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ABSTRACT This article utilizes a Fractional Order Proportional-Integral-Derivative (FOPID) controller for
voltage regulation of a Proton Exchange Membrane fuel cell (PEMFC) in DC Microgrids. The PEMFC is
considered a promising candidate for integration into DC Microgrids. However, maintaining a stable and
efficient operation requires precise voltage control, especially under varying load conditions and inherent
nonlinearities. The FOPID controller tuned by artificial rabbits optimization algorithm (FOPID-ARO) is
recommended to address this challenge, which extends the conventional PID controller by introducing two
additional parameters: the fractional orders of the derivative and integral actions. This enhancement allows
for a more flexible control strategy that is capable of handling the complex dynamics of PEMFCs more
effectively than traditional PID controllers. The suggested controller effectiveness is assessed under different
operational scenarios, such as load and solar irradiance variations, and compared with a PID controller tuned
by the ARO algorithm (PID-ARO) and an FOPID controller tuned by the jellyfish search algorithm and
grey wolf optimizer. Moreover, actual data on solar irradiance are considered. The findings indicate that
the FOPID-ARO controller performs better than the PID-ARO controller in terms of dynamic response and
minimizes steady-state error more effectively.

INDEX TERMS DC microgrid, fuel cell, optimization methods, photovoltaic.

I. INTRODUCTION
Since fossil fuels are decreasing worldwide and they affect
the environment [1], renewable energy resources began
replacing them recently [2] as they are clean, abundant, and
do not produce harmful emissions [3]. One promising clean
energy source is fuel cells (FCs), as their energy is not
intermittent since they do not depend on weather conditions,
time, and location, unlike solar and wind energy [3], [4]. They
continue to produce electricity provided that they are supplied
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with fuel, and they are more stable and rigid than other
renewable energy resources as their inputs (hydrogen and
oxygen) have low variability, unlike wind and solar energy.
Moreover, they can be used as a backup power source in
DC microgrids instead of conventional batteries due to their
high operating hours, which is similar to telecommunication-
related applications [5]. They also can enhance the power
quality of the microgrid and strengthen local reliability
by balancing power supply and demand, reducing power
fluctuations caused by renewable energy resources, and
integrating with the electrolyzer to store excess energy for
later use in the form of hydrogen [6]. Additionally, they can
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provide steady power, and when the load exceeds the PV
capacity, they supply the energy needed [7] and, they are
characterized by the flexibility of fuel [8].
FCs are classified according to the type of electrolyte they

utilize, including PEMFC, alkaline FC, phosphoric acid FC,
molten carbonate FC, and solid oxide FC. PEMFC produces
water and electricity by undergoing a chemical reaction
between the two gases of oxygen and hydrogen [9]. PEMFC
has many advantages, such as being lightweight, having no
waste material, being a fast startup, being highly efficient,
and having a low operating temperature [2], [10]. However,
it has some demerits, such as sensitivity to carbon monoxide,
expensive metal catalysts, and complex thermal and water
management [11]. Also, as the temperature increases or
the relative humidity decreases, the proton conductivity of
PEMFC decreases [12].

Since the PEMFCs V-I characteristics are nonlinear and
depend on the cell temperature and the oxygen and hydrogen
partial pressures, many controllers and algorithms have been
adopted to maximize the FC’s output power or control its
output voltage [13]. So, researchers used many maximum
power point tracking (MPPT) techniques to get the fuel
cell’s peak power. Ahmadi and others [13] utilized an
MPPT method with a (PID) controller tuned by the particle
swarm optimization algorithm (PSO). They demonstrated
that compared to sliding mode and perturb and observe
algorithms, the PSO-PID controller has very low power
fluctuations and high accuracy. In [14], Derbeli and others
utilized a second-order super-twisting algorithm with a
sliding mode controller to maximize the output power. At the
same time, Souissi [15] used a super-twisting algorithm
with an adaptive sliding mode controller. Reference [16]
used an MPPT based on the backstepping algorithm and
a current reference estimator. An MPPT based on the
eagle strategy and a fuzzy logic controller (FLC) were
proposed in [17]. In contrast, an MPPT controller with
a neural network incremental conductance-based variable
step size was introduced by Harrag and Bahri [18]. They
found that steady-state oscillations and convergence speed
operate better than conventional variable and fixed step size
MPPT. Gulzar [19] used a fractional order PID (FOPID)
controller with an optimal salp swarm algorithm. Avanki and
Sarvi [20] used a PID controller and an MPPT based on a
water cycle algorithm (WCA) and compared its performance
with the current-based MPPT method (CMPPT), voltage-
based MPPT method (VMPPT), and perturb and observe
method. Moreover, Liu and others [21] used an MPPT with a
fractional order high pass filter based on extremum-seeking
control. Fuzzy control with an artificial bee colony algorithm
is utilized to obtain the PEMFC maximum power [22].
Reference [23] used the grey wolf optimizer (GWO) to
optimize the PID controller parameters. Qi and others
introduced a FOPID controller optimized by PSO in [24].
Ali and others [25] used a modified manta ray foraging
algorithm to optimize an adaptive neuro-fuzzy inference

system (ANFIS) for MPPT of PEMFC. Moreover, an MPPT
controller based on a golden section search algorithm is
presented in [26]. Fathy and others [27] used a forensic-
based investigation algorithm to optimize a FOPID-based
MPPT. In [28], the parameters of an FLC are optimized by an
equilibrium optimizer to obtain the PEMFCmaximum output
power.

Maintaining the voltage constant at the load is also
essential, so the researchers used different algorithms to
optimize the controller parameters to enhance the output
voltage by decreasing fluctuations and overshoots in transient
states. Benchouia and others [29] introduced an adaptive
fuzzy controller to keep a constant output voltage by
controlling the input gasses flow rate. According to their
findings, the adaptive fuzzy controller outperformed the PI
controller in terms of settling times and rise time. Cao
and others [30] controlled the PEMFC output voltage by
designing a linear quadratic regulator (LQR) optimized by an
improved chaotic whale optimization algorithm. Moreover,
Salah and others [31] used a PI controller tuned by the
African vulture optimization algorithm (AVOA) to control the
output voltage. It showed an improvement in settling time,
maximum percentage undershoot, and maximum percentage
overshoot compared to a PI controller tuned by PSO. In [32],
a dynamic integral sliding mode control is proposed, and
its performance is compared to a PI controller. Furthermore,
Hamedi and others [33] used a bacterial foraging algorithm
(BFA) to tune a lead-lag controller. Dhahad and others [34]
used different optimization algorithms, such as a chaotic
particle swarm, firefly, and hybrid firefly-chaotic particle
swarm with a single-input multi-output PID neural network
controller. Kart and others [35] utilized a fuzzy logic
controller to keep a constant output voltage, yielding a
better fuel cell dynamic performance than the PID controller.
Moreover, Li and others [36] used an ambient intelligence
exploration multi-delay deep deterministic policy gradient
(AIEM-DDPG) algorithm with an adaptive PI controller
to control the voltage. In contrast, Wang and others [37]
controlled the output voltage by proposing an improved fuzzy
PID control method. In [38], a model predictive control
algorithm based on a neural networkwas proposed for voltage
control. The authors in [39] controlled the PEMFC voltage
using an ANFIS-based model predictive controller (MPC).
It had smaller overshoots and a lower settling time than
the adaptive PID controller. Li and others [40] designed a
PID controller and an MPC controller to control the fuel
and airflow rates of PEMFC and maintain a constant output
voltage. According to their findings, the MPC controller
outperformed the PID controller as it had a more minor
overshoot and faster response.

Although the above controllers are characterized by
flexibility, stability, and robustness, such as sliding model
control, predictive model control, etc., they have some
drawbacks. Sliding mode control is not easy to use. Its design
is complex and suffers from long computational time [41]

89192 VOLUME 12, 2024



A. J. Riad et al.: Voltage Control of PEM Fuel Cell in a DC Microgrid

and chattering phenomenon [42]. From the characteristics of
MPC controllers is their capacity to apply the input-output
constraints during the optimization process, but they have
complex computations [43] and have large overshoots [44].
FLC suffers from difficulties in implementation due to its
expensive processing power requirements [45], its response
contains oscillations [46], and it needs more memory, which
makes it more expensive [47]. Using the PID controller
with a nonlinear system can harm the converter because
of the converter’s dynamic response to overshoots [35].
Also, it has a slow response [13]. External disturbances can
adversely affect The PI controller’s performance despite its
unique simplicity [48]. Furthermore, the PI, PD, and PID
controllers are very sensitive to significant load variations.
Both ANFIS and neural network algorithms have a lot
of parameters that need to be adjusted. Moreover, ANFIS
has a high computational cost and needs large data for
learning and training [19], [49]. For the reasons mentioned
above, the FOPID controller is suggested for regulating the
PEMFC output voltages as it has many merits, including
high disturbance rejection, its enhanced processing ability
to tolerate the uncertainties of models in real-time and
nonlinear applications, and its improved set-point track-
ing [50]. Also, it is less susceptible to variations in the
controlled system parameters [51] and is more robust and
flexible than an integer order PID controller [52]. Moreover,
it improves the dynamic stability against small signal
variations [53].
To integrate multiple examples of renewable resources

for energy, such as solar photovoltaic (PV) and FC, with
energy storage (ES) systems, such as supercapacitors and
batteries, to provide power to DC loads, DC microgrids are
becoming a more viable option [31]. Microgrids have three
types: DC, AC, and hybrid AC/DC microgrids [54], with
two operating modes: islanded mode (off-grid) and grid-
connected mode [55]. DC microgrids have a few merits over
AC ones, such as lower power losses and no need for reactive
power and frequency control, so they are simpler to control
than AC ones [56]. However, one of the main challenges
of DC microgrids is the voltage and power control as
most renewable energy sources suffer from the intermittency
problem, as mentioned before, plus the load uncertainties
causing fluctuation in the voltage so the fuel cell is used
as a backup power which depends on the fuel supplied to
it [31], [57], [58]. One of the main methods for regulating
the voltage of the islanded DC microgrids has been the droop
control method, but it has some drawbacks like slow transient
response, and it can lead to instability when subjected to
nonlinear loads and load changes [59]. Droop control that
is based on virtual resistance suffers from DC bus voltage
deviation as load increases and unequal load distribution
when converter line resistances differ [60].
In this paper, the voltage of a DC microgrid that consists

of PV, PEMFC, and DC load is controlled by controlling
the PEMFC DC-DC converter. A FOPID controller tuned
by ARO is proposed for controlling the converter, and its

FIGURE 1. DC microgrid.

performance is compared to that of a PID controller tuned by
ARO under different variations of load and irradiance of PV.
Also, the ARO algorithm is compared to the jellyfish search
algorithm (JSA) and the GWO. The ARO algorithm is a novel
technique first introduced by Wang and others [61]. It is
based on two strategies that rabbits use for survival: detour
foraging and random hiding [61]. In addition, it features a
slight standard deviation and a fast convergence curve [9].
The following are this article primary contributions:
• The FOPID tuned by the ARO algorithm (FOPID-ARO)
controls the fuel cell DC-DC converter to keep the
microgrid voltage constant.

• The proposed control scheme is used to enhance the
dynamic operation of DC microgrids.

• The performance of FOPID-ARO is compared to FOPID
tuned by JSA and GWO and PID tuned by ARO under
different loading conditions and variable irradiance of
PV.

The subsequent sections of the article are arranged as
follows: the design and modeling of the DC microgrid
are shown in Section II. Section III shows the problem
formulation, while Section IV demonstrates the ARO algo-
rithm. Simulations, results, and comparisons are discussed in
Section V, and the conclusions are summarized in Section VI.

II. MICROGRID MODELING
The DC microgrid considered in our study comprises a PV,
a PEMFC, and a DC load, as shown in Fig. 1. A boost
converter is connected to the PV panel. The converter
control is based on incremental conductanceMPPT presented
in [62] and [63], and the boost converter design is described
in [64]. Additionally, a boost converter is connected to the
PEMFC. A FOPID controller tuned by the ARO algorithm is
proposed to control this converter in order to keep the load
voltage constant. A comparison is made between the PID and
FOPID controller using the ARO algorithm, and the ARO
is compared against the JSA and the GWO algorithms in
different cases, which proves the superiority of the FOPID
tuned by the ARO algorithm.
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FIGURE 2. Model of PV cell.

A. PV MODEL
The PV cell can be represented by numerous models,
including single, double, and triple diode models. Yet, the
single-diode model is the most commonly utilized owing
to its simplicity and precision [31], [63], [65]. The PV cell
equivalent circuit constitutes a controlled current source.
A diode is connected in a parallel position to the source.
To keep the circuit realistic, shunt and series resistances are
connected to represent power losses, as shown in Fig. 2
[63]. The nonlinear I-V characteristics of a PV array,
which is constructed by PV modules connected in parallel
and series combinations, are represented by the following
equations [66]:

IPV =
(
Ig − Id − Ish

)
(1)

Id = I0

[
exp

(
VPV + IPVRs

nVt

)
−1

]
(2)

Ish =
VPV + IPVRs

Rsh
(3)

Vt =
NskT
q

(4)

where IPV and VPV are the PV module output current and
voltage, while Vt is the module’s thermal voltage. Ig, Id, I0,
and Ish are the generated current by the PV due to sunlight,
the current passing through the diode, the diode saturation
current, and the leakage current in the PV cell’s shunt resistor,
which is denoted by Rsh, respectively. Rs represents the PV
cell series resistance. The total number of cells connected
in series within a module is denoted by Ns. n stands for the
ideality factor, k is Boltzmann’s constant (J/K), T is the PV
cell’s operating temperature (Kelvin), and q is the electronic
charge (C). SunPower SPR-305-WHT is the type of PV
module utilized in the simulation with a rating of 1.22 kW
and Table 1 lists its parameters.

Since the load, temperature, and irradiance (weather
conditions) affect the PV harvested power, potential level, and
current, the PV array has a boost converter connected to it
and is controlled by an MPPT technique to capture most of
the resulting power. The MPPT method used is incremental
conductance (IC), as it is characterized by its fast response
to temperature and irradiance changes [63]. This method is
described by Equations (5)-(8) [67]:

P = VI (5)

TABLE 1. The PV array parameters.

FIGURE 3. Boost converter.

∂P
∂V

= I + V
∂I
∂V

(6)

at maximum power
∂P
∂V

= 0 (7)

so,
∂I
∂V

= −
I
V

(8)

From the previous equations, this method focuses on varying
the duty cycle to fulfill the condition

(
∂I
∂V = −

I
V

)
.

B. DC-DC CONVERTER
The voltage of both the PV and the PEMFC is increased to
the DC bus voltage (100V) through a boost converter seen in
Fig. 3, whose dynamic equations are as follows [68]:

LxIL = Vin − (1 − D) xVout (9)

CxVout = (1 − D) xIL − Iout (10)

where inductance current and output current are denoted
by IL and Iout, while output voltage and input voltage are
denoted by Vout and Vin respectively. D represents the duty
ratio coming from the controller in the range of [0, 1]. The
converter’s inductance and capacitance are denoted by L and
C and can be designed according to Equations (11) and (12)
[64]:

L =
Vinx(Vout − Vin)

Fsx1IxVout
(11)

C =
IoutxD
Fsx1V

(12)
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where 1V, 1I, and Fs are voltage ripples, current ripples,
and switching frequency, respectively. The current ripples,
the voltage ripples, and the output voltage are determined
using the following equations [69]:

Vout =
Vin

1 − D
(13)

1V =
IoutxD
FsxC

(14)

1I =
VinxD
FsxL

(15)

C. FUEL CELL DYNAMIC MODEL
The PEMFC produces electricity with water as a side product
through the chemical reaction between the two gases of
oxygen and hydrogen. Equations (16) and (17) describe the
reaction occurring for the two gases at the cathode and the
anode, respectively [70]. The FC can be represented as a
controlled voltage source that has activation losses and ohmic
losses, as stated in [22] and [71]. The PEMFC stack output
voltage (VStack) is calculated using Equations (18) to (26) as
in [22]. Formore details about the PEMFCmodel, check [72].

Cathode :O2 + 4e−
+ 4H+

→ 2H2O + energy (16)

Anode : 2H2 + 4H+
→ 4e− (17)

VStack = NcKcENernst − NcVohm − NcVact (18)

where Kc denotes the voltage constant under standard
operating conditions, and Nc is the number of cells. ENernst
and VStack represent the Nernst voltage and the stack’s output
voltage, respectively, while the ohmic voltage drop and the
activation voltage drop are denoted by Vohm and Vact. These
voltages can be calculated by:

ENernst =
RT
zF

ln
(
PH2

√
PO2

)
+ (T − 298)

−44..43
zF

+1.229

(19)

Vact =
RT
zαF

ln
(
IFC
I0

)
1

(sTd/3) + 1
(20)

Vohm = IFCRohm (21)

where the universal gas constant (J/mol K) is denoted by
R, while F represents Faraday’s constant (A s/mol), FC’s
operating temperature (Kelvin) is denoted by T, and z is the
number of moving electrons (z=2). α denotes the transfer
coefficient of the charge, IFC is the PEMFC stack output
current (A), I0 is exchange current (A), Rohm denotes the
internal resistance of PEMFC (electrodes and electrolyte
resistance), Td denotes the stack settling time, hydrogen, and
oxygen partial pressures (atm) are denoted by PH2 and PO2
respectively. PH2,PO2, and I0 are represented as follows:

PH2 =
(
1 − λH2

)
×x×Pfuel (22)

PO2 =
(
1 − λO2

)
×y×Pair (23)

I0 =
zFk (PH2 + PO2)

Rh
exp

(
−1G
RT

)
(24)

TABLE 2. PEMFC parameters.

FIGURE 4. FOPID controller block diagram.

where x and y denote the fuel’s hydrogen percentage and
the air’s oxygen percentage, respectively, while Pair and
Pfuel stand for the air and fuel supply pressures (atm),
respectively. 1G is the activation energy barrier (J), k stands
for Boltzmann’s constant (J/K), while h represents Planck’s
constant (Js). λO2 and λH2 denote the conversion rates of
oxygen and hydrogen that can be described as follows:

λH2 =
60000RTIFC
zFPfuelQfuelx

(25)

λO2 =
60000RTIFC
2zFPairQairy

(26)

where Qair and Qfuel represent the air and fuel flow rates
(L/min), respectively. Finally, the PEMFC stack output power
(PStack) is calculated as follows:

PStack = VStackIFC (27)

The FC’s output voltage is augmented to the DC-bus
voltage of 100 V. A PEMFCmodule of 6 kW, according to the
above model, is utilized in our simulation. Table 2 provides
the main parameters of the FC [72].

D. THE PROPOSED FOPID CONTROLLER
The FOPID controller is utilized to maintain a constant
voltage at the load and to enhance its dynamic response.
In comparison to PID controllers, FOPID controllers have
two more parameters (λ and µ), which make them more
flexible and robust [73]. The FOPID controller block diagram
is depicted in Fig. 4, and equations (28) and (29) provide
the output equations in the time and frequency domains,
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TABLE 3. Parameters boundaries for PID controller.

respectively.

f (t) = e (t)
(
kdDµ

+ kiD−λ
+ kp

)
(28)

F (s) = kdsµ + kis−λ
+ kp (29)

where ki is the constant of integration, kp is the proportional
constant, and kd is the differentiation constant. The fractional
orders of the differentiating and integrating actions are
denoted by µ and λ , respectively.

III. PROBLEM FORMULATION
As mentioned before, by controlling the PEMFC’s DC-
DC converter through either a PID controller or a FOPID
controller, the DC microgrid’s voltage is kept constant. The
FOPID controller has five parameters (kp, ki, kd, λ , and µ) to
be optimized, while the PID controller only has three (kp, ki,
and kd). To determine these parameters’ optimum values, the
ARO algorithm is utilized to minimize the objective function
(OF). The targeted OF is the integral square error (ISE) of
the voltage difference between the microgrid’s output voltage
(or load voltage) and the reference voltage as shown in
equation (30) while keeping the controller parameters within
a predefined range shown in Tables 3 & 4.

ISE =

∫ ts

0
(Vload − Vref)2dt (30)

where ts is the simulation time.

IV. OPTIMIZATION ALGORITHMS
A. GREY WOLF OPTIMIZER (GWO)
The GWO algorithm is based on the hierarchy of grey wolves
and how they hunt. They have four main types: alpha, beta,
delta, and omega. The alpha is the pack leader. Beta keeps
an eye on the pack’s other members and ensures that they
follow orders. The omegas, the lowest rank in the group,
are dominated by delta wolves, who follow the orders of
alpha and beta. Delta wolves perform various tasks, including
watching their territory, tending to sick members, and helping
in attacking their prey. Grey wolves follow three steps in
hunting their prey: searching for the prey, surrounding the
prey, and finally, attacking the prey. The following equations
are used to update the grey wolves’ positions and are
summarized in Fig. 5. For more information, check [74].

−→
D =

∣∣∣−→Xp (t) .
−→
C −

−→
X (t)

∣∣∣ (31)
−→
X (t + 1) =

−→
Xp (t) −

−→
D .

−→
A (32)

−→
A = 2 ×

−→r1 .−→a −
−→a (33)

−→
C = 2 ×

−→r2 (34)

FIGURE 5. Grey wolf optimizer algorithm.

where
−→
Xp (t) is the prey’s position vector, while

−→
X (t) is

the grey wolf’s position vector. t is the iteration number
and coefficient vectors are denoted by

−→
C and

−→
A . −→r1 and

−→r2 are random vectors between (0,1), while −→a is a vector
that decreases linearly from 2 to 0 during the iterations.
Equation (32) represents the three steps of hunting. It shows
that when

∣∣∣−→A ∣∣∣ > 1 the wolves search for the prey

(exploration), when
∣∣∣−→A ∣∣∣ = 1 they surround the prey and

when
∣∣∣−→A ∣∣∣ < 1 they attack the prey (exploitation).

The behavior of grey wolves while hunting can be
mathematically described by taking into account the position
of alpha, beta, and delta, which possess better information
regarding the location of the prey. So, alpha is the best
solution, while beta and delta are the second-best and third-
best solutions, respectively. Wolves update their positions
according to these three best positions using Equation (41).

−→
Dα =

∣∣∣−→Xα.
−→
C1 −

−→
X

∣∣∣ (35)
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−→
Dβ =

∣∣∣−→Xβ .
−→
C2 −

−→
X

∣∣∣ (36)
−→
Dδ =

∣∣∣−→Xδ.
−→
C3 −

−→
X

∣∣∣ (37)
−→
X1 =

−→
Xα −

−→
Dα.

−→
A1 (38)

−→
X2 =

−→
Xβ −

−→
Dβ .

−→
A2 (39)

−→
X3 =

−→
Xδ −

−→
Dδ.

−→
A3 (40)

−→
X (t + 1) =

−→
X1 +

−→
X2 +

−→
X3

3
(41)

B. JELLYFISH SEARCH ALGORITHM (JSA)
The way jellyfish move and search for food in the ocean
served as inspiration for the JSA algorithm. Their movement
is based on three rules: (a) they either move based on
the direction of the ocean current or move inside a group
(swarm), (b) they are attracted to areas with higher food
concentrations, (c) The location and its associated objective
function determine the amount of food found. A time control
mechanism will determine if they will move inside a group or
follow the ocean current [75]. The following sections include
the equations used to update the positions of the jellyfish,
which are summarized in Fig. 6. Refer to [75] for additional
information.

1) OCEAN CURRENT
Jellyfish are attracted to the food contained in the ocean
current. By averaging all of the vectors from every jellyfish
in the ocean to the jellyfish that is now in the best position,
the direction of the ocean current is ascertained, as shown in
Equation (42), and the updated location of each jellyfish is
given by Equation (43).

−→
OD = X∗

−µ × rand × β (42)

Xi (t + 1) = rand×
−→
OD + Xi (t) (43)

where
−→
OD is the direction of ocean current, while Xi and X∗

represent the position of each jellyfish and the position of the
jellyfish with the best fitness, respectively. The mean position
of all jellyfish is denoted by µ, while β is a distribution
coefficient.

2) JELLYFISH SWARM
When jellyfish move in a swarm, they have two types of
motion: passive and active. In passive motion, jellyfish move
around their locations, and their updated positions are given
by Equation (44).

Xi (t + 1) = (Bu − Bl) × rand × γ + Xi (t) (44)

where γ is a coefficient based on the length of motion of
the jellyfish, while the lower and upper bounds of search
space are denoted by Bl and Bu respectively. In active
motion, the jellyfish move toward the position with large
amounts of food. The direction of motion is determined by
comparing the amount of food at the position of the jellyfish
of interest and a jellyfish selected at random, as shown in

FIGURE 6. Jellyfish search algorithm.

Equation (45), and the updated location of each jellyfish is
given by Equation (46).

−→
Dir =

{
Xj (t) − Xi (t) , f

(
Xj

)
≤ f (Xi)

Xi (t) − Xj (t) , otherwise
(45)

Xi (t + 1) = rand ×
−→
Dir + Xi (t) (46)

where
−→
Dir is the direction of motion of the jellyfish and Xj is

the position of a randomly selected jellyfish.

3) TIME CONTROL MECHANISM
As mentioned before, the jellyfish either follow the ocean
current or move in a swarm with two types of motion: active
and passive. So, a time control function C(t) (ranges between
0 and 1) is used to determine which type of motion the
jellyfish will do. When C(t) is greater than or equal to 0.5,
they follow the ocean current; otherwise, they move inside
a swarm. The value of (1-C(t)) is compared with a random
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FIGURE 7. Artificial rabbits optimization algorithm flowchart.

number to decide which type of motion the jellyfish will do
when moving in a swarm (active or passive).

C (t) =

∣∣∣∣(2 × rand − 1) ×

(
1 −

t
Tmax

)∣∣∣∣ (47)

where t is the iteration number, and Tmax is the maximum
number of iterations.

C. ARTIFICIAL RABBITS OPTIMIZER (ARO)
The ARO algorithm draws its inspiration from the survival
strategies used by rabbits. They use a strategy referred to as
‘‘detour foraging’’ to look for food at a distance from their
nests. Around their nests, they dig burrows and choose one at
random to hide in to evade hunters and predators; this tactic
is known as random hiding. They will decide between detour
foraging and random hiding according to their energy. When
their energy is high enough, they will search far from their
nests for food, a process known as detour foraging. When
their energy levels are low, they will hide randomly in one of
the burrows around them. The equations utilized for updating
the rabbits’ positions are given in the following sections, and
Fig. 7 summarizes them. Refer to [61] for more information.

1) ENERGY SHRINKAGE (EXPLORATION AND EXPLOITATION
SWITCHING)
The amount of energy a rabbit possesses determines whether
it will detour foraging or hide randomly. Hence, equation (48)
is used to calculate an energy factor A(t). A rabbit will resort
to random hiding when A(t) is less than or equal to 1 and will
undertake detour foraging when A(t) is greater than 1.

A (t) = 4
(
1 −

t
Tmax

)
ln

1
a1

(48)

where a1 is a random number between (0,1) and Tmax
represents a maximum number of iterations.

2) DETOUR FORAGING (EXPLORATION)
In order to distance predators from their nests, rabbits
seek food in locations far from their homes. Equation (49)
indicates that the rabbits’ search for food is random and
influenced by the rabbits’ relative positions to each other.
−→y i (t + 1) = round (0.5 × (0.05 + a2)) × n1 +

−→u j (t) + K

×
(
−→u i (t) −

−→u j (t)
)
, i, j = 1, .., n and j ̸= i

(49)

K = L × f (50)

L = (e− e

(
t−1
Tmax

)2
) × sin(2πa3) (51)

f (v) =

{
1 if v == x(z)
0 else

v = 1, . . . ,d

and z = 1, . . . , [a4.d] (52)

x = rand perm(d) (53)

n1 ∼ N (0, 1) (54)

where −→u i (t) and −→y i (t + 1) represents the ith rabbit’s
location and the candidate’s location of the ith rabbit at
the time t and t+1, respectively. f is a mapping vector,
d represents the number of variables to be optimized in
the problem (3 or 5 in our case), and n represents the size
of the rabbit population. a2, a3, and a4 are three numbers
chosen at random between (0,1) and n1, which are subject
to the standard normal distribution. L describes the rabbits’
movement pace, while the rabbits’ running characteristics are
simulated by a running operator, which is denoted by K.

3) RANDOM HIDING (EXPLOITATION)
To evade predators and hunters, rabbits randomly select one
of their burrows to hide in. A single rabbit possesses d
burrows near the nest. The generation of these burrows for
each rabbit is described by Equation (55).

−→
b i,j (t) =

−→u i (t) × (H × x + 1), i = 1, . . . , n

and j = 1, . . . , d (55)

H =
Tmax − t + 1

Tmax
× a5 (56)

x (v) =

{
1 if v == j
0 else

v = 1, . . . . . . ,d (57)
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TABLE 4. Parameters boundaries for FOPID controller.

TABLE 5. Parameters of PID and FOPID controllers.

−→y i (t + 1) = K ×

(
a5 ×

−→
b i,r (t) −

−→u i (t)
)

+
−→u i (t) ,

i = 1, . . . , n (58)

xr (v) =

{
1 if v == [a6.d]
0 else

v = 1, . . . . . . ,d (59)

−→
b i,r (t) =

−→u i (t) × (H × xr + 1), i = 1, . . . . . . , n

(60)

−→u i (t + 1) =

{ −→y i (t + 1) , f (−→u i (t)) > f (−→y i (t + 1))
−→u i (t) , f (−→u i (t)) ≤ f (−→y i (t + 1))

(61)

where a5 and a6 are random numbers between (0,1),
−→
b i,j

represents the jth burrow of the ith rabbit, while
−→
b i,r

is the burrow randomly picked for hiding by the ith
rabbit, as outlined in Equation (60). and H represents the
hiding parameter. Equation (58) indicates that the ith rabbit
will modify its location based on the burrow chosen at
random. Ultimately, following either random hiding or detour
foraging, a rabbit shall abandon its current location followed
by settling in the location of the candidate if the new
location’s fitness is considered better when compared to the
present’s, as explained in Equation (61).

V. SIMULATION RESULTS
The FOPID controller tuned by the ARO algorithm (FOPID-
ARO) is evaluated by comparing it to the PID controller
tuned by the ARO algorithm (PID-ARO) and to the FOPID
controller tuned by jellyfish search algorithm (FOPID-JSA)
and grey wolf optimizer (FOPID-GWO) through different
cases of changing the irradiance of the PV and the load in
steps. The ISE, maximum percentage undershoot (MPUS),
and maximum percentage overshoot (MPOS) are used to
evaluate the two controllers. Table 5 presents the parameters
obtained by both controllers.

A. CASE (1): LOAD CHANGES
The system is subjected to sudden load changes while
maintaining the temperature and irradiance values of PV
at 250C and 1000 W/m2, respectively. The load is reduced
from 3000 to 2000 W at time = 1 s, then increased
from 2000 to 3500 W at time = 2 s, and at time = 3 s,
it changed from 3500 to 4000 W as shown in Fig. 8a. The

TABLE 6. The transient parameters and ISE of load voltage for case 1.

FIGURE 8. Case 1: (a) Load, FC, and PV power; (b) Load voltage.

impact on the load voltage due to sudden load changes is
illustrated in Fig. 8b. It is shown in Table 6 that FOPID-
ARO has the best performance, the least ISE, and the least
rise time. It is also noted that the FOPID-ARO decreased the
MPOS by 30.41%, 23.28%, and 14.85% when compared to
PID-ARO, FOPID-GWO, and FOPID-JSA respectively, and
theMPUS by 30.16%, 10.60%, and 9.46%when compared to
PID-ARO, FOPID-GWO, and FOPID-JSA respectively. This
means that the FOPID-ARO enhanced the dynamic response
and acted faster than the PID controller in regulating the
voltage; however, it should be mentioned that the FOPID
caused small oscillations in the output voltage due to the
derivative component and that it takes a longer time in its
optimization process than the conventional PID controller as
the FOPID has five parameters to be optimized while the PID
has only three.

B. CASE (2): IRRADIANCE CHANGES
Here, the system is tested against sudden changes in the
irradiance of the PVwhile keeping the temperature of PV and
the load constant at 250C and 3000W, respectively. As shown
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FIGURE 9. Case 2: (a) PV Irradiance; (b) Load, FC, and PV power; (c) Load
voltage.

in Fig. 9a, the irradiance decreased from 1000 to 400 W/m2,
then increased from 400 to 700 W/m2, and finally changed
from 700 to 900 W/m2 at times = 1, 2, 3 s respectively.
Fig. 9b represents the impact of irradiance on PV, FC, and
load powers, and Fig. 9c shows its effect on the load voltage.
It is noted that FOPID-ARO has the least ISE, the least rise
time, and better MPOS and MPUS, as shown in Table 7.
The FOPID-ARO improved the MPOS by 30.96%, 25.98%,
and 16.22%when compared to PID-ARO, FOPID-GWO, and
FOPID-JSA respectively, and the MPUS by 32.43%, 3.54%,
and 7% when compared to PID-ARO, FOPID-GWO, and
FOPID-JSA, respectively. This means that the FOPID-ARO
improved the dynamic response and decreased the error more
than PID-ARO, FOPID-GWO, and FOPID-JSA.

FIGURE 10. Case 3: (a) PV Irradiance; (b) Load, FC, and PV power; (c) Load
voltage.

TABLE 7. The transient parameters and ISE of load voltage for case 2.

C. CASE (3): LOAD AND IRRADIANCE CHANGES
Sudden load and irradiance changes are applied to the system
without considering temperature changes in PV. As seen in
Fig. 10a, the irradiance decreases from 1000 to 400 W/m2 at
time = 1 s, increases from 400 to 700 W/m2 at time = 2 s,
and then increases once more from 700 to 900 W/m2 at time
= 3 s. Meanwhile, Fig. 10b illustrates the changes in the load.
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FIGURE 11. Case 4: (a) PV Irradiance; (b) Load, FC, and PV power; (c) Load
voltage.

TABLE 8. The transient parameters and ISE of load voltage for case 3.

It increases from 2500 to 3000W at time= 1 s, then decreases
from 3000 to 2000 W at time = 2 s, and finally increases
from 2000 to 3200 W at time = 3 s. Fig. 10c illustrates the
impact of the sudden changes in load and irradiance on the
load voltage. It is clear from Table 8 and Fig. 10c that FOPID-
ARO has the least ISE, rise time, MPOS, and MPUS, which
indicates that FOPID-ARO maintained the voltage closest
to 100 V more than PID-ARO, FOPID-GWO, and FOPID-
JSA.

D. CASE (4): REAL PV DATA
Here, actual data of irradiance of a day in February from
Aswan (location south of Egypt) obtained from the Global
Solar Atlas website [76] is used as the input of PV while
maintaining a constant temperature of 250C for the PV and
a constant load of 2000 W. The irradiance was recorded from
7 am to 6 pm and it changes between 20W/m2 to 797W/m2 as
shown in Fig. 11a. Fig. 11b indicates the continuous change
of PV and PEMFC power. The FOPID-ARO maintained the
voltage constant, as shown in Fig. 11c. It was also noted
that there were no overshoots, which means a good dynamic
response.

VI. CONCLUSION
This paper introduces a FOPID controller with its parameters
optimized by a new bio-inspired meta-heuristic algorithm
(the ARO) to keep the PEMFC’s voltage in a DC microgrid
constant. In comparison to the PID controller, the FOPID
controller exhibits greater flexibility and robustness since it
has two more adjustable parameters, and the ARO algorithm
has a small standard deviation and a fast convergence
curve. The performance of FOPID-ARO is validated by
comparing it to a PID controller tuned by ARO as well
as a FOPID controller tuned by JSA and GWO algorithms
under different conditions of load and irradiance variations
in steps and real irradiance data. The ISE, MPOS, and MPUS
are the parameters that are used to assess FOPID-ARO’s
performance. The FOPID-ARO shows the best response
with an ISE of 0.204, 0.049, and 0.223 for case 1, case 2,
and case 3 respectively and the least response time and
shows an improvement in MPUS by 30.16%, 10.60%, and
9.46%, and in MPOS by 30.41%, 23.28%, and 14.85% when
compared against PID-ARO, FOPID-GWO, and FOPID-JSA
respectively for case 1, which indicates that the FOPID-ARO
enhanced the dynamic response and the stability of the system
more than the PID-ARO did and that it maintained the voltage
closest to the required voltage (100 V). Moreover, the results
also indicate the ARO algorithm yields better results than the
JSA and the GWO algorithms.

In future research, wind energy sources, energy storage
systems, and the continuous change of loadwill be considered
in the microgrid, and real-world case studies will be
conducted to show their applicability. Also, the control of the
flow of hydrogen and oxygen in the fuel cell by FOPID to
deliver the required power could be considered in the future.
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