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ABSTRACT Enterprise networks that host valuable assets and services are popular and frequent targets
of distributed network attacks. In order to cope with the ever-increasing threats, industrial and research
communities develop systems and methods to monitor the behaviors of their assets and protect them from
critical attacks. In this survey, we systematically survey related research articles and industrial systems to
highlight the current status of this arms race in enterprise network security. First, we discuss the taxonomy
of distributed network attacks on enterprise assets, including reconnaissance attacks probing vulnerable
enterprise hosts and servers, and distributed denial-of-service (DDoS) attacks aiming to paralyze network
services hosted within an enterprise network. Second, we review existing methods that leverage either static
configurations or dynamic network graphs to monitor network behavior of enterprise hosts, verify their
benign activities and isolate potential anomalies. Third, state-of-the-art detection methods for distributed
network attacks sourced from external attackers, such as proprietary rules in commercial firewalls and
community signatures in open-source software tools are elaborated with highlights on their merits and
bottlenecks. Fourth, as programmable networks and machine learning (ML) techniques are increasingly
becoming adopted by the community, their current applications in network security are discussed. Finally,
we suggest several research gaps on enterprise network security to inspire future research.

INDEX TERMS DDoS, enterprise network, host monitoring, network security, reconnaissance scan.

I. INTRODUCTION
Enterprises such as universities and research institutes host
critical data and offer publicly accessible services through
their networks. Thus, they often become popular targets
of distributed network attacks that actively probe asset
vulnerabilities and paralyze their services. With practical
defense appliances (e.g., firewalls and intrusion detection
systems) employed by IT departments of enterprises, network
attacks are becoming well distributed in sources and agile in
attacking patterns to bypass such static detection and increase
their effectiveness. To be more specific, a sophisticated
network attack usually employs hundreds and thousands of
botnet devices spread across geolocations and diversified
in types (e.g., Internet-of-Things, laptops, and compromised
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servers); each may send malicious traffic with changing
patterns and protocols. Some popular and large-scale DDoS1

attacks [26] include, but are not limited to: Amazon AWS
became the target of a massive Terabits-level DDoS attack
sourced from hijacked CLDAP servers in 2020; Github
suffered from a Memcached protocol-based DDoS attack in
2018; during Rio 2016 Summer Olympics, critical servers of
official Olympics organizations as well as Brazilian banks
and telcos [139]) were targeted by sustained distributed net-
work attackswithmixed traffic types such as TCP-SYN,UDP
reflection, DNS, CHARGEN (character generator protocol),
NTP, and SSDP sourced from millions of compromised
devices (e.g., IoTs) across the globe [145]. Successful dis-
tributed network attacks lead to service failures, disruptions,
and reputation degradation.

1All abbreviations used in this survey are listed in Table 1.
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FIGURE 1. Key topics covered in this survey.

Distributed attacks on enterprise networks often consist of
two phases, namely reconnaissance attacks (also known as
scans) to discover the vulnerability of networked assets and
distributed denial-of-service (DDoS) attacks that paralyze
the targeted victims that are discovered by malicious actors.
To cope with the threats, enterprise IT departments are
expected to track the devices within their networks to
ensure their expected behaviors and enforce attack defense
mechanisms that can effectively detect and mitigate attacks
on their networked assets without impacting legitimate
communications.

There are many mature products for monitoring the
network behaviors of enterprise assets and providing pro-
tections against distributed attacks via static configurations,
such as next-generation-firewall (NGFW) appliances and
intrusion detection systems (IDS). These static solutions are
practical to be used in high-throughput enterprise networks.
Still, they are ineffective in providing precise results (e.g.,
differentiating distributed attackers and malicious flows from
their benign counterparts). Therefore, it is not surprising that
the consequential attack mitigation measures (e.g., randomly
dropping packets to the victim) introduce non-negligible
collateral damages on benign traffic [31]. For instance,
typical next-generation-firewalls (NGFW) require users to
configure rules that specify the list of focused enterprise
assets and the corresponding defense strategies. Such meth-
ods effectively protect certain critical assets by tracking their
network activities of several traffic types but fail to capture
unknown and complex threats from hosts operated by sub-
departments, staff, and visitors. Moreover, the static nature of
such methods limits their capabilities in detecting emerging
attacks with dynamic and stealthy traffic patterns [173].
Legacy static solutions introduce blind spots likely

exploited by malicious actors and agile attackers. Research
communities have developed dynamic telemetry methods for
network monitoring via flow-level statistics and networked

graph structures to address this problem. Those methods can
provide fine-grained statistics to track each network flow
between enterprise assets and external hosts without leaving
any blind spot. However, maintaining fine-grained flow-level
telemetry unavoidably introduces high computational over-
heads. Therefore, they are not scalable for large enterprise
networks with hundreds and thousands of hosts that exchange
millions of concurrent flows.

Recent developments in two emerging paradigms, namely
Programmable Networks and Machine Learning (ML), offer
promise to improve the flexibility of network monitoring
and accuracy of attack detection. Generally speaking, pro-
grammable networking covers two main areas: network
function virtualization (NFV) and software-defined network-
ing (SDN). It changes the static nature of network traffic
processing often carried out by proprietary legacy hardware
and middleboxes. Instead, dynamic network functions on
generic servers and programmable switches are used to
achieve high responsiveness and real-time orchestrations.
Researchers have leveraged this technology to overcome the
challenges of legacy network monitoring and protection in
various use cases, such as real-time defense orchestration for
ISP network [42] and elastic control of virtual firewalls [30].
These inspire the development of solutions to the current
problems of enterprise network security. On the other
hand, recent advances in ML techniques that help obtain
data-driven models to make accurate predictions on statistical
attributes have proven their supremacy in many disciplines,
such as computer vision and language recognition. Despite
some of the practical challenges in applying ML methods
to network security [140], researchers have successfully
employedML algorithms to make reliable security inferences
from various types of network telemetry (e.g., system logs
or packet headers) in a variety of scenarios (e.g., IoT attack
or SSH brute-forcing). We believe that their trials and
efforts provide us with valuable lessons to address issues
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in asset classification and attack detection accurately and
precisely.

This survey reviews related research articles and industry
practices, providing comprehensive insight into current
developments, challenges, and future directions of asset
management and distributed attack detection in enterprise
network security. Given the popularity of (enterprise) net-
work security and massive number of research articles
being published so far, we acknowledge that certain papers
are inevitably not included in this survey. Therefore, the
primary focus of this survey is to provide a comprehensive
categorization and coverage of relevant topics than every
individual papers. Unlike prior surveys that broadly studied
certain attack types and defense mechanisms, we focus on
a narrow aspect of distributed volumetric network attacks
and their countermeasures applicable to enterprise networks.
In addition, we review the potential and challenges of improv-
ing the state-of-the-art in two emerging paradigms (i.e.,
programmable networks andML). To this end, we summarize
the main topics covered by this survey as follows, which are
also visually shown in Fig. 1.
First, in §II, we highlight the diversity and variety of

distributed network attacks including reconnaissance scans
and distributed denial-of-service (DDoS) attacks; second,
in §III, we discuss the current development of enterprise
networked asset classification and behavioral monitoring via
either static or dynamic methods; third, in §IV, enterprise
distributed attack detection systems using proprietary rules,
community signatures, and fine-grained flow statistics are
surveyed; fourth, in §V, opportunities introduced by the
two emerging paradigms, i.e., flexibility by programmable
networks and accuracy by machine learning are discussed
as to inspire future researches. Relevant surveys (but on
other aspects of network security) are discussed in §VII.
We highlight several research gaps as valuable future
directions in §VI, and conclude this survey in §VIII.

II. DISTRIBUTED NETWORK ATTACKS ON ENTERPRISE
ASSETS
Network attacks that probe, congest, or paralyze enterprise
assets such as public-facing servers are becoming distributed
in sources, versatile in traffic patterns, and diverse in
underlying mechanisms [3], [80], [106]. Such attacks often
occur sequentially – an enterprise asset is first examined
for its availability and known vulnerabilities through a
reconnaissance attack (i.e., host or port/service scans),
followed by (distributed) denial-of-service (DoS or DDoS)
attacks.

Large-scale scans and denial-of-service are often con-
ducted in a distributed manner from a single source to (a)
increase their effectiveness and (b) make it difficult for
defense systems to detect and/or mitigate. Distribution is
typically achieved by recruiting botnets, consisting of mas-
sive compromised devices like personal computers, powerful
workstations, public-facing servers, or compromised IoT
appliances [45], [55], [109], [148], [150]. To avoid detection,

TABLE 1. Abbreviation of terminologies used in this survey.

malicious actors often split an attack into small segments,
each performed by a single bot device. For example, in a
powerful but stealthy DDoS attack, each bot device only
generates low-rate traffic across a variety of protocols [57],
making it difficult to be distinguished from benign instances.
It is practically challenging to precisely identify all attack
sources [1] and block them. We show a visual example of
distributed network attacks in Fig. 2, where a malicious actor
commands and controls four distributed bot groups to attack a
victim residing within an enterprise network. Each group uses
a different traffic type and rate so that a reasonable fraction of
the entire attack traffic (sent by bot groups 1 and 2 in Fig. 2)
can successfully bypass defense appliances. Note that most
commercial firewalls operational in backbone and enterprise
networks are not optimally tuned to detect stealthy malicious
traffic on the path before it hits the victim.

VOLUME 12, 2024 89365



M. Lyu et al.: Survey on Enterprise Network Security

FIGURE 2. A visual example of distributed network attacks on a victim inside an enterprise.

A. RECONNAISSANCE ATTACKS
Malicious actors use reconnaissance attacks (also known
as scans) to construct their knowledge of targeted hosts
and services (ports). Those attacks probe the availability
of enterprise-connected hosts and discover their potential
vulnerabilities [151]. The discovered hosts may not only
become victims but may also be exploited as attack
amplifiers/reflectors to paralyze other victims. For example,
a discovered NTP server with high reflection capability (i.e.,
generate response packets with a size larger than that of the
received requests) can be used to amplify attack volume in
reflection-based DDoS attacks [79], [98].

Apart from malicious purposes, security researchers also
develop tools to identify potential cyber threats enterprises
face, such as open ports and vulnerable services that could
be exploited in network attacks. For example, Nmap [117]
is developed as a comprehensive scanning tool to discover
active hosts and ports (i.e., services). To increase the
speed and effectiveness of scans, the authors of Zmap [36]
optimized the scanning process by tuning the probing rate,
pre-connection state, and re-transmission, which can probe
the entire IPv4 space within 45 minutes. Scanning techniques
have evolved to become scalable at 10 Gbps throughput [2]
and can perform vulnerability scans towards protocol banners
through user queries [34]. Reconnaissance attacks have
also been studied for certain scan types, such as critical
cyber-physical infrastructures [169] and DNS utilities [60].

To combat reconnaissance attacks, researchers have devel-
oped methods, such as tracking port scanners on the
IP backbone [143], detecting subtle port scanning via
interactive visualization [162], disrupting reconnaissance

attacks via address mutation [65], constructing distributed
network telescope to capture scanners [126], and optimizing
backscatter [46] technique for scan detection in massive IPv6
address space [47]. However, according to [35] and [58], only
a few enterprises have practically adopted robust defensive
measures. Thus, service and host scans are still prevalent on
the Internet, exposing service and device vulnerabilities (e.g.,
Linksys routers, OpenSSL, andNTP). Consequently, exposed
hosts may be exploited by malicious actors on the Internet to
generate/reflect attacks or become direct victims in the future.

B. DISTRIBUTED DENIAL-OF-SERVICE (DDOS) ATTACKS
As already shown in Fig. 2, malicious actors may choose
to flood their target victim directly from botnet devices
using various techniques or protocols [57] (e.g., HTTP,
ICMP, and TCP-SYN). Also, they may choose to launch
a reflection-based DDoS with larger attack volumes. For
example, bot devices send packets with the spoofed source IP
address (of the ultimate victim) to the discovered reflectors
(e.g., DNS and NTP servers); these reflectors will then
respond to the victim with larger packet sizes.

DDoS attacks are becoming more complex, distributed,
and agile. The existing research literature extensively studied
the characteristics of various DDoS attacks. First, according
to [54] and [136], DDoS attacks are becoming complex
in protocols and traffic types. The participant botnets are
likely to be independent. Such patterns make it challenging
for defenders to isolate malicious traffic and attack sources.
Second, the increasing adoption of cyber-physical devices
(e.g., IoTs) brings new vulnerabilities and expands attack
surfaces yet to be addressed [91]. Therefore, a growing
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number of IoT devices connected to the Internet are
compromised as a botnet, enabling more powerful and
frequent DDoS attacks on a global scale [164]. For example,
in late 2016, Mirai [99], an IoT malware, hijacked hundreds
of thousands of IoT devices that belong to a wide variety of
genres, manufactures, and functionalities. The compromised
IoT devices has led to unprecedented DDoS attacks globally,
such as the Terabit-scale DDoS that attacked critical infras-
tructures of Rio 2016 Summer Olympics. During the attack,
each compromised IoT device generated malicious traffic at a
low rate, making them hard to be differentiated from benign
communications. Third, DDoS attacks are becoming more
dynamic and agile in their activity patterns to evade detection.
As pointed out in [158], they are usually launched with
changing temporal and spatial patterns to bypass detection,
which makes them quite effective against static rule-based
and signature-based detection methods. Botnets of different
families also work collaboratively. A given bot might
adapt its attacking strategy provided by different malware
families [22]. Finally, the concept of DDoS-as-a-service is
becoming popular as it lowers the barrier to generating a
distributed attack effectively [74]. Botnet owners can lease
their controlled devices for financial benefits, so malicious
actors with fewer resources (e.g., controlled bot) can rent their
large botnet to launch powerful attacks.

C. HIGHLIGHTS OF DISTRIBUTED NETWORK ATTACKS
We now summarize three key highlights in this section.

First, network attacks such as DoS and scans are becoming:
(a) ‘‘distributed’’ by recruiting botnets to generate attack
traffic from different logical sources (e.g.,ASes, subnets) and
physical geolocations, (b) ‘‘complex’’ by leveraging a wide
range of protocols and vulnerabilities, and (c) ‘‘dynamic’’ by
shifting active bot groups or traffic patterns randomly. All the
above characteristics increase the difficulties in effectively
detecting distributed attacks.

Second, potential vulnerabilities of network-connected
hosts (e.g., BYOT devices, enterprise servers, or IoTs) may
be identified and exploited by malicious scripts (e.g., URLs
contained in phishing emails) ormalware. Such compromised
devices are used as bots to perform further infections
within their local network or participate in attacks on
other networked assets. Therefore, continuously monitoring
network traffic behaviors and enforcing appropriate security
management are essential for network operators (IT and cyber
departments). We will discuss in §III some of the tools and
techniques for asset network behavioral monitoring.

Third, apart from malware infections and misuse, assets
such as servers and databases within an enterprise network
may be direct targets of distributed attacks. During such
attacks, public-facing servers may not be able to respond to
benign requests of external clients if their networking and
computational resources get exhausted. In addition, network
vulnerabilities of internal non-critical enterprise hosts may
become exposed to external hackers for further cyber-crimes.
Therefore, defending against distributed attacks on enterprise

TABLE 2. Classifying host types in a large enterprise network by DNS
names [96].

assets is critical for security operations. In §IV, we will
elaborate on state-of-the-arts enterprise attack detection
systems and mechanisms.

III. ASSET CLASSIFICATION AND NETWORK
BEHAVIORAL MONITORING
Obtaining real-time visibility into assets and their behaviors
is essential to combat the increasing number of distributed
network attacks targeting or utilizing enterprise assets.
IT, OT, and cybersecurity teams need tools to classify
connected assets based on their role (e.g., web server,
DNS server, camera, personal computer), ensuring asset
activities conform to their role’s patterns (profile). With asset
profiles clearly modeled, appropriate security policies (e.g.,
segmentation, access rules) can be applied to the network, and
certain attacks can be prevented or at least detected easier.

However, profiling asset behaviors is a nontrivial task as
enterprise hosts come with diverse and complex function-
alities and behaviors. For example, an enterprise can have
servers of various types that serve internal or external clients;
visitors and staffmay have their personal devices (e.g.,mobile
phones and laptops) connected through wireless gateways,
and IoTs such as smart cameras and sensors may also be
installed in a typical enterprise network [137]. Let us take a
look at Table 2, which lists popular types of networked hosts
(top ten rows) identified by their enterprise DNS names in a
large university network, studied by work in [96]. As shown
by the last row of Table 2, there are many other unclassified
and less-popular host types, such as LDAP server and Redis
proxy, which are often hard to enumerate. We note that
those identifiable assets (by their domain name) are only
accountable for less than 10% of active hosts in the enterprise,
and the functionality of other 90% hosts is mostly unknown
to the university network managers and administrators.

Connecting many heterogeneous devices will inevitably
introduce challenges to network management, operation, and
security teams. Devices owned and managed by visitors
and/or staff may come infected by malware and hence
start conducting malicious activities [38] upon arrival to
the network, which may go undetected by security tools
and appliances [10], [115]. Also, inaccurate access policies
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and configurations (e.g., public-facing servers) may give
external attackers opportunities to compromise less secure
internal hosts for malicious purposes. Organizations like
universities and research institutions often have relatively
unfettered networks, allowing subdivisions and departments
to configure their own IT infrastructures. This makes the
problem even more pronounced as asset visibility gets
relatively poor.

Many solutions have been developed by industry (e.g.,
[25], [37], [101]) and academia (e.g., [53], [73], [96],
[122]) to classify roles and/or monitor network behaviors of
individual assets. Existing methods can be categorized into
either static configurations/databases that record high-level
characteristics (e.g., role/class/model) of the connected
devices or dynamic graphs obtained from passive traffic
monitoring that capture communication patterns individual
networked hosts display.

A. STATIC MONITORING VIA GENERIC CONFIGURATIONS
Current practical solutions for monitoring and classification
of enterprise networked assets primarily rely on static
and relatively generic methods (e.g., tables containing a
list of device hostnames, their VLAN, Operating System,
IP address, or perhaps their role) without capturing their
fine-grained communication characteristics that carry behav-
ioral information such as the service ports being used and
external hosts being contacted. As two tangible examples,
we visually show the fine-grained communication behaviors
of a website server and a DNS recursive resolver in our
university campus as Sankey diagrams in Fig. 3. Each
line that connects the asset, service ports, and external
hosts is a network flow with its line width indicating its
throughput. Having visibility into such fine-grained flow
profiles is important for IT department to understand the
communication patterns of their assets and identify potential
(malicious) changes in their network behaviors such as a
sudden increase of the number of flows, ports, and external
hosts.

However, existing firewall appliances are often configured
by access control lists (ACL) and rules that keep static
information of internal hosts such as VLAN IDs, device
categories, and/or user groups [118]; DHCP and DNS servers
maintain system logs containing device names and their IP
addresses [6]; and, other specialized commercial platforms
managing enterprise assets are configured by lists supplied
(often manually) by the IT department [51], which are not
able to capture the network behaviors of enterprise assets as
just discussed.

Ideally, an IT department equipped with full knowledge of
assets connected to their network will be able to segment the
network and enforce strict access configurations to prevent
unintended communications to/from networked devices on
the network [25]. Network traffic not conforming to those
configurations will be marked as abnormal, thus, triggering
further defense actions such as alerts and mitigation. For
example, according to best practices of the Microsoft

firewall [103], inbound port or service rules could be enforced
so that the border firewall blocks all non-HTTPS traffic
towards an enterprise HTTPS server or inbound DNS packets
are only allowed if their destinations are enterprise DNS
servers. To protect a critical asset operational within an
enterprise (say, a corporate website server), the network
administrator may choose to set up an upper bound rate
limit via its traffic sharper platform for that asset. Whenever
the asset receives traffic rates higher than the allowed limit,
the management system (i.e., shaper and/or firewall) will
partially or fully drop those inbound packets, preventing a
potential volumetric attack on that specific host.

Static configurations enable administrators to manage
and monitor their enterprise assets by specifying relatively
high-level network profiles. However, with the explosive
growth of network applications communicating via a variety
of protocols in conjunction with the adoption of IoT/OT
devices with heterogeneous behaviors, populating and
maintaining generic, high-level configurations and policies
become increasingly difficult for enterprise IT departments,
especially for those with loosely-federated networks [113].
As highlighted in [49], [144], [156], and [161], specifying
policies for a large enterprise network with complex host
composition is error-prone, and potential misconfigurations
can impose high operational costs, such as fixing bugs
and resolving conflicts. This problem becomes even worse
with the adoption of massive and diverse BYOTs and
IoTs [64]. Unlike workplace desktops and business laptops
that are often strictly and centralized managed by enterprise
IT departments, it is nearly impossible to design and
enforce standard network policies for personal smart phones
connecting to an enterprise WiFi network that can use a
variety of networked applications and communicate with a
large number of external servers.

Therefore, managing assets by simple (generic) configu-
rations tailored for each device type inevitably leaves many
blind spots and becomes impractical in most operational
settings [12], [165].

Moreover, the behavior of networked hosts in modern
enterprises can change in time [96]. For example, certain
divisions or departments (engaged in projects with external
stakeholders) may operate multiple services (e.g., DNS and
website) on a single machine and expose them to the
public Internet, each with a distinct behavioral pattern –
some services may get terminated, and/or new services or
functionalities may be added on-demand. As a result, static
methods fall short of expectations [11], [163], [176].

Motivated by some of challenges highlighted above,
researchers have developed dynamic methods using specific
networked graphs, which will be discussed next.

B. DYNAMIC MONITORING VIA SPECIFIC NETWORKED
GRAPHS
To obtain fine-grained visibility into activities of connected
hosts, prior works (will soon be discussed in this section) used
networked graphs to characterize (profile) the behavior of
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FIGURE 3. Sankey diagrams illustrating network behavioral profiles of two representative enterprise assets: (a) a website server, and (b) a DNS recursive
resolver, using 1000 flows of each networked asset for visualization purpose.

various host types. To motivate our discussion, let us consider
Fig. 3, which visualizes the flow graphs2 (in the form of
Sankey diagrams) of two enterprise hosts connected to a
university network (i.e., a website server and a DNS recursive
resolver). The website servers often expose only two TCP
ports (i.e., TCP/443 and TCP/80) [96] to the public Internet
allowing for communication sourced from a wide range of
TCP ports by external hosts, while the DNS recursive resolver
sends traffic from arbitrary UDP ports targeting only UDP/53
operational on external DNS servers.

1) PER-HOST CLASSIFICATION
Work in [73] uses graph structures tomodel network activities
of each connected host at the IP address and transport-layer
port levels. The authors profiled various types of networked
hosts (e.g., HTTP servers, DDoS attackers, and P2P clients),
each with a unique transport-layer behavioral pattern. For
example, the graph pattern of an FTP server consists of a
large number edges destined to IP addresses, initiated from
a wide range of port numbers connecting to two popular
port numbers, namely TCP/20 and TCP/21 on the server.
The authors developed a method to classify an unknown
host by checking the similarity between its behavioral
graph with that of known types. To effectively monitoring
communication patterns of hosts, the work in [53] developed
a tool that visualizes communication graphs for network
operators helping them classify networked entities manually.
To augment legacy graphs that only describe connectivity
among hosts, researchers have developed graph structures
that carries contextual information and can model network
communications with more descriptive features (e.g., volu-
metric information), such as attributed graph models in [122].
This graph structure is generated to capture both network
topological properties (e.g., connections between nodes) and
correlated attributes on each graph edge which hold both
computational efficiency through sampling techniques used
in graph generation and accuracy when classifying host roles
in real-world networks.

2These are constructed from data and models presented in [96].

2) CLUSTERING HOSTS AND MODELLING GROUP
INTERACTIONS
Modeling the behavior of individual hosts can be challenging,
especially at scale. Therefore, one may choose to reduce the
dimension by focusing on clusters/groups of hosts. In such
clustered graphs, hosts are often grouped and represented by
their common communications behaviors, such as contacting
a similar range of external hosts or residing in the same
subnet. However, balancing the level of aggregation and
visibility into the actual network often requires extensive
tuning and optimization. In [15], the authors optimized
communication graphs for a large network to achieving
the optimal consumption of computational resources while
having sufficient information captured in the graph to
describe the evolution of a network attack. Authors of [70]
used the method named ‘‘connection graph analysis’’ to
discover cooperating hosts in P2P networks, which start from
a single known P2P node in a network to discover and group
other associated hosts progressively. The developed method
was demonstrated to have short processing times in grouping
all P2P hosts in large networks by processing their NetFlow
streams. Besides, statistical methods such as clustering
algorithms are quite powerful for grouping and differentiating
hosts based on their behavioral profiles in large-scale
networked graphs. As an example, in [168], the authors
applied clustering algorithms to effectively identify groups of
hosts that inherently belong to different application types on
bipartite graphs describing communications between hosts.
As in [66], the authors clustered hosts within the same
enterprise network that have strong inter-IP connectivity (i.e.,
connecting to a similar range of hosts) for enterprise IT
departments so that they could track the behavior of each
identified group instead of individual hosts for scalability in
network management.

3) DETECTING HOST ANOMALY FROM GRAPHS
Using networked graphs that describe host interconnectivity
can be particularly useful for cybersecurity applications such
as to detect malicious hosts in a network or identify clusters
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of botnet devices launching distributed attacks [7], [10], [40],
[63], [72], [107], [123], [160]. For some recent examples,
the work in [10] considers a large enterprise network
with dynamic compositions and communication patterns of
hosts, and hence becomes difficult to manage and secure.
Therefore, the authors developed a probabilistic graph model
to measure the success rate of an attack on a given network
topology so that IT departments could optimize their attack
detection policies and fix vulnerable network configurations.
SpotLight [40] achieved accurate and responsive detection
of anomalies in high-density graphs for IP communications
near real-time. The anomalies (e.g., port scans and DoS) are
identified by the sudden changes in subgraphs consisting of
a subset of nodes and edges from the networked graph. The
authors leveraged randomized sketching algorithms to make
cost-effective inferences with optimal memory consumption.
Similarly, Noracle [72] detect anomalous behavioral changes
of individual hosts in network graphs using stochastic block
models, which could detect hosts with deviated behaviors
(e.g., connecting to unusual hosts) compared with other hosts
in the same cluster. Whereas TRACE [63] builds a distributed
enterprise-wide communications graph tracking information
from both network connectivity (e.g., IP address and port
number) and involved device system calls (e.g., application
name and process ID) between enterprise hosts for advanced
persistent threat (APT) detection.

C. HIGHLIGHTS
In summary, configuring static policies on middleboxes like
firewalls is the de facto method by the current industry
practices for managing (selected) networked assets. Such
methods are practical computationally, as they often maintain
lightweight data structures for specific groups of managed
entities, those with critical values to and/or functions for an
enterprise. This method prioritizes practical deployment but
makes it difficult to gain fine-grained visibility (e.g., , at the
flow level) and effectively classify host behaviors that are
often dynamic or unknown to IT departments.

On the other hand, dynamic monitoring with specific
networked graphs is proven to be effective in providing
comprehensive visibility into network traffic so that IT
departments can effectively classify connected assets and
detect potential anomalies. However, using complex graphs
incurs high computational costs that make such methods
impractical for deployment in large enterprise networks with
many diverse, active hosts and concurrent communication
flows.

IV. DETECTING DISTRIBUTED NETWORK ATTACKS ON
ENTERPRISE HOSTS
Detecting distributed attacks (i.e.,DDoS and reconnaissance)
is critical for enterprise network operations. To date, the
cybersecurity research community has developed solutions
to detect various distributed network attacks. For those
attacks aiming to congest the Internet link of an enterprise
network by sending Gbps or even Tbps malicious traffic

to enterprise hosts, handling the attack at ISP levels (close
to source and in-transit) appears to be the most effective
option [42], [104], [105], [116], [172]. For distributed attacks
targeting certain enterprise assets, which is the focus of
this survey, detection mechanisms employed by the target
enterprise (close to victim/destination) are proven to be
more effective [172]. Therefore, enterprise IT departments
usually set up inline security middleboxes near their network
edges, sitting in between their internal private network
and the public Internet. To this end, monitoring and/or
detection policies can be developed and enforced for, say,
each of the critical enterprise servers [157] that is attractive
to potential attackers. Such detection solutions, typically
employed by enterprise IT departments, can be categorized
into three types: proprietary rules, community signatures,
or (flow-level) statistical models, which are comprehensively
reviewed in this section.

A. PROPRIETARY RULE-BASED DETECTION
Rule-based distributed attack detection, which allows users
to configure their security policies from a list of rules defined
by the appliance manufacturer or developer, is widely used
by the enterprise security industry.

1) THRESHOLDS IN COMMERCIAL APPLIANCES
Proprietary appliances such as next-generation-firewall
(NGFW), typically deployed at the border of enterprise
networks, use threshold-based mechanisms for detecting
attacks. Network administrators configure rules to govern
access policies of certain networked hosts. Each rule may
specify thresholds on traffic volume (e.g., packet rates to
specified IP addresses) to distinguish normal and/or abnormal
communications. In Fig. 4, we show three screenshots of
configuration pages on a commercial firewall appliance,
often used in large-scale networks. It can be seen how
defensive (default) rules against reconnaissance attacks
(Fig. 4(a)), DDoS attacks via SYN flood (Fig. 4(b)), and
DDoS attacks via UDP flood (Fig. 4(c)), are configured.
For the reconnaissance protection, shown in Fig. 4(a), the
network administrator who wants to protect their assets from
host reconnaissance or port scans may set up a security
rule to block all external IP addresses that send more than
100 packets to intended hosts within a specified interval (say,
2 or 10 seconds). For protecting against DDoS via SYN flood
in Fig. 4(b), the administrator is able to configure thresholds
on the packet rate of inbound TCP-SYN toward certain IP
zones – exceeding thresholds indicates volumetric anomalies,
thereby triggering alerts or actions. Likewise, Fig. 4(c) shows
similar detection and mitigation thresholds configured for
UDP-based DDoS attacks.

Legacy proprietary middleboxes, enabling
admin-configured rules, have been widely deployed by the
industry for distributed attack detection/mitigation. Through,
these methods are quite simple for adoption and relatively
effective for certain attacks types, they are insufficiently

89370 VOLUME 12, 2024



M. Lyu et al.: Survey on Enterprise Network Security

FIGURE 4. Firewall configurations available for distributed network attack protection (i.e., detection and mitigation): (a) reconnaissance/scan
protection, (b) SYN flood DDoS protection, and (c) UDP flood DDoS protection.

flexible to fulfil emerging security needs like detecting
distributed attack sources with versatile traffic patterns. The
absent standard way of configuring rules and policies across
security appliances sourced from diverse manufacturers and
a lack of full compatibility between commercial vendors will
introduce practical challenges to operators of multi-vendor
networks. It becomes difficult for them to effectively apply
their detection logic across appliances, each protecting parts
of their network [16].

2) EXPERIMENTING WITH EXPRESSIVE QUERIES
Given some problems discussed above, particularly a lack
of flexibility in configuring rules, researchers [48], [56],
[110] employed programmable networking techniques to
prototype an expressive query-based middlebox that allows

for configuring reactive rules (essentially thresholds-based)
at run-time. For instance, to realize a sustainable and versatile
attack detection mechanism, particularly in fast-changing
environments, the authors of Marple [110] designed a
query language to perform monitoring tasks via key-value
store primitives on programmable P4 switches. To make
a rule-based security mechanism effective in combating
sophisticated cyber-attacks, involving various logical steps
and targeting a large number of network entities, SAQL [48]
was developed as a stream-based query system that provides
an anomaly query engine that allows users to specify their
complex detection logic using domain-specific languages.
By leveraging both programmable P4 switches and software
stream processors, Sonata [56] was proposed as a network
telemetry system that is scalable and expressive in performing
security tasks (e.g., detection of SSH brute force, port
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scan, DDoS, or Slowloris attacks) with fewer configurations
compared to prior relevant systems. Although those research
ideas still have a long way to go before being fully adopted by
the industry, they are valuable steps toward realizing a low-
cost, easy-to-upgrade, and expressive rule-based detection
system.

3) PERFORMANCE EVALUATION AND RULE OPTIMIZATION
While rule-based security systems are relatively prevalent
across the computer networking industry, configuring effec-
tive and error-free specifications requires expert administra-
tors with sufficient domain knowledge, as well as complete
visibility into connected assets on their networks, without
which they can hardly set up effective thresholds, queries,
or take appropriate actions. Moreover, manually managing
configurations can be challenging for medium to large
enterprise networks with complex host compositions and
behaviors, particularly in handling rule redundancies, logical
conflicts, and configuration errors.

Optimizing the placements of security rules and identify-
ing potential redundancies have received extensive attention
from researchers. The work in [92] conducted experiments
(e.g., with the number of rules and their complexity)
to evaluate the performance degradation in latency and
bandwidth that may be caused by placing firewall policies
at various security levels. The authors concluded that the
placement of firewall rules can have significant impacts on
metrics such as latency and throughput, thus, optimization
of firewall technologies is critical in reducing performance
losses. The authors of [166] conducted a quantitative
analysis of rule sets and configuration errors available
on a commercial firewall in production, highlighting that
corporate firewalls are often improperly configured, which
prevents them from providing sufficient security protection.
Although vendors supply templates and guidelines, network
administrators often face challenges in manually selecting
and efficiently adopting those templates for their networks.
To better understand the performance impacts of rule-based
firewalls, the authors of [128] developed a queuing model
with a Markov chain to model key performance metrics of
firewalls when handling normal or DoS traffic flows. Work
in [5] and [159] extensively studied performance bottlenecks
such as CPU and memory usage under network conditions
such as varying traffic rates, packet sizes, and the number of
communication flows.

With operational challenges and performance bottlenecks
associated with rule-based solutions discussed above, various
optimization methods have been employed. Legacy firewalls
check each received packet against individual existing rules.
Therefore, increasing the number of firewall rules will
unavoidably lead to larger processing time. The work
in [108] proposed a data mining approach to predict hit
probabilities of mutually exclusive rules so that they could
be ordered based on their popularities, significantly reducing
the processing time up to 40%. To tackle rule redundancies,

FIGURE 5. A screenshot of the last two rules in a community signature
file for Snort IDS.

the authors of [154] proposed an optimization algorithm
to locate and reduce redundant rules configured on an
enterprise firewall. Work in [149] designed a stateful firewall
architecture that can classify network traffic according to
their application types; each is mapped to a customized
processing pipeline to achieve better performance in terms of
CPU utilization, throughput, and queuing delay. Work in [83]
developed a hash-based packet classification algorithm to
significantly reduce the delays caused by the rule-matching
process on a typical firewall appliance. Although a handful of
prior research works exist on optimally managing errors and
performance degradation introduced by redundant firewall
rules (manually configured), rule-based firewall performance
issues are still key concerns yet to be solved [39].

B. COMMUNITY SIGNATURE-BASED DETECTION
With the increasing complexity of attack vectors, enforcing
effective security rules by administrators has become more
challenging than ever. To ease this pain point, the security
community developed various software intrusion detection
systems (e.g., Bro [121] and Snort [127]) that do not require
complex configurations. Instead, users could simply import
security signature files containing fingerprints of malicious
traffic characterized and made publicly available by security
experts and/or researchers.

1) MERITS
Unlike rule-based detection via proprietary systems,
signature-based attack detection typically leverages software
engines (CPU-based computing) that support highly flexible
traffic processing functions. In addition, software-based
intrusion detection systems (IDS) are relatively attractive
because various functionalities can be customized by
network/security admins without tedious negotiations with
vendors to upgrade hardware appliances. As highlighted
in [173], hardware appliances are designed for high
performance (e.g., sustained Tbps traffic) and thus sacrifice
operational flexibility in dynamic network environments.
At the same time, software-based systems can overcome
those limitations by elastically scaling or replacing detection
functions based on operational needs and traffic composition.

2) CURRENT ISSUES
Despite certain advantages software signature-based IDSes
offer, there are practical challenges in using these tools
in operation. First, generating high-quality signatures for
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diverse attacks can be nontrivial and time-consuming, requir-
ing expertise and expensive labor costs. An visual example
in Fig. 5 shows the last two rules in one public community
signature file provided by the Snort IDS community. It can
be observed that each rule contains a set of actions, keywords
and matching values to be specified by the user, which can
be difficult to set properly in practice. Second, given the
attack surface of various networks can be quite different,
signatures developed by third parties may not be readily (and
directly) applicable to every enterprise network – yielding
poor efficiency. Third, such software tools hardly scale
cost-effectively to process high traffic rates. To address three
problems, researchers developed methods for the automatic
generation of signatures, increasing the efficacy of detection,
and improving the scalability of software IDSes.

a: AUTOMATIC GENERATION OF SIGNATURES
Many research works attempted to develop automatic meth-
ods for generating reliable attack signatures. Work in [78]
presented a system to automatically generate signatures
needed for pattern matching and protocol conformance
checks. The authors set up honeypots to passively capture
malicious network traffic. To evade getting matched against
known signatures, attackers may try to craft the payload
contents of their malicious packets. To defend against
those sophisticated attacks, Polygraph [112] was proposed
to automatically generate signatures that contain multiple
disjoint content sub-strings for polymorphic worms (i.e., an
example attack that varies its packet payloads frequently).
AutoRE [167] focuses on detecting those botnets that send
spam emails. The authors aimed at avoiding allowlists which
can be tedious to populate. They instead check whether email
payloads contain identifiable malicious patterns URLs and
look for distributed destination and/or bursty patterns in the
email traffic sent.

b: DETECTION EFFECTIVENESS
In terms of the prediction power of signature-based detection
systems, researchers have identified various problems and
proposed corresponding solutions. In [120], S. Patton et al.
highlighted the ‘‘Squealing’’ vulnerability of a signature-
based IDS. Given known signatures employed by the IDS
in charge, attackers can craft malicious packets that result in
high rates of false positives making the alerting system almost
unreliable (useless). Authors of [141] observed that the
legacy signatures using byte sequences suffered from a high
false-positive rate due to the dynamics of attacks. To address
this issue, the authors developed a signature engine on
the Bro IDS [121] that can generate richer signatures by
incorporating factors like the dependency of networking
events (e.g., requests and replies). Works in [8] and [28]
compared the accuracy and performance of IDS designed for
computing environments: single-threaded tools (i.e., Snort)
versus multi-threaded tools (i.e., Suricata). They concluded
that Suricata gives higher accuracy under a multi-core setup,

FIGURE 6. An illustrative example from [97] showing the mixture of
benign and malicious traffic flows in a DDoS attack on an enterprise
victim (left) from benign and malicious external hosts (right).

while Snort achieved fewer false negative alarms within a
single-core networking system. Besides, according to [13]
and [21], the adoption of emerging assets such as IoT and
sensors makes legacy security signatures less effective in
flagging malicious activities, as they exhibit different traffic
patterns comparedwith typical IT networked hosts and assets.

c: SCALABILITY
Software-based IDSes incur high computational costs and
often do not scale well (unlike specialized hardware appli-
ances) to handle high traffic rates cost-effectively [173].
Ineffective design of software components can make this
problem even worse [90]. Therefore, signature-based IDSes
running software platforms are mostly used by relatively
smaller enterprises with low traffic rates. Researchers
incorporated various techniques to improve the scalability
of software IDSes. First, many prior works have exploited
the concept of distributed computing. The NIDS cluster
described in [153] used distributed computational nodes
with optimized coordination approaches to achieve decent
performance with software-based stateful intrusion detection.
The authors of [29] proposed a domain-specific model that
distributes traffic analysis across different processing units
with specific functions to achieve scalability and efficient
detection on multi-core hardware. Also, there exist works
that developed methods to reduce the overheads by signature-
matching. For example, work in [77] developed an alphabet
compression table that combines distinct input signature
symbols with identical behavior into one symbol, thereby
reducingmemory usage.O3FA [171]was proposed to achieve
packet ordering and flow reassembly during pattern-matching
phases with low buffer consumption, which is particularly
useful in reducing computational overheads when handling
attack traffic with long sequences of out-of-order packets.
Moreover, with the increasing popularity of virtualization
technologies, network intrusion detection on virtualized
platforms is proven to be useful in reducing overheads, as it
supports dynamic scaling of computational resources and
flexible deployment of detection functions. For example,
in [30], J. Deng et al. built a virtualized IDS regulated by a
virtualized controller for semantic consistency, correct flow
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update, buffer overflow avoidance, and optimal scaling in
real time. vNIDS [86] employed a detection state-sharing
mechanism to reduce the virtualization overhead of IDS.
Therefore, it achieves elasticity in detecting attacks of various
profiles and also guarantees acceptable scalability.

C. FINE-GRAINED DETECTION USING FLOW STATISTICS
As visually shown in the Fig. 6, distributed attacks sourced
from external botnets are often mixed with benign traffic
flows from legitimate sources to the victim enterprise
server [97]. This figure depicts an enterprise victim being
attacked by malicious flows sent from distributed attackers
while also receiving traffic from benign external hosts. There-
fore, an effective distributed attack detection is expected
to not only identify the victims, but also differentiate
malicious hosts and flows from the benign ones. However,
both proprietary rule-based and community signature-based
detection systems (discussed in §IV-A and §IV-B) barely
maintain fine-grained traffic statistics for individual flows.
Instead, they focus more on aggregate statistics (destination
IP/subnet-level). Therefore, they face challenges in providing
the necessary visibility for precisely differentiating malicious
flows from benign ones destined for the victim, particularly
when attack sources are distributed. Many researchers have
proposed methods for anomaly detection in network traffic
using flow-level statistics, which enables them to achieve
precise attack detection/mitigation without causing collateral
damage [31], i.e., dropping only packets in malicious flows
without affecting packets in benign flows.

1) SCALABILITY ISSUES
It is important to note that collecting and analysing
fine-grained flow statistics across a large and fairly active
network may not always be practical. Therefore, many
research efforts have been made to develop lightweight data
structures to maintain flow statistics. Kronecker graph [85]
was designed to model network flows using graphs generated
by a non-standardmatrix operation called Kronecker product,
which is both descriptive and practical. The authors of [155]
leveraged distributed computing nodes that collectively
maintain in-memory graphs containing flow statistics to
detect DDoS attacks cost-effectively. Many prior works
employed streaming (online) algorithms to realize attack
detection with relatively lower computational costs. STONE
[19] maintains traffic attributes pertaining to the volume of
activities (e.g., TCP SYN counts) for target asset groups.
The authors employed streaming techniques that can scale
and are more conducive to real-time monitoring. Work
in [102] systematically reviewed the processing methods,
such as ‘‘insert-only graphs’’, ‘‘graph sketches’’, and ‘‘sliding
window’’, for streaming graphs that help to reduce the
computational costs when processing flow statistics. Work
in [62] developed an anomaly detection scheme, looking for
malicious flows such as DDoS and reconnaissance attacks.
The proposed scheme aggregates flow alerts based on their

similarities/correlations in five-tuple metadata to address the
scalability.

2) IDENTIFYING IMPORTANT FEATURES
Identifying key predictive features from flow statistics for
attack detection is another popular direction. Principal Com-
ponent Analysis (PCA) is a method, widely used, to deter-
mine which features are more influential in classification
tasks. To exclude (or reduce the impact of) redundant and less
relevant attributes, the authors of [61] proposed a multi-stage
feature selection method. They utilized lightweight filters
and heavy regression models to extensively examine the
importance of features in a progressive manner. Commonly
used features for network anomaly detection were examined,
and less than 40% of them were found to be effective
in attack detection. The work in [100] introduced five
groups of descriptive features (e.g., flow metadata features,
sequence packet features, and general statistical features)
of network flows. The authors demonstrated the efficacy of
those attributes in detecting seven types of network attacks,
including SSH patator, DDoS, and port scan.

3) STATISTICAL LEARNING METHODS
Developing statistical learning methods using flow char-
acteristics for better attack detection has been explored
by researchers. For example, S. Jin et al. discussed their
work in detecting SYN flooding attacks using a covariance
analysis model in [69]. They showed that the model could
effectively distinguish benign flows and malicious flows by
profiling their TCP headers. Lee et al. [82] applied clustering
algorithms to a set of traffic features (e.g., randomness of
source and destination IP addresses) to differentiate DDoS
traffic from normal communications. The authors of [124]
employ a statistical metric called ‘‘total variance distance’’
that quantifies the similarity between flows, achieving better
performance in detecting attack traffic than legacy methods.

D. HIGHLIGHTS
In this section, we categorized attack detection methods
into three types including proprietary rule-based, community
signature-based, and fine-grained flow statistic-based detec-
tion.

Currently, the industry (at least large enterprises) widely
adopts proprietary rule-based detection appliances for their
ease of deployment and scalable operation. However, such an
approach becomes less effective in combating dynamic attack
vectors applied to expanded attack surfaces. It falls short of
expectation, particularly at scale, when the enterprise network
serves diverse asset classes and functionalities.

Signature-based detection is often realized as software
products, relying on knowledge (i.e., signatures) supplied
by open-source communities. Optimally selecting appropri-
ate signatures, developed by security experts, could help
(to a great extent) network operators (of medium/smaller
enterprises) to quickly respond to emerging cyber threats,
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(e.g., ‘‘Log4Shell exploit’’ [41], [81], [138]). However,
appropriately setting up the software environments, rou-
tinely updating signatures, and, importantly, trusting the
open-source community may not always be feasible for
administrators of large organizations. Besides, they are often
packaged as software tools on commodity servers that make
them expensive to scale for a large network.

Network attack detection methods, leveraging fine-grained
flow statistics, have proven their superiority in precisely iden-
tifying victims, attackers, andmalicious flows of a distributed
attack. However, real-time maintenance and processing of
fine-grained traffic statistics for many concurrent flows
traversing an enterprise network can hardly scale. Therefore,
achieving scalability while not compromising the quality
of visibility for flow statistic-based methods is a crucial
challenge to address before they can be widely adopted.

V. OPPORTUNITIES OF EMERGING PARADIGMS
FOR NETWORK SECURITY
The advancements in programmable networking andmachine
learning (ML) techniques have opened up new possibilities
for addressing current challenges in enterprise network
security. Researchers have recently leveraged these two spe-
cific technologies in various network security domains. For
instance, they have developed orchestration systems that offer
flexible attack detection capabilities in ISP networks (§V-A)
and proposed accurate algorithms specifically designed to
detect certain types of attacks (§V-B).

These seminal prior works serve the research community
with foundational lessons in developing practical and effec-
tive security systems for large enterprise networks. In the
subsequent sections, we will delve into the existing research
in the areas of network security that utilize programmable
networks and ML techniques, respectively.

A. PROGRAMMABLE NETWORKING FOR NETWORK
SECURITY
The concept of programmable networking, broadly speaking,
stems from technologies like Network Function Virtual-
ization (NFV) [114] and Software-Defined Networking
(SDN) [44] and enables flexible network monitoring and
controls. These technologies empower IT and cyber teams to
dynamically configure and update flow rules and/or network
functions, allowing for custom security measures and defense
utilities in response to their ever-changing attack surfaces.

1) PRACTICAL CHALLENGES
While programmable networking sounds promising in
enhancing defense capabilities, its adoption faces sev-
eral practical challenges [132], including the performance
bottleneck of software controllers, specific vulnerabilities
associated with controllers ad switches, scalability limits
of software-based network functions, and concerns about
compatibility with existing systems and middleboxes.

To address these challenges, researchers have made efforts
to develop practical solutions. For example, Sommer et al.

[142] proposed a specialized NFV architecture that effec-
tively utilizes multi-core processors to achieve scalable
network intrusion detection. O3FA [171] is developed as
a lightweight packet inspection engine using deterministic
finite automaton (i.e., a finite-state machine) that processes
out-of-order packet streams without reassembling flows.
Thus, the system requires less memory than other packet
inspection engines. StateAlyzr [75] identifies and reduces the
unnecessary operational processes for state clones in secu-
rity middleboxes to achieve low computational overheads.
NetBricks [119] employs a zero-copy software isolation
mechanism that significantly reduces the computational
overheads in CPU and RAMusage on typical NFV platforms.
The NFV framework OpenNetVM [174] is designed with
high-level abstractions, allowing users to quickly build and
deploy customized network functions without the need
to handle complex optimization of computing resource
allocations. The hybrid packet processing pipeline ParaBox
[175] is specifically designed to incorporate parallel network
functions, resulting in superior performance compared to
traditional serial function chaining mechanisms. StatelessNF
[71] breaks down virtual network functions into two compo-
nents: a state management component to store stateful traffic
information and a stateless packet processing component to
extract packet information at high speeds. They are well
separated and orchestrated by SDN utilities so that the
traffic is processed in a more scalable manner. vNIDS [86]
tackles the challenges of inefficient (and costly) detection of
SDN/VNF-based systems by developing techniques such as
state sharing among detection modules and dynamic slicing
of detection logic programs.

2) PROTOTYPES FOR ATTACK DETECTION
In addition to the research efforts to develop practical
methods, prototypes have been built for certain attack
detection problems that utilize programmable networks.
These prototypes showcase the potential of programmable
networking in enhancing security measures.

For example, Braga et al. [17] developed a system that
utilizes programmable switches to extract flow statistics
for detecting flooding attacks. Lim et al. [88] utilized
OpenFlow-based switches to achieve flexible isolation of bots
in DDoS attacks. In a study by Giotis et al. [52], the authors
developed a system that combines OpenFlow and sFlow
utilities to collect and process network statistics for scalable
anomaly detection. The FlowTags system [43] employs an
SDN architecture to achieve flexible security enforcement
through middleboxes at a network level with relatively low
computational overheads. The Bohatei system [42] utilizes
SDN proactive and reactive flow rules to dynamically orches-
trate network traffic forwarding through backbone networks,
diverting attack traffic to be handled by specialized secu-
rity middleboxes with appropriate computational resources.
Yoon et al. [170] demonstrated the feasibility of utilizing
programmable networks for cybersecurity by developing

VOLUME 12, 2024 89375



M. Lyu et al.: Survey on Enterprise Network Security

representative security functions of in-line firewalls, passive
IDS, and network anomaly detectors with SDN technology.
The Atlantic system [27] leverages the flexibility of SDN
to detect, classify, and mitigate malicious flows in relatively
small networks (e.g., consisting of 100 hosts and two
switches). In [89], the authors utilize SDN reactive routing to
selectively forward only the initial packets of each network
flow for deep packet inspection. Deng et al. [30] constructed
a virtual firewall architecture using SDN and NFV, enabling
elastic rule placement and flexible detection functionalities.
Sonata [56] achieves scalable traffic processing by offloading
resource-intensive and repetitive network functions from
software processors to hardware programmable switches.
ACC-Turbo [9] implements an in-network mechanism on a
programmable P4 switch to detect DDoS attacks with short
and high-rate pulse patterns. The work in [147] develops a
detection algorithm for low-rate attacks based on flow rank-
ing mechanisms implemented in programmable P4 switches.
Lastly, PEDDA [97] utilizes a programmable control-plane
switch (i.e., OpenFlow) and virtual network functions to
dynamically apply DDoS detection modules, each with spe-
cific capabilities and costs, enabling fine-grained detection
and scalable real-time operation.

B. MACHINE LEARNING FOR NETWORK SECURITY
Machine learning techniques have proven their efficacy in
accurate inference (classification and/or anomaly detection)
in domains like computer vision and speech recognition.
Although the application of machine learning in cyberse-
curity faces practical challenges [50], [140], researchers
have made significant progress in developing machine
learning-based methods and systems to enhance the security
of various networks [18]. These relevant prior works are wide
in scope and objectives, providing valuable insights to the
research community.

For example, theMADAM ID framework, proposed in [84],
utilizes machine learning-based data mining techniques to
process network telemetry data (e.g., packet and flow events
and connection status) for intrusion detection. In [134],
Shum et al. employed simple neural networks trained
with back propagation algorithms for detecting network
attacks such as DDoS, spam, and exfiltration. The BotMiner
system [54] applied unsupervised clustering algorithms to
characterize the behavior of botnet groups that exhibit similar
patterns in their command-and-control activities. Such simi-
larity can be determined in traffic attributes like the number of
flows generated per hour. Lyu et al. utilized clustering algo-
rithms in [93] and [94] to classify enterprise DNS assets and
health metrics based on their DNS traffic profiles for anomaly
detection; and anomaly detection algorithms in [95] to detect
Distributed DNS attacks. In [76], Koc et al. introduced the
Hidden Naive Bayes (HNB) method for network intrusion
detection, outperforming other machine learning models
in handling high-dimensional data, identifying dependent
features, and reducing computational overheads. A scheme

designed by Javed et al. in [68] specifically focuses on
detecting SSH brute-forcing attacks using a beta-binomial
distribution model. The authors in [133] developed an
ensemble model that combines Bayesian Network with Gain
Ratio for feature selection and Artificial Neural Network for
attack detection. Hsieh et al. proposed a DDoS detection
system in [59] that employs neural networks onApache Spark
big data computing clusters to handle high data rates traffic.
DeepLog [33] employs deep learning algorithms for detecting
anomalies in system logs collected from enterprise hosts.
Siadati et al. used machine learning-based algorithms to
identify anomalous logins within an enterprise network [135].
In [146], Tang et al. developed data-driven models to detect
relatively low-rate DoS attacks that exhibit abnormal patterns
in the frequency, variation, and distribution of TCP flows.
FLAD [32] develops a federated deep learning method that is
demonstrated as capable in detecting thirteen types of DDoS
attacks. And the work in [125] develops machine learning
models to detect slow-rate DDoS such as slow HTTP attacks.

It is worth noting that most existing works focus on devel-
oping high-accuracy models and algorithms to detect specific
types of attacks. These efforts demonstrate the effectiveness
of machine learning-based methods in addressing network
security challenges. Furthermore, these advancements lay
the foundation for developing data-driven solutions in
asset management and distributed attack detection, offering
tailored approaches to large enterprises.

C. HIGHLIGHTS
In this section, we have summarized the latest advancements
in, as well as the adoption of programmable networking and
machine learning techniques in the field of network security.

The programmable networking paradigm offers flexible
and dynamic traffic forwarding and measurement capabil-
ities, outperforming traditional systems. That said, there
are still practical challenges to be addressed before a wide
adoption is realized. Key challenges include scalability issues
arising from limited resources in both control and data
planes (e.g., switch memory size and flow entries), the
need for skilled administrators comfortable with coding, and
compatibility with existing network infrastructures. Existing
methods empower network and cyber teams to adjust the
visibility levels and the granularity of network telemetry
for real-time security inferences. Known techniques allow
for collecting precise, fine-grained statistics based on the
network size, composition of connected assets, and the
evolution of attacks.

Machine learning techniques (data-drivenmodels) promise
to automatically classify hosts’ traffic or detect attacks by
trained network data models instead of relying solely on
manually defined thresholds and/or signatures. However,
applying machine learning algorithms to network security
requires the community to overcome certain challenges.
These barriers include striking a balance between descriptive
attributes and scalability, handling false positives that lead
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TABLE 3. Prior relevant surveys with different objectives and focuses.

TABLE 4. Relevant surveys on different network types.

to operational implications, and ensuring the explainability
of inferences. Careful consideration of these challenges is
essential for successfully adopting machine learning-based
solutions in network security.

VI. DISCUSSION ON RESEARCH GAPS
After reviewing current techniques of asset behavior monitor-
ing and distributed attack detection for enterprise networks,
we found several open issues that require further investiga-
tion, which are as prioritized by their impact and feasibility.

A. SELF-DRIVING ENTERPRISE SECURITY SYSTEMS
The first research gap that can have significant impact on
the security industry is the need of self-driving enterprise
security systems. They are expected to automatically react on
changes of network conditions and connected assets to avoid
human errors in network security management. Specifically,
the complexity of configuring current network security and
management systems poses challenges to the IT and cyber
departments of large enterprises. These systems often rely
on manual configurations and tweaks to specify intents
like which assets/segments receive priority for protection,
protecting against which types of threats (e.g., scans or
DDoS), setting detection thresholds, and choosing appro-
priate mitigation actions. Managing numerous and complex

policies can be cumbersome and prone to human errors.
Additionally, sub-optimal configurations (e.g., inconsistent
and conflicting rules) can compromise the security and
stability of networks. To prevent or at least manage these risks
and improve operational efficiency, there is a need to explore
developing ‘‘self-driving’’ security systems. These systems
are expected to operate (to a great extent) automatically,
gradually becoming autonomous and independent of manual
configurations.

B. DYNAMIC AND SCALABLE HOST MONITORING
The complexity of networked assets and the dynamic nature
of their communication patterns pose challenges for legacy
methods that rely on static configurations and inferences.
While dynamic networked graphs can effectively capture
host behavioral profiles, maintaining such graphs for a
large and high data- rates network becomes infeasible.
Therefore, there is a need to developmethods that can achieve
scalable monitoring of assets while ensuring dynamic and
fine-grained visibility into necessary traffic portions. This
represents a valuable future direction in network security
research.

C. EXPLAINABLE ML-BASED ATTACK DETECTION
To ensure the effective deployment of ML models in network
security, it is crucial to address the issue of explainability.
IT departments and security teams need to understand the
rationale behind the classification and detection results gener-
ated by ML models before making mitigation reactions. This
is particularly important to avoid mishandling false-positives,
which can lead to unnecessary service disruptions and
resourcewastage. Therefore, despite the promising prediction
quality offered by machine learning (ML) methods for tasks
like host classification and attack detection in controlled
environments, their performance in operational networks can
be unknowingly impacted by various factors, such as limited
training data, imperfect statistical features, and algorithmic
biases, or concept drifts. In order to use the predictions from
(black-box) ML models for high-stakes decision-making,
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network operators may require some assurance, assistance,
or at least an explanation that helps them interpret and analyze
specific inferences made by trained models.

D. ROLE-AWARE NETWORK ATTACK DETECTION
Different networked assets possess unique functionalities
(such as DNS server, website server or VPN proxy) and
every networked asset can be a victim of distributed attacks.
We note that different assets come with relatively distinct
communication patterns and vulnerabilities. Therefore, for
accurate and precise detection of attacks, an effective
defense system demands some form of customization in the
monitoring techniques based on types of assets continence
to the network. Presently, attack detection appliances often
apply generic detection mechanisms to the entire network or,
at best, rely on some manual configurations by the network
administrators, who manage policies for specific hosts or
network segments. However, this approach may not fully
incorporate the distinct characteristics and vulnerabilities of
individual enterprise hosts. Hence, a valuable contribution
would involve the development of automatic configurations
for attack detection mechanisms utilizing the traffic profiles
of enterprise hosts. By analyzing these profiles, automated
configuration methods can dynamically tailor detection
mechanisms to align with each host’s unique requirements
and attributes.

VII. RELATED SURVEYS ON NETWORK SECURITY
We now discuss some of the existing survey papers that
focused on different aspects of network security.

A. ATTACK DETECTION METHODS
Agroup of literature reviews focuses on categorizingmethods
for detecting network attacks. Their key objectives, focused
aspects, and the latest year of articles reviewed by those
surveys are summarized in Table 3. The features of our study
are captured in the last row of this table.

Mirkovic et al. [106] provided a taxonomy of DDoS
attacks and corresponding defense mechanisms. The authors
of [50] categorized the system architecture of underlying
modules inside network intrusion detection systems (NIDS).
Zargar et al. [172] highlighted DDoS defense mechanisms
with a focus on where on the network they are applied
and when defense actions take place. The authors in [67]
comprehensively discussed vulnerabilities in the networking
ecosystem targeted by emerging cyber-attacks and their
countermeasures. The types and mechanisms of data min-
ing and machine learning methods and their applications
in cyber-security research have been discussed in [18].
Work in [152] summarizes flow-based intrusion detection
techniques, datasets, and prototypes. Voronkov et al. [156]
thoroughly reviewed the usability aspect of firewall config-
urations. Tundis et al. [151] reviewed existing vulnerability
scanner tools applied for benign or malicious purposes. The
authors in [111] discussed the functionalities of popular
next-generation firewalls (NGFW) and their efficacy in

coping with emerging network threats. Chen et al. [23]
focused on the architecture of situational awareness sys-
tems for network security, which include data collection,
situational understanding, prediction, and visualization.
Sengupta et al. [130] comprehensively discussed the effective
methods to defend against attacks originating from moving
targets. And Li et al. [87] surveyed defense mechanisms on
DDoS attacks.

B. SPECIFIC ATTACKS ON CERTAIN NETWORK TYPES
A cluster of survey papers studied attacks specific to certain
network types, which are more vulnerable given their distinct
characteristics. Table 4 summarizes these survey papers,
showing their focus and the latest year of articles reviewed.
The features of our survey are shown in the last row of this
table.

Chen et al. [24] summarized security problems in wireless
sensor networks and discussed the efficacy of existing
defense techniques. The authors in [4], [129], and [131]
highlighted DDoS attacks and other related security issues
of software-defined networks and provided a list of key
requirements for an effective defense architecture. Works
in [13] and [21] focused on network intrusion detection
for IoT networks. Agrawal et al. [3] particularly focused
on defense mechanisms against DDoS attacks for cloud
computing networks. Cao et al. [20] summarized the security
challenges, requirements, and gaps in 3GPP 5G networks.
Bhardwaj et al. [14] surveyed solutions developed by
academia and industry to combat DDoS attacks on cloud
networks.

C. THE FOCUS OF OUR SURVEY
Prior surveys primarily categorized certain attack types
(e.g., DDoS) and corresponding defense methods depending
on aspects such as target locations, attacking techniques,
and the exploited network vulnerabilities. In contrast, our
survey focuses on studying a broad range of distributed
network attacks (not limited to DDoS), countermeasure tech-
niques, and opportunities promised by emerging paradigms,
specifically for enterprise networks. Our survey reviews
relevant research papers published until 2023 and provides
valuable insights into unique challenges and opportuni-
ties for enterprise network security. This survey fills a
gap in the existing literature by providing a compre-
hensive reference specifically tailored to the needs of
researchers and practitioners working in enterprise network
security.

VIII. CONCLUSION AND DISCUSSION
In this survey, we provide a comprehensive survey of two
important topics in enterprise network security, including
monitoring the network bahaviors of assets connected to an
enterprise network and detecting distributed network attacks
(reconnaissance and DDoS) on enterprise hosts.

We started by discussing the evolution of distributed
attacks on enterprise assets (e.g., servers) from reconnaissance
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scans to DDoS attacks, and providing a walk-through of
the anatomy of distributed attacks being launched from bot
groups on the Internet each can have diversified attacking
strategies to bypass detection and mitigation.

We then reviewed existingmethods developed by academia
and industry to monitor the behaviors of enterprise hosts that
either use generic configurations (e.g.,ACL) on management
devices or maintain networked graphs for communication
patterns of hosts. As key takeaways, generic configurations
are low-cost and easy to deploy in operational networks
but quite static and may not able to provide fine-grained
behavioral information of connected assets for security
management, while network graphs are capable in tracking
the dynamically evolving network behaviors but incur high
operational costs.

The third topic in this survey covers methods and
mechanisms that can be used by enterprise IT departments
for distributed network attack detection. In particular, we cat-
egorize existing methods by their required configurations
including rule-based detection by proprietary middleboxes
(e.g., firewalls), community signature-based detection by
open-source security software tools, and flow-level fine-
grained attack detection methods developed by research
communities. Their merits and bottlenecks are highlighted.
Specially, rule-based detection is easy to configure by IT
personnel but can be easily bypass by adversarial and
do not have sufficient flexibility when handling zero-day
attacks; community signatures are flexible and can be updated
timely for zero-day attacks, but they require relatively
strong expertise in selecting proper signatures for a certain
enterprise network. The third type of methods, i.e., flow-level
detection, provides accurate results and precise inference
but requires significantly large amount of computational
resources during operation. Therefore, depending on the
needs of different enterprise networks, IT departments
are expected to select suitable systems by collectively
considering their budgets and expected security enforcement
levels.

We then highlighted the capabilities of two emerging/rising
technologies, i.e., programmable networks and machine
learning (ML), that bring new opportunities in further
advancing enterprise network security development, as pro-
grammable networking technique has proven its value in
making network configuration flexibly on demand and ML
in providing accurate inference from statistical historical
patterns without relying on human configurations of rules and
threshold values.

Last, we highlight several open issues in enterprise network
security as valuable future directions that are worthwhile to
be explored, including highly automated security inference
systems, scalable host monitoring methods that can track
the dynamic evolution of asset behaviors, explainable attack
detectionmechanisms that do not only provide red flags for IT
departments but also suggest contextual reasoning, and attack
detection systems that can adapt suitable security settings for
enterprise hosts with different functionalities and roles.
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