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ABSTRACT With the expansion in recent power systems, the boost in renewable energy resources with
multiple interconnections, overloading of existing power networks, increased load growth, and equipment
failures, power system transient instability issues have exponentially increased. Transient stability in power
systems is of particular importance even while performing the steady state analysis of a power system. Power
system transient stability assessment is mandatory regularly for power system operation and has a major
impact on power system planning. Potential risks of blackouts and failures in power systems can be avoided
or minimized with the prompt prediction of transient instability. This research work presents a predictive
approach for power system transient instability. The case study is a 735kV, 29-bus, 7-powerplant network
involving precise modeling of generators. In particular, the proposed method is represented by different
machine learning models through extraction and regression, in which the variables of the power-generating
units are used as primary sources/features. Data cleaning and sorting out techniques are being used for
refining data. Feature extraction has also been implemented for further cleansing of the data. The result is
in the form of concrete and robust classifier models that can overcome power systems’ instability concerns
through prompt prediction.

INDEX TERMS Renewable energy sources, large-scale integration, power system transients, transient
analysis, power system stability, machine learning.

I. INTRODUCTION

Power systems are expected to provide steady and reliable
power to its consumers. The behavior of power systems is
adversely affected due to external and internal perturbations,
both natural and man-made.

For instance, a major disturbance is (i) the addition of
large-scale photovoltaic (PV) systems in existing infrastruc-
ture to accommodate high load demand. These PV generation
sources present higher intermittent characteristics and lower
inertial response [1], [2].
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Additionally, (ii) overloading of existing transmission
lines, (iii) increased load growth, (iv) equipment failures, and
(iv) interconnecting power networks arising from diverging
sources are collectively responsible for disturbing a power
system [3], [4], [5].

Moreover, modern power systems have evolved to accom-
modate novel topologies within renewable energy. One of
which is the ‘distributed generati’ (DG) topology. Within
the confine of renewable energy, DG(s) encompasses both
converters and inverters, which operate non-linearly. Further-
more, DG(s) lack backup within the system. Together, these
(v) non-linear operations and (vi) lack of backup severely
impact the stability of an existing system both in the form of
line and generator outages leading to blackouts [6], [7], [8].
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As the above set of disturbances is unavoidable, for a power
system to provide steady and reliable power to its consumers,
it must stabilize the system in the least amount of time.

Therefore, in the default case, a power system exists in
a healthy state (Sp). After the onset of a multitude of dis-
turbances, a power system enters an unstable state (called
’transient instability = S7), which is transient in nature as
the system is designed to withstand and address these pertur-
bations, to finally achieve equilibrium (S7 = ‘steady state’).

While in a ‘transient instability’ state, a power system
exhibits a significant power imbalance between generat-
ing stations and load dispatch centers causing oscillations.
These oscillations if left unchecked can lead to brownouts to
blackouts.

Hence, ’power system transient stability analysis’
(PSTSA) is essential in evaluating whether a system can
withstand these disturbances and achieve an equilibrium state
after such incidences within a reasonable time [9], [10], [11].

As transitioning from ‘transient instability’ (S1) to equilib-
rium is essential for a healthy power system, a fast detection
method that recognizes ‘transient instability’ may help to
mitigate disturbances in the power system [12], [13], [14].

The literature offers several methods for assessing transient
instability measures [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27]. One such approach employs
the Taylor series, incorporating (a) angular changes during
S1, (b) associated clearance time, and (c) dynamic resistance
to maintain system synchronization with stability enhance-
ment. As this technique does not require a specific network,
stated alternatively, applies to all networks, it acts as a suitable
benchmark for stability studies [15].

The following two equations summarize this scheme:

T — (%).P2.¢a-Fr-sin(8) (D

d*s ds 5

MW-FE—PI,M_PO,E )

Here above, equation (1) measures mechanical shaft torque

(T) of the generator concerning the number of poles (P),

air gap flux (¢,), rotor field magnetomotive force (F,), and
power angle {sin (§)}.

Whereas equation (2) above, relates the inertia constant

2 .
(M ‘fﬁ—f) and damping constant (%) of the generator to

the difference of the input mechanical (P; ) and output
electrical power (Po ) [15].

Similarly, Zhang et al. proposed a model of PSTSA using
principal component analysis [16]. While [17] recommended
using a hybrid approach incorporating both higher-order Tay-
lor series and block-bordered diagonal algorithm for PSTSA.
Similarly, [18] suggests an intermediate model between tran-
sient stability and electromagnetic transients for the same.

Non-linear model decoupling (NMD) is another approach
that measures transient instability by transforming a
multi-oscillator system into a series of decoupled oscillators.
Since each oscillator represents a single item of interest, its
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dynamics can be analyzed separately, making NMD suitable
for large utility grids [19], [20].

Additionally, Ashraf and Chakrabarti recommend using
Kalman Filters to track rotor angles in real time for measuring
transient stability [21].

Similarly, Gupta and Gurrala propose a Convolution Neu-
ral Network (CNN) to present an online monitoring solution
for predicting instability within a power system [22].

Furthermore, Shi et al. employ CNN to analyze both peri-
odic and aperiodic stability. The model transforms voltages
into a grid-like topology, analogs to images, and then feeds
them into a CNN, thereby mapping it to three classes, each
quantified by their likelihoods, as shown in Figure 1 [23].

Extending CNN(s), deep learning too has made its way
to PSTSA [24], [25], [26], [27], [28], [29], [30], [31]. Some
research methodologies are extending the task for economic
dispatch to ease real-time energy management [32], [33].

FIGURE 1. The model transforms voltages into a grid-like topology and
then feeds them into a CNN. Thereafter, the model presents three
normalized probability measures, each catering to a class of interest.

The above-mentioned techniques present the following

gaps.

1) CNNs and deep-learning frameworks are computation-
ally expensive to operate and require comparatively
greater time to predict the unstable state of the power
system.

2) They are designed to address a limited number of dis-
turbances leading to transient instability, as shown in
Table 1.

3) They refer to a reduced set of parameters to draw their
conclusions, as shown in Table 2.

4) They do not present safe — operating ranges for differ-
ent parameters that are required to smoothly run the
power system.

TABLE 1. Number of faults addressed in the literature survey.

# of Faults Description
1 LLL faults [23], [27]-[30].
1 LLLG faults [22]-[25].
2 LG and LLLG faults [24].
4 LG,LL,LLG, LLL [31].
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FIGURE 2. Diagram of MathWorks 29-bus power plant network with a transmission system of 735kV. The transmission
system is compensated with series and shunt compensation too so that every cause of instability should be there on
board. Moreover, detailed modeling of turbines, voltage regulators, stabilizers, and excitation system is there in the

network.

TABLE 2. Number of parameters considered in the literature survey.

TABLE 3. States of the power system.

# of Parameters  Description State No. Description
1 Voltage [31]. 0 Normal/stable state
1 Rotor Angle [25]-[27]. 1 Transient instability state
2 Voltage magnitude and phase angles [23]. 2 Steady state
3 Speed, active and reactive powers [28].
3 Voltage magnitude with phase angle and TABLE 4. Faults categories.
frequency [22].
4 Volta}ge magnitude with angles, active and Fault tags Description
reactive powers [29]. 1 LG -Sinele i Jfauli for 0.2 ]
Power angle, angular velocity, unbalanced power, - Single line-ground fault for 0.2 seconds
4 and reactive power [30] F2 LLG - Double line-ground fault for 0.2 seconds
. - - F3 LLLG - Triple line-ground fault for 0.2 seconds
Voltage, frequency, load angle, active and reactive . .
5 powers [24] F4 LLL - Triple line fault for 0.2 seconds
- F5 LL - Double line fault for 0.2 seconds
F6 LLLG — Triple line-ground fault for 1.2 seconds

Il. METHODS
The following summarizes the methodology:

A. STATES AND FAULTS

To investigate the transient instability of the power system,
we are considering a total of three states (stable, transiently
unstable, and steady states) as given in Table 3. Several faults
are being simulated to generate the data against each state
and generator of the given power system. Different fault
categories are mentioned along with the tags, in Table 4.

90554

B. SYSTEM UNDER CONSIDERATION

We employ MathWorks 29-bus power plant network, com-
prising a 735kV transmission system, and 7-generating units
with power generation of 26,200 MVA, as shown in Figure 2.
Total simulation time is 0 — 9.975 seconds and fault dura-
tion are 3.8-4.0 seconds. Step size is approximated to get
44689 samples against twelve (12) features as per the Nyquist
criteria which is the minimum data requirement for a signal.
Samples generated against 6 faults, 7 generating units, and
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TABLE 5. Proposed features of the power system.

# Features Description

1 Is-a (pu) Stator current of phase A in per unit
2 Is-b (pu) Stator current of phase B in per unit
3 Is-c (pu) Stator current of phase C in per unit
4 Wm (pu) Rotor speed in per unit

5 dW (pu) Deviation in rotor speed in per unit
6 0 (deg) Rotor mechanical angle in degrees
7 0p (rad) Deviation in rotor angle in radians
8 6 (deg) Load angle in degrees

9 P (pu) Output active power in per unit
10 Q(pw) Output reactive power in per unit

11 T (pu) Electromagnetic torque in per unit
12 V(pu) Terminal voltages in per unit

3 states are being concentrated, to sum up the data in a single
file. A list of these proposed features is shown in Table 5.

Please note in Table 5 above, the feature € : rotor angle
represents the angular displacement of the rotor in mechan-
ical degrees with respect to the stationary axis whereas, the
component §: load angle denotes the angular displacement of
the rotor with respect to the synchronously rotating reference
axis.

C. STATE BOUNDARIES APPROXIMATION

To determine the boundaries of different states, we looked at
the amplitude of each signal independently along both the x
and y-axis, as shown in Figures 3 and 4, and Table 6.

A typical case has also been considered in which the fault
duration is increased from 0.2 seconds to 1.2 seconds. This is
comparatively a long-lasting fault that pushes the system to
permanent instability as shown in Figure 5.

D. NORMALIZING THE DATA

We normalized the data using ‘MinMaxScaler,” (MMS) such
that the least value is reduced to O while the largest is scaled to
1. MMS has the added advantage, that any new value less than
the smallest value of a feature is reduced to 0, while any value
larger than the highest value is scaled to 1. Below, Table 7
enumerates the minimum and maximum values of each of the
twelve features.

E. SPLITTING THE DATA

Total samples of the data generated are being divided into
train samples, test samples, and validation samples. Train
samples are used to train the machine learning models and
they require a bigger data set as compared to test and vali-
dation samples, to master the prediction model. Test samples
and validation samples require comparatively small data sets
as they are only required for validating the accuracy of any
prediction models. 60% of the total data samples are classi-
fied as train samples for the training of the model, 20% as
test samples, and 20% as validation samples. The stratified
details of the data samples against different states of the
power system are also presented in Table 8. Table 8 gives a
fair estimate that the data is approximately balanced and there
is no need for any further process on the normalized data. One
major advantage of pre-data processing and balancing is that
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Machine Speeds against F1 (per unit)

Time (seconds)

(@)

Machine Speeds against F2 (per unit)

Time (seconds)

(b)

Machine Speeds against F3 (per unit)

Time (seconds)

(c)

Machine Speeds against F4 (per unit)

Time (seconds)

Machine Speeds against F5 (per unit)

Time (seconds)

(e)
FIGURE 3. Waveforms of generating units’ rotor speed against
(a) Line-ground fault, (b) Double line-ground fault, (c) Triple line-ground
fault, (d) Triple line fault, and (e) Double line fault.

classifiers will yield comparatively better accuracies of tests
and validation against the data samples.

F. FEATURE SELECTION
If all the available data samples are presented to machine
learning models, then it will take a comparatively longer
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Machine Voltages against F1 (per unit)

Time (seconds)

(a)

Machine Voltages against F2 (per unit)

Time (seconds)

(b)

Machine Voltages against F3 (per unit)

Time (seconds)

(c)

Machine Voltages against F4 (per unit)

Time (seconds)

(d)

Machine Voltages against F5 (per unit)

Time (seconds)

(e)

FIGURE 4. Waveforms of generating units’ terminal voltage against
(a) Line-ground fault, (b) Double line-ground fault, (c) Triple line-ground
fault, (d) Triple line fault, and (e) Double line fault.

time for prediction of the required state with compromised
accuracy but if only the specific data that does matter, is pre-
sented to models then it will be a big favor to prediction
accuracy and time required [34]. Box plots may give an
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Machine Speeds against F6 (per unit)

Time (seconds)

Machine Voltages against F6 (per unit)

Time (seconds)
(b)
FIGURE 5. Waveforms of generating units’ (a) Rotor speed, and

(b) Terminal voltage against the long-lasting triple line-ground fault of
1.2 seconds.

TABLE 6. State boundaries against each category of fault.

State estimation S1 S2 S3
F1 (sec) 0-3.8 3.8-7.0 7.0-9.98
F2 (sec) 0-3.8 3.8-7.0 7.0-9.98
F3 (sec) 0-3.8 3.8-7.0 7.0-9.98
F4 (sec) 0-3.8 3.8-7.0 7.0-9.98
F5 (sec) 0-3.8 38-65 6.5-9.98
F6 (sec) 0-3.38 3.8-9.98 Nonexistent

TABLE 7. Minimum and maximum values of input features.

# Features Min. value Max. value
1 Is-a (pu) -5.3993 5.4401

2 Is-b (pu) -5.6364 5.6991

3 Is-c (pu) -5.7278 5.6871

4 Wm(pu) 0.9985 1.3377

5 dW (pu) -0.0015 0.3377

6 6 (deg) -2.0389 359.9986
7 6) (rad) -2.4931 475.7835
8 6 (deg) -25.7896 50.3981
9 P (pu) -1.8163 5.2446
10 Q (pu) -1.6615 5.0408
11 T (pu) -2.3955 4.7424
12 V (pu) 0.3188 1.6553

TABLE 8. The samples are generated for the representation of all three
states.

Type of state Percentage
0 — No fault state 38.07 %
1 — Transient instability state 36.19 %
2 — Steady state 25.73 %

approximate idea of important features in which there are
large deviations in data. To mature this process of fetching
out the optimal features, a comprehensive feature selection is
required. Feature selection facilitates making a subgroup of

VOLUME 12, 2024
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TABLE 9. Results of exhaustive feature selection.

Features Sets Acc. (%) Is-a Is-b Is-c \\ dw 0 do S P Q T \Y%
1 12 95.57 X
2 66 99.79 X X
3 220 99.83 X X X
4 495 99.84 X X X X
5 792 99.82 X X X X X
6 924 99.81 X X X X X X
7 792 99.81 X X X X X X X
8 495 99.76 X X X X X X X X
9 220 99.16 X X X X X X X X X
10 66 98.83 X X X X X X X X X X
11 12 98.64 X X X X X X X X X X X
12 1 95.76 X X X X X X X X X X X X

Selected Features X X X X

3000

2500

2000

True label

1500

1000

0 1 2
Predicted label

FIGURE 6. Confusion matrix against linear support vector machine
classifier.

TABLE 10. Confusion matrix results against linear support vector
machine classifier.

Correct Wron, Combined
State classified classifgled Accuracy (%) accuracy (%)
0 3403 0 100%
1 3067 168 94.80% 90.14%
2 1587 713 69%

features that play a vital role in making a prediction model for
transient instability. This technique also reduces the amount
and dimensionality of the data which is further required to get
ahandsome prediction accuracy. Many features in the data are
just a waste of time and computational resources [35].

In the proposed scheme, exhaustive feature selection is
employed for feature selection and extraction. Exhaustive
feature selector uses K Neighbor classifier algorithms that
is a non-parametric classifier. With 12 features, the total
number of feature sets is 4095, as per the following formula
in equation (3).

n!

Con k) = o o

(3)
where n represents the total number of features and k rep-
resents the selected features in equation (3). The results of
exhaustive selection against a selected number of features are
given in Table 9. Here, Table 9 indicates that the top four
features are (i) rotor speed (W), (ii) rotor speed deviation
(dW), (ii) rotor angle deviation (d@), (iv) terminal voltage
(V). However, literature suggests that (v) load angle (§) which
is also an important measure [36]. As Table 9 indicates that
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1
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(c)

FIGURE 7. Confusion matrices for (a) Gaussian Naive Byes classifier,
(b) Random Forest classifier, and (c) Linear Discriminant Analysis
classifier.

almost all top feature sets display an accuracy above 98%, the
authors decided on five features {W,dW,df, V, §}.

IIl. RESULTS AND DISCUSSION
In this section, the performance of all the classifiers has
been presented in the form of confusion matrices and tables.
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TABLE 11. Confusion matrix results against gaussian Naive byes
classifier.

Correct Wron Combined
State classified classitgled Aceuracy (%) accuracy (%)
0 3403 0 100%
1 1829 1406 56.54% 84.26%
2 2299 1 99.96%

TABLE 12. Confusion matrix results against random forest classifier.

Correct Wron, Combined
State classified classifg'led Accuracy (%) accuracy (%)
0 3403 0 100%
1 3231 4 99.88% 99.89%
2 2294 6 99.74%

TABLE 13. Confusion matrix results against linear discriminant analysis
classifier.

Correct Wron, Combined
State classified classit%led Accuracy (%) accuracy (%)
0 3403 0 100%
1 1730 1505 53.48% 66.97%
2 853 1447 37.09%

TABLE 14. Results of the classifiers on the test and validation set.

. Test Validation
# Type of classifier accuracy (%) accuracy (%)
1 Gaussian Naive Classifier 84.26 83.59
2 Decision Tree Classifier 99.82 99.82
3 KNN - 3 Classifier 99.86 99.83
4 KNN -5 Classifier 99.86 99.83
5 Logistic Reg. Classifier 89.53 89.43
6 Random Forest Classifier 99.92 99.91
7 Linear Disc. Analysis 66.97 66.66
8 Quadratic Disc. Analysis 52.33 51.48

Results for the Linear Support Vector Machine (SVM) clas-
sifier are given in Figure 6 and Table 10 with the test set
accuracy of 90.14%.

Confusion matrices against some other classifiers like the
Gaussian Naive Byes classifier, Random Forest classifier,
and Linear Discriminant Analysis classifier are given in
Figure 7 with detailed classification details in Table 11-13
with the individual state accuracies and the combined test set
accuracies.

We tested eight (8) classifiers for the predictive approach,
as shown in Table 14.

As can be seen from Table 14, the Decision Tree (DT)
Classifier, KNN — 3, KNN — 5, and Random Forest Classifier
(RFC) have performed very well, even though the sampling
rate, as highlighted in Section II-B, was kept close to the
Nyquist criteria. These high accuracies may be attributed to a
softer noise model within the underlying MathWorks 29-bus
power system, which may not do justice to the real sys-
tem with similar characteristics. Among these four models,
we choose RFC as the model of choice for T'%i because @1) it
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presents the highest accuracy, and (ii) is more robust than DT
and KNN rules [37].

Please note, among the limitations of T2iisits overarching
reliance on one 29-bus power system for training, making
it overfit the existing framework. As maxima and minima
values of selected features will differ widely depending upon
the impedances and transient response of different power
systems, revising state boundary approximations, hence,
T2i needs to be both trained and evaluated on multiple
systems.

IV. CONCLUSION

As mentioned in Section I, there were four (4) research gaps
and this research work have covered three (3) of them, which
are as follows,

1) This research work has predicted transient instabil-
ity within one second using an Intel Core i7, 2 GHz
processor.

2) This framework has addressed, comparatively a greater
number of disturbances (six), as mentioned in Table 4.

3) A considerable set of parameters were considered and
the top five features delivered very promising results.

Overall, this research work provides proof of concept
for Tuar — transitory — instabilita, (T2i), a transient insta-
bility prediction model showing very promising results
and covering most of the research gaps presented in
the literature survey. Moreover, T2i potentially facilitates
power plant operators to identify the transient instabil-
ity state within a second, allowing them to take remedial
measures for stabilizing the system by controlling gener-
ator parameters, thus avoiding permanent instability and
blackouts.

Future work will focus on addressing existing limitations
by extending and evaluating T 2 to real-world power net-
works with different operating characteristics, containing
fault occurrence at distinct locations, and increased durations,
which will also help improve T 2%i’s robustness.

Lastly, the authors chose the phrase “Tuar — transitory —
instabilita” for the proposed framework as it is a combination
of three words ‘predict,” ‘transient,” and ‘instability.” The
word for predict in Irish is ‘Tuar’, while transient is translated
as ‘transitory’ in Catalan. Finally, instability is translated as
‘instabilita’ in Italian. As the paper introduces a novel frame-
work for detecting transient instability in a medium-scale
power plant network, the phrase ‘Tuar — transitory — insta-
bilita’ (T'2i) is appropriate.
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