofwprd
is generated for t such that t = n×Tj where n≥ 1 and Tj is the
size of the period of vehicle j (Case 1-a). Otherwise, no load
is generated for all t such that t ̸= n×Tj (Case 1-b). As the
size changes due to the speed factors, the local loads of the red
and green also change. This relationship is the basis for the
speed-dependent load, which is characterized by Equation 7.

Rjc(t) =

wspd × vj(t) (Case 2-a)
wspd
vj(t)

(Case 2-b),
(7)

where wspd indicates the unit compute size of the
speed-dependent load and vj(t) is the speed of the vehicle
j at time t .

To explain the implication of Equation 7, consider two
types of offloading scenarios related to the vehicle speed.
One scenario is that, a higher volume of offloading requests
should be generated as a vehicle moves faster. Consider a
scenario in which a vehicle continuously takes road images

using a camera that can be sent to servers for server-assisted
route-planning (i.e., a server decides a vehicle route based on
the collected data). As a vehicle drives faster, more amount
of data would be collected and sent to a server within a
fixed time since the vehicle would experience more variety
of situations within the same interval than it drives slower,
in order to make the server-assisted route-planning decision.

Another scenario is that, a higher volume of offloading
requests should be generated as a vehicle moves slower.
Consider a scenario when a vehicle suddenly encounters a
road accident; it may share additional data (e.g., camera
images of the accident scenes) for situational awareness with
a server in proximity, which can instruct other following
vehicles to reduce their speeds to avoid another collision; that
is, such an unusual event caused by slow-down would require
to trigger a larger amount of compute offloading. Hence,
as a vehicle experiences a sudden deceleration (slow-down),
the size of situation awareness data should be proportionally
increased.

(Case 2-a) and (Case 2-b) characterize that the load
increases and decreases proportionally to the vehicle speed
to capture the above scenarios. Note that the offloading
frequency changes depending on the speed is another
orthogonal factor illustrated in Fig. 4; it is not explicitly
shown in Equation 7.

Finally, the composite loads of the three servers (R1s (t),
R2s (t), R

3
s (t)) are determined by the combination of (i) the

unit sizes of the local loads, (ii) the position and speed of the
vehicles, (iii) the servers where each local load; the composite
load is characterized by Equation 8.

Ris(t) =

∑
j

Rjc(t), (8)

where a vehicle j stays within the coverage area of a server
j at time t . That is, the composite load of server j is the sum
of all offloaded local loads generated by the vehicles within
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the server’s coverage. Fig. 7.c and d show how the composite
loads change over time using Equation 8. Note that the red
vehicle is located in two different coverage areas, A1 and A2
at time t1. This example assumes that the red vehicle offloads
its computation to both servers. More offloading strategies
exist when a vehicle stays in the coverage areas of more than
one server, but we only discuss some strategies since they are
out of the scope.

C. EXPERIMENT PARAMETER SELECTION
Many environmental parameters contribute to the traffic flow,
which are summarized in Table 1 and 2. We introduce the
factors focused on our analysis and the associated parameters.
Factor 1: Different traffic flow characteristics (E i(t)) affect

the server’s composite loads differently.
A traffic flow determines the timing when a vehicle enters

an area covered by a server and the duration of time the
vehicle stays within it. Hence, such traffic flow characteristics
would determine the timings of each offload request, which
would consequently affect the server’s composite load.
Table 1 and 2 intend to capture the characteristics above in the
form of parameters, and here is the intuition of the parameter
choice.

The road geometry is one important factor that determines
the traffic flow characteristics, and we selected two very
different geographical areas, New York City (NYC) and
Tampa (THEA), where the USDOT launched the connected
pilot projects to support various connected services [51].
In particular, the two areas have very different geometric
characteristics, as shown in Fig. 8, which results in diverse
traffic flow variations, such as the number of intersections,
traffic signals, highway entry or exit points, merging, one-
way or two-way roads, possible vehicle routes.

The level of traffic congestion is another orthogonal factor
that determines the traffic flow characteristics. For example,
as the congestion level increases in a particular area, a group
of vehicles tends to stay in the area longer, and the volume
of the vehicles would be higher than in other non-congested
areas. One way to control the congestion level is to place
the traffic signals and adjust their signal phase timings. For
example, for every 4-way intersection, four traffic signals can
be installed that operate with different signal phases and cycle
times, which would make congested or free flows.

Table 1 shows the selected parameters to reflect the
aforementioned traffic congestion factors. For example,
in NYC, the cycle time is 60 seconds, which implies the
time it takes a traffic signal (e.g., green, yellow, red) to
display one complete sequence). The phase number is 4,
which implies that four different traffic lights are grouped
together to synchronize each other; for example, in the four-
way intersections, four traffic lights are installed on each
road segment of the intersection; their displays need to be
synchronized to avoid the conflicts of the traffic flows in
the intersections (e.g., the north light should display green
while the east, west, and south lights should display red).
In addition, the phase interval is the time interval where each

signal is continuously displayed before changing into another
light.

On the other hand, Table 2 shows the effect of choosing
different parameter combinations from Table 1. For example,
by choosing different sizes of vehicle input, numbers of
signalized intersections or signal phases of green lights, NYC
and THEA have very different queue lengths, vehicle delays,
stop delays as illustrated in the columns of congested and free
flow. We refer to those two groups of parameter combinations
as the congested flow and the free flow in the rest of the
paper.

Vehicles are injected using the parameter of the vehicle
input volume. For example, 300 and 600 vehicles are injected
per hour in NYC and THEA. Note that this does not mean
that there are exactly 300 and 600 vehicles only in each
scenario since the parameters represent the rate of the vehicle
injection but not the number of total vehicles; that is, a much
larger number of vehicles may present in each simulation
when sufficient simulation time passes. Initially, the number
of vehicles in the scenario gradually increases according to
the injection rate; after some time, some vehicles egress from
the simulation, and some appear new. This implies that there
is a point where a similar number of vehicles are present in
the simulation scene, and our experiment is started when such
a stabilized condition occurs.
Factor 2: Different computation offload patterns (Rc(t))

adopted by individual vehicles affect the server’s composite
loads differently.

Each vehicle may use a different offload pattern that would
generate a different style of the local load. We consider the
two types of offload patterns, the periodic offload (Fig. 2 and
Fig. 3) or the speed-dependent offload (Fig. 4) in Section III.
When coupled with the traffic flows explained in Factor 1, the
local loads generated by the two offload patterns contribute
to the server’s composite load differently depending on how
many vehicles are located, how fast they are moving, and
how long each vehicle stays within the area. We selected the
experiment parameters to show the impacts via case-by-case
analysis.

VI. ANALYSIS RESULT
A. RAW DATA DISTRIBUTION
To illustrate how complex the function f in Equation 1 is,
we take a partial dataset generated from the data generator in
Fig. 6, and apply the curve-fitting to visualize the relationship
of its input and output.

Fig. 9 shows how the server’s composite load (output)
changes under different traffic speeds (input), volumes
(input), and road geometries (input), provided that all vehicles
periodically offload their computations to the servers (input).
As shown from the shapes of the four curves (a) - (d),
their relationship is (i) highly non-linear, and their patterns
are significantly different for (ii) each congestion level and
(iii) each road geometry. Furthermore, when more other
variables are considered together, their relationship will take
a more complex form.
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TABLE 1. The parameters for the traffic flow and the compute load
generation in two different cities: new york city (NYC) and tampa (THEA).

TABLE 2. The variables that represent the levels of the traffic congestion
within the RSU coverage.

FIGURE 9. The curve fitting result that shows the relationship among the
traffic flow variables (speed and volume), the local loads (periodic
offload pattern), the server’s composite load (aggregate load) in two
different cities (NYC and THEA) under two different levels of traffic
congestions (congested flow and free flow).

While such a data-driven approach like curve-fitting or
machine learning can characterize the server’s composite
load, they do not provide intuitive explanations of how diverse
factors affect the server’s composite load. Our empirical
analysis aims to extract a set of observations that can

explicitly explain the relationship among the three parts of
Equation 1 using the two metrics, the aggregate loads and the
peak loads.

B. GEOGRAPHIC AGGREGATE COMPUTE LOADS
The geographic aggregate load is the cumulative sum of
the local loads over time in a specific geographical region
covered by a particular server, and this is defined as:

Aj(t) =

∑
i,t ′

Ric(t
′), (9)

where any vehicle i that stays in the server coverage at
time t ′.
This metric is used to gauge how large amount of offload

requests from vehicles are accumulated over time in a
particular area; if this value is too high in a particular area,
the server’s compute resources tend to be excessively utilized.
For example, the server’s energy consumption will become
higher as more requests are centralized; for the offload
requests that have to store some data on the server’s data
storage (e.g., the image transfer of the HDmap service), those
(e.g., memory or disks) will be filled to the limit early.
Fig. 10 and 11 show the geographic aggregate loads

calculated for 11 areas in NYC ((a) - (d)) and 10 areas in
THEA ((e) - (h)). The identification of each area is shown
in Fig. 8. Each area is covered by one server, and the segment
type indicates its coverage size; some servers cover smaller
or larger areas than others. Each graph has upper and lower
parts that compare the aggregate loads to different traffic
flow variables. For (a), (b), (e), (f), the aggregate loads are
compared to the traffic density (the upper part) and the traffic
volume (the lower part). For (c), (d), (g), (h), the aggregate
loads are compared to the traffic delay (the upper part) and
the traffic average speed (the lower part). The slash-colored
bars represent the normalized magnitude of the traffic flow
variables (the green slash: density, the blue slash: volume, the
magenta slash: delay, the gray slash: speed). The solid-blue
bar represents the aggregate load collected by the local loads
generated according to the periodic offload pattern only
(periodic aggregate load); the solid-orange bar represents
the aggregate load collected by the local loads generated
according to the speed-dependent offload pattern only (speed-
dependent aggregate load).

(Observation 1) If the sizes of the two areas are similar,
the aggregate loads grow as the density, and the volume
grow when both are positively co-related.

In many cases, the density and volume are positively co-
related; as more vehicles pass through a particular area, the
number of vehicles that occupy a unit area also increases.
In this case, the aggregate loads increase as well. For
example, in NYC case ((a) and (b)), for any two areas where
the density and the volume are positively co-related and
increasing, the amount of both types of aggregate loads (i.e.,
the periodic and the speed-dependent) increase as well. The
same growth pattern also happens in areas 5 - 10 in THEA
cases ((e) and (f)) that have the same conditions.
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FIGURE 10. Aggregated compute loads in four different traffic flow scenarios in NYC. The comparison between the two types of compute loads (periodic
pattern and speed-dependent pattern) and the macro traffic variables in (a) Density (Upper) and Volume (Lower) in Congested Flow of NYC (New York
City), (b) Density (Upper) and Volume (Lower) in Free Flow of NYC, (c) Delay (Upper) and Speed (Lower) in Congested Flow of NYC, (d) Delay (Upper) and
Speed (Lower) in Free Flow of NYC.

FIGURE 11. Aggregated compute loads in eight traffic flow scenarios in THEA. The meaning of (e), (f), (g), (h) are the same as (a), (b), (c), (d) in Fig. 10,
respectively.

On the other hand, there are cases that, for two areas where
the density and the volume are negatively co-related, the
growth of the aggregate loads have different patterns (or even
decreases) depending on the offload patterns of the local
loads. For example, in THEA case (e), the density of area 3 is
higher than area 2, while the volume of area 3 is smaller than
area 2. In this case, the periodic aggregate load is positively
correlated with the density (but not with volume). However,
there is no clear relationship between the speed-dependent
aggregate load and the density; the aggregate load decreases
as the density increases.

This scenario (i.e., the negative co-relationship between the
density and the volume) happens when a small number of
vehicles are waiting in the queue too frequently (e.g., due to
the red signal waiting) in a small area. In such a scenario, the
growth of the speed-dependent load is penalized by the two
factors simultaneously. Firstly, since there is a high chance
for most vehicles to stop on the road, the average speed of
the vehicles becomes significantly lower (or the delay of the
vehicles is significantly higher) than in other areas, as shown
in (g) in the area 2 and 3; this would consequently decrease
the speed-dependent aggregate load. In addition, since there
are fewer vehicles due to the low volume, the aggregate load
becomes smaller than in other areas with a higher volume of
vehicles. On the other hand, the periodic aggregate load is not
affected by the vehicle speed, so the aggregate load grows as
the density grows.

(Observation 2) If the density and the volume of the two
areas are similar, the aggregate load grows as the area size
becomes larger.

Even though the two areas have similar density and
volume, this does not necessarily imply their accumulated
loads are also similar, mainly due to the difference in their

travel times. That is, vehicles that pass through a larger
area tend to have a longer travel time, resulting in a larger
number of offload requests, consequently leading to a higher
aggregate load. For example, in NYC case (a), the sizes of
the area 6 and 11 are different, but their density and volume
are similar; the areas 7 and 11 in NYC case (b), and the
area 2 and 8 in THEA case (e) and (f) have the similar
characteristic. In these area pairs (i.e., different area sizes
with similar density and volume), a higher aggregate load is
observed in a larger area than in a smaller area.

On the other hand, when the two areas have different
sizes, densities, and volumes, it is not easy to draw a general
conclusion about their effects on the aggregate load. For
example, in NYC case (a), areas 3 and 5 have similar sizes,
while area 9 is smaller than areas 3 and 5. In this case, area 3
has a much larger density, volume, and aggregate load than
area 9. However, area 5 also has a much larger density and
volume than area 9, but its aggregate load is smaller than
area 9. That is, the changes in the density, the volume, and the
area size altogether form a compound effect on the aggregate
load, so depending on which one plays a dominant role, the
relative aggregate load becomes different.

(Observation 3) The average speed differently affects
the growth rate of the speed-dependent load and the
periodic aggregate load.

Intuitively, since the speed-dependent local load is affected
by the vehicle speed while the periodic load is not, their
aggregate loads also have different patterns depending on
the speed factor. For example, when the vehicle speed and
the speed-dependent local load are positively co-related (i.e.,
as the speed increases, the amount of the local load also
increases), each vehicle produces a higher local load in those
areas where the average speed is high.
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However, when it comes to the aggregate load (i.e., a
composition of multiple local loads), this is not generally
true since the speed factor also interplays with other traffic
flow variables (e.g., the density or the volume) affecting the
aggregate load in a complex fashion.

In NYC case (a), areas 3 and 7 have positively co-related
density and volume with a similar area size. Hence, it is
expected to have a higher aggregate load in area 7. However,
the periodic aggregate load increases in area 7, while the
speed-dependent aggregate load stays the same between
areas 3 and 7. This is because the average speed of area 7 is
slightly lower than area 3 as shown in (c). This slight
difference (i.e., a negative factor to the aggregate load)
penalizes the growth of the speed-dependent aggregate load
despite a much larger increase in the density (i.e., a positive
factor to the aggregate load).

Similarly, in THEA case (e), the periodic aggregate load
grows from area 2 to area 3 as the density increases;
however, the speed-dependent aggregate load decreases from
area 2 to 3 despite the density increase. On the other hand,
the periodic and speed-dependent aggregate loads grow from
area 2 to area 4 as the density increases. This is because,
even though the average speeds of the area 3 and 4 are much
smaller than area 2, their significance in contributing to the
speed-dependent aggregate loads is different when coupled
with the density factor; that is, the speed factor in the area 4 is
less dominant than the area 3.

C. PEAK COMPUTE LOADS
The peak load is a notably large compute load sustained for a
relatively shorter period than other normal loads. Handling
such a peak load is important but challenging because
securing sufficient resources to process it completely may
often be overkill due to its irregular arrival timing and short-
lived nature [12]. In our context, the peak loads of servers
occur at different timings, magnitudes, and patterns that are
affected by both the vehicles’ local loads and the traffic flows
and need to be treated differently.

Fig. 12 compares the time-series composite loads occur-
ring at multiple areas. More specifically, each graph has two
different time-series composite loads occurring in a pair of
areas, and those area IDs are shown on top of each graph; the
blue solid line and the red-dotted line indicate the time-series
composite load of the left area ID and the right area ID,
respectively. Those lines show different peak load styles, and
we analyze those from three perspectives: their peak timings,
magnitudes, and similarities.

(Observation 4) The geographically adjacent areas
have similar timed patterns of the peak loads.

Informally, we consider two peak patterns to be similar
whenever (1) both areas have similar numbers of peaks that
are significantly deviated from their average loads and (2) the
similar time gaps between successive peaks.

Fig. 12 shows two categories of area pairs and their peak
loads; the four geographically adjacent area pairs: (a) NYC

(7, 11), (b) NYC (3, 9), (d) THEA (2, 8), (e) THEA (2, 4);
the two geographically non-adjacent areas: (c) NYC (1, 8),
(f) THEA (1, 7).

Geographically non-adjacent areas have significantly dif-
ferent peak patterns; for example, the peak patterns of (a)
NYC (7, 11) and (d) THEA (2, 8) are very different; the
peak patterns of (c) NYC (1, 8) and (f) THEA (1, 7) are
also very different. On the other hand, two geographically
adjacent areas have similar peak patterns; for example, the
peak patterns of NYC-7 and NYC-11 in pair (a) are similar,
and the similar observation holds in pair (b), (d), (e).

This shows two geographically adjacent areas would
experience peak loads with similar frequencies and intervals.
From the resource management perspective, each server
needs to predict when and how often the peak load would
occur to determine the proper timing of the resource
rescaling. However, in many scenarios, the timing of the peak
load is highly unpredictable, so it is not easy to know it in
advance. In this case, an edge server can use the history of
the peak load occurrences at the adjacent servers as a good
indicator of its own peak loads so that the appropriate timing
of the resource rescaling can be more precisely determined.

(Observation 5) The geographically adjacent areas
show different peak magnitudes.

The peakmagnitude implies how large a load deviates from
the average load, and this is an orthogonal issue from its
timed pattern. For example, two areas may experience similar
intervals of successive peaks, but the degree to which each
peak deviates from its average load can be different.

In Fig. 12, (a) NYC (7,11) has a relatively smaller gap of
the peak magnitudes than (b) NYC (3, 9), (d) THEA (2, 8),
(e) THEA (2, 4). That is, the height difference between the
two lines in (b), (d), (e) is much larger than (a).

One reason for such deviation is the traffic volume change
from one area to another due to the presence of other
alternative routes. Referring to Fig. 8, for example, in NYC
(3, 9), the traffic flows in the direction fromNYC-3 toNYC-9.
However, there is another alternative route from NYC-3 to
NYC-2. This means that not all vehicles from NYC-3 flow to
NYC-9; only a partial number of vehicles fromNYC-3 would
eventually flow to NYC-9. For this reason, the magnitude
of NYC-9 (blue) is smaller than NYC-3 (red) in (b) due to
the smaller number of vehicles. On the other hand, in NYC
(7, 11), there is no alternative route between NYC-7 and
NYC-11. Hence, all vehicles from NYC-7 flow to NYC-11,
which makes relatively similar magnitudes between the two.

However, the traffic volume change is not the sole factor
for the magnitude. For example, in THEA(2, 8), the vehicles
flow from THEA-8 to THEA-2, and there is no alternative
route. Nonetheless, the peak magnitudes of the two areas are
substantial. This is because THEA-2 is adjacent to the 4-way
intersection, which makes the traffic flow more congested
than THEA-8. This difference is also supported by Fig. 11.(h)
where the traffic volumes of THEA 2 and 8 are similar, but
their speeds differ. Since both cases use the periodic offload
patterns in (d), the slower traffic flow at THEA-2 makes the
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FIGURE 12. Comparison of the peak compute loads in 12 different areas; for each pair of the area ID in the upper title, the left side matches to the
red-dotted line, and the right side matches to the blue solid line; (a) NYC-Congested-Speed-Dependent Load, (b) NYC-Free Flow-Speed-Dependent Load,
(c) NYC-Congested-Speed-Dependent Load, (d) THEA-Free Flow-Periodic Load, (e) THEA-Congested-Speed-Dependent Load, (f) THEA-Congested-Periodic
Load.

vehicles stay in the area longer than THEA-8, resulting in a
higher peak magnitude.

(Observation 6) The travel times and driving directions
between the two areas affect the absolute peak timings of
the geographically adjacent areas.

Even though the two areas have a similar pattern of peak
loads, the absolute timing when each peak occurs can be
different due to the propagation delay of the peak loads from
one area to another. The travel direction and time are major
factors affecting such propagation delay.

In NYC (7, 11), the driving direction is one way from
NYC-7 to NYC-11, while THEA (2, 8) has the opposite
direction from THEA-8 to THEA-2. For this reason, the
directions of the propagation of the blue and red lines in (a)
and (d) are opposite. The propagation delay in (a) NYC (7, 11)
and (d) THEA (2, 8) are also different due to the travel time
difference experienced at each source area (i.e., NYC-7 and
THEA-8).

Many factors determine the travel time, and one factor is
the area size; THEA-8 has a larger area size than NYC-7, so it
typically experiences a longer travel time. For this reason,
the propagation delay of the peak load in (d) (i.e., the size
of the shift between the blue and the red lines) is longer
than (a).

From the resourcemanagement perspective, this aspect can
also be used to determine the timing of the resource scaling.
When a peak load occurs in one adjacent area, one can
understand which adjacent servers would experience similar
peak loads and how long it would take to determine the
appropriate timing of the resource scaling.

(Observation 7) The magnitudes of the peak loads in
different areas do not always match with the magnitudes
of the peak volumes of their traffic flows.

As explained in the aggregate load analysis, the naïve
conjecture - a higher server’s composite load would be
generated in the area where more vehicles exist - also
does not hold generally true for the peak load analysis as
well; it depends on which variable plays more dominant
factors affecting the magnitudes of the peak loads. Fig. 13
shows one comparison of the composite loads (left) and
the traffic volumes (right) in the area pairs in NYC. In the
right graph, NYC-11 (blue) has a higher magnitude of the
peak volume in its traffic flow than NYC-11 (red), while
the composite load in NYC-11 is always lower than NYC-7.

FIGURE 13. The comparison of the compute load (left) and the traffic
volume (right) in NYC-Congested-Speed-Dependent Load where the
magnitudes of the compute loads and the traffic volumes are in the
reverse relationship; NYC-7 is the red-dotted line, and the NYC-11 is the
the blue solid line.

This is because, since the speed-dependent offload pattern is
used for NYC (7, 11), NYC-7 has a much higher delay (i.e.,
lower speed) than NYC-11 as shown in Fig. 10.(c). The lower
average speed of NYC-7 plays a more dominant negative role
than the traffic volume factor, resulting in a lower composite
load than NYC-11.

VII. DISCUSSION
While the edge server is the core component to realize many
V2X connected vehicle services, deploying them on public
roads is challenging since it requires a huge infrastructure
cost and an in-depth analysis of its safety and effectiveness.
We explain how our findings can be an input to the edge
server design and deployment for ongoing standardization
activities [53], [59].

A. INTEGRATION WITH NETWORK COMMUNICATION
MODELS
While our work focuses on characterizing the compute
workloads imposed on edge servers, it is also important to
consider the network performance (e.g., network bandwidth,
latency, packet drop rates) to reason about the system-level
Quality of Service (QoS) requirements. For example, in the
intelligent intersection management scenario, the vehicles
may share their driving trajectories with the RSU (edge
server), which would decide whether an imminent collision
among them would occur. In this case, the service’s end-to-
end latency is defined as the time interval from the moment
the vehicles send their trajectories to the RSU to the moment
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the vehicles receive the collision warning message. Such an
end-to-end latency (i.e., the system-level QoS requirement)
is affected by both the compute load and the network
performance (e.g., network bandwidth, latency, packet drop
rates), and we explain how our work can be integrated with
the network research domain [44], [46].

Firstly, the timing when the composite load occurs may
vary depending on the choice of network models that enable
communication between the vehicle and the servers. When
the local loads are generated, the timing when such loads
are imposed on the server may be different due to the
network latency or packet drop rate. Much research has been
done to construct realistic analytic models of such network
behavior, which can be integrated with our compute workload
characterization. For example, the distance between the
vehicles and the servers can be obtained by our data
generator; this can be input to the function to compute the
average packet delivery ratio (PDR) proposed by Gonzalez-
Martín’s work [43]; then, the obtained PDR can then be used
to determine more realistic timing when the load arrives at
the server’s side.

Secondly, the research on comparative performance anal-
ysis of the V2X communication protocols can be integrated
with our work to decide the most appropriate combination of
the compute and network model to achieve the system-level
QoS requirements. For example, Mannoni et al. studied the
performance comparison between ITS-G5 and C-V2X MAC
layer protocols [21], and Ali et al. analyzed the performance
of different modes of the 3GPP NR V2X protocol [45].
According to that literature, various tradeoff points, such
as network bandwidth, latency, energy consumption, and
monetary costs, exist when selecting a specific communica-
tion protocol to serve certain V2X services; analyzing such
tradeoffs requires understanding the compute load generated
by the target V2X services, and the workload characterization
from our work can be utilized.

B. COMPUTE RESOURCE ALLOCATION
The edge server needs to be equipped with an appropriate
size of compute resources (e.g., CPU power or memory
sizes), taking into account the number of service requests
from vehicles. Allocating too much compute resources would
incur unnecessary infrastructure costs, while allocating less
resources would not guarantee the service requirements.

When judging the amount of the edge server’s compute
resources, the two factors, the traffic flow and the compute
offload patterns, shall be taken into account together;
considering only one aspect and ignoring the other would not
accurately estimate the size of the edge server’s composite
load, which consequently results in over or under-estimation
of the required compute resources.

For example, allocating the compute resource in proportion
to the number of vehicles present in the area may not
always be the best strategy; if the edge server deployed
in the area typically experiences a relatively high average

speed while the service request period from each vehicle is
relatively long, the edge server would not require the same
magnitude of the compute load increase as much as the
area where the smaller number of vehicles request offloads
much more frequently.

In addition, there is a spatial locality in the pattern of the
edge server’s composite loads; the closer edge servers tend
to have a similar pattern in their peak loads. This means that,
in order to estimate the compute resources of the edge server
in one area, the history of the composite load of its adjacent
edge server can be used as a good indicator.

Despite the similarity of the peak load patterns, however,
the timings and the magnitudes associated with the peak
loads can be different. This is because the traffic volume
from one edge server area is different from its adjacent
edge server area; some former vehicles may take alternative
routes, or multiple routes may be converged into one edge
server area, which may change the timing and magni-
tudes. If such locality aspects are appropriately analyzed
together, the timings and the magnitudes of the adjacent
edge server’s composite loads can be more accurately
estimated, which would help its compute resource scaling
as well.

C. COMPUTE OFFLOAD SCHEDULING
Each compute offload request should satisfy timing con-
straints at various granularities and the spatial constraints
where the request needs to be processed. For example, the
edge-assisted collision avoidance service needs to collect the
positions of the vehicles and the pedestrians at intersections
and instantly (e.g., in the order of milliseconds) inform the
vehicles of the potential collision hazard. On the other hand,
the HD map service may collect road images from vehicles
and update the road geometry of the corresponding area at a
coarser time granularity since the updated geometry does not
need to be immediately reflected (e.g., in the order of seconds
or minutes).

Our observations can be used to construct more effective
scheduling strategies for offload requests. That is, when a
certain edge server experiences too large composite loads at
a particular moment, multiple granularities of the timing and
spatial constraints provide room for such offload requests to
be scheduled in other edge servers.

For example, suppose other offload requests have more
relaxed requirements. In that case, a scheduling strategy may
decide to process them in other under-utilized edge servers on
the vehicles’ route later. In order to find such under-utilized
edge servers, one may check another route where the traffic
flow significantly diverges from the current location, which
would distribute the compute load and offload the request to
the edge server on the route. Alternatively, one can check the
average speed in each route and intentionally take a slower
route that would give a longer time to offload the request
with a significant processing time, sacrificing the travel time
increase.
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VIII. CONCLUSION
Our empirical analysis indicates that understanding the edge
server’s composite load requires accounting for the intricate
interaction between traffic flow (e.g., volume, density, speed)
and local load (e.g., periodic, speed-dependent offloading).
Even when vehicles generate the same type of local loads,
the composite loads on edge servers can vary significantly
based on the speed, number of vehicles, and the size of the
area they cover. Geographically adjacent edge servers often
exhibit similar peak load patterns; however, the magnitudes
and timings of these peaks can differ depending on how traffic
flow diverges or converges between areas. Building on these
findings, we aim to develop a theoretical model of the edge
server’s composite load. This model will mathematically
capture its characteristics, enabling formal analyses such
as end-to-end latency analysis, resource allocation, and
schedulability tests.
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