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ABSTRACT This study introduces a brand-new swarm-inspired algorithm dubbed dholes hunting-based
optimization (DhoH) based on an animal hunting strategy to solve global optimization problems. The
technique is a brilliant idea for simultaneously finding many local minima. The dhole’s hunting strategy
is coordinated by members of a swarm, clustering and chasing prey. A clustering approach and finding
an optimal global algorithm describe primarily based on gradient approximation. We use four benchmark
function datasets to evaluate the DhoH’s performance.We compare the achieved results with several previous
research from various well-known algorithms. The comparisons demonstrate that DhoH is better than other
meta-heuristic algorithms inmost cases and determines high-quality solutions with fewer control parameters.
Besides, we also explore the application of DhoH in optimizing the decentralized level of Meta-heuristic
Proof of Criteria consensus protocol (MPoC) in Blockchain Network to further demonstrate its potential in
multi-dimensional problems. The results show the superior effectiveness of DhoH in terms of computational
burden and solution precision compared with the existing optimization techniques in the literature.

INDEX TERMS Dholes hunting-based optimization, nature-inspired computing, swarm-inspired meta-
heuristics, global search optimization, MPoC consensus protocol, blockchain network.

I. INTRODUCTION
Natural meta-heuristic algorithms are usually inspired by
social communication behaviors and the food-seeking of
creatures in nature. Many algorithms have proven highly
applicable when solving many NP-complete problems with
optimal or near-optimal results. For problems with many
local optimal points, employing deterministic algorithms like
fast steepest, sequential quadratic programming, conjugate
gradient, and quasi-Newton methods [1], [2], [3], [4] is
commonly very difficult. Meta-heuristic algorithms are,
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on the other hand, a non-deterministic method that uses
different strategies and operators iteratively to explore and
exploit the search space supported by a minimum or
maximum function [5]. Therefore, meta-heuristics have been
widely employed in science and real-life applications like
economy and finance, scheduling, and engineering design
applications [6], [7], [8], [9].

Swarm-inspired techniques are population-based meta-
heuristics replicating wild creatures’ social interaction and
collective behavior like birds, cats, and microbes [10].
Swarm-based algorithms primarily update and generate
new solutions based on the global best solution and their
neighbors. These algorithms underscore the ability to explore
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based on the diversity of platforms and develop exploitation
based on searching for the best solution. Despite the
appearance-after evolution algorithms [11], the development
of this type of algorithm is the fastest and most powerful.
We listed the well-known algorithms from 1970 onwards in
Table 1.
The No Free Lunch Theorem of Optimization [53]

states that while various swarm-based techniques have been
created, no algorithm can effectively address every type
of optimization issue. Furthermore, the bulk of current
techniques still leaves out several vital difficulties. First,
it is challenging to reconcile the two typical characteristics
of meta-heuristics inspired by nature: exploitation and
exploration. Exploitation is the process of probing a local area
to identify a promising answer, whereas exploration is leaving
any particular region and exploring uncharted territory.
Exploration should typically occur early in the development
of algorithms, while exploitation happens later [54]. When
looking for the global optimum for a particular problem,
exploration and exploitation must coexist harmoniously.
Second, to compete with the existing state-of-the-art

optimization algorithms, it is required to provide an algorithm
with few control parameters because many methods have
several control parameters, making it challenging to select the
appropriate parameter set for diverse tasks. As seen in Table 1,
the listed studies above show that behaviors inspired by a
predator from nature can be efficiently simulated under the
mathematical form to solve an optimization problem. In this
study, we also take inspiration from the hunting behaviors
of dholes as a group and a single individual as a local
search, reproducing, and moving to a new pack process as
the global search to design a new algorithm called Dholes
Hunting-based Optimization (DhoH). This method not only
combines the power of both exploration and exploitation but
also requires very few control parameters.

The proposed DhoH algorithm may be used in several
real-world situations, much as previous meta-heuristic tech-
niques. We demonstrate its effectiveness in improving a
blockchain consensus mechanism in real-world experiments.
Blockchain, a distributed ledger with visible and impenetra-
ble transactions, is a new technology that may raise network
security measures [55]. Consensus techniques ensure that
blockchain systems operate steadily and assist all network
nodes in transaction verification. We use DhoH to maximize
the decentralized level of Meta-heuristic Proof of Criteria
(MPoC), a successful protocol recently presented in [56],
to demonstrate its capabilities.

To be more precise, we listed our contribution as follows:
• Based on the movement and hunting behavior of
dholes, we suggest an effective technique for global
optimum search, which involves grouping dholes for
prey-seeking, utilizing cooperative techniques among
dholes in groups, and employing strategies for the
movement and pursuit of dholes and prey. The algorithm
employs a K-means clustering approach and cluster
optimization, utilizing gradient approximation. The

FIGURE 1. Visualization of natural hunting behavior of dholes.

combined strategies result in robust performance when
the model operates in complex domains, quickly achiev-
ing global/local optimal points.

• The algorithm exhibits fast and stable convergence rates
and can readily be applied to various problems. Thirty
benchmark functions, including uni, multi, hybrid,
and composition modal, were used to measure the
algorithm’s performance. The outcomes demonstrate the
exceptional benchmark performance and efficiency of
DhoH, particularly in complicated spaces and domains.

• The model is implemented to evaluate its effectiveness
on a blockchain network model and has outperformed
other state-of-the-art experimental algorithms.

The rest of this paper is designed in the following details:
Section II presents our inspiration and mathematical form
of the proposed DhoH algorithm. The theoretical experiment
and practical experiment are shown in Section III. Section IV
discusses the results of the proposed DhoH and several state-
of-the-art algorithms in both the global searching test and
application test. Our conclusion and some recommendations
for future works are shown in section V.

II. DHOLES HUNTING-BASED OPTIMIZATION (Dhoh)
A. INSPIRATION
The Dhole (Cuon alpinus) is called the Red Dog, Asiatic
Wild Dog, and Whistling Dog. It is a member of one of
the five canid species found throughout the Tibetan Plateau.
The wolf (Canis lupus), three fox species (red fox (Vulpes
vulpes), Tibetan fox (V. ferrilata), and sand fox) round out
the group (V. corsac)u [57]. Dholes live in a broad range
of environments, including alpine regions, scrubby areas,
thickly forested areas, and steppes.1

Dholes are gregarious creatures that live in packs. The
pack works together to eat, meet its requirements, and care
for itself. Each pack has three to twelve members, and the
packs occasionally collaborate or have fun with dholes from
other packs. Dhole packs will occasionally band together to
create a super pack of up to 30 animals. In Fig. 1, dholes

1https://animals.sandiegozoo.org/animals/dhole
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TABLE 1. Review of swarm-inspired meta-heuristic algorithms since the 70s.

are seen engaging in their typical hunting activity, including
a coordinated hunt, sharing of the catch, and a subsequent
breakup into the smaller groups they first formed. Inter-pack
hostility is uncommon because close-by packs frequently
have relationships with one another1.
Dholes hunt in groups, using coordinated tactics to

surround their prey and gradually close in on them. They
communicate and share information about the location of
their prey with each other. Meanwhile, the prey employs
strategies such as fleeing in the opposite direction, hiding,
or seeking out the safest locations. The hunting behavior of
dholes serves as the inspiration for an algorithm in which

the predators are represented as a group of points in close
proximity. During the hunting process, dholes give chase
while the prey continuously seeks a better position. When the
prey reaches an optimal position and cannot find a better one,
the predator is considered to have won, indicating that the
algorithm has achieved convergence.

Our suggested model assumes that the optimization
domain is comparable to the plains and woods where dholes
are looking for potential opportunities to hunt prey. Dholes
do not know where to obtain food, which is similar to
optimization challenges. The hunting grounds of the dholes
might be harsh and foggy. As a result, it is challenging to
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approach and pursue the prey. Dholes need a specialized
hunting method to increase their chances of success.

Dholes have adapted and developed an effective hunting
mechanism, which we separate into two phases. Firstly, the
pack hunting strategy is a local search mechanism, and
the other is re-forming packs as a global search. Individuals
in the super pack can share information about the domain
during the global search phase (to exchange information
about potential positions to hunt prey). On the other hand,
in the local search, a pack depends on its search abilities.
Therefore, our algorithm can calculate the different locations
in the search domain. Besides, each individual and their
neighbors observe the precision of the best possible position.

In contrast, we consider the location of prey to avoid being
eaten as the optimal point of the set, where predators are
difficult to reach. Prey are also sensitive when observing
predators and always look for the best positions. As a result,
the algorithm combines the optimal position of both the
hunter and the prey. We also strategize to ensure the members
in the pack keep their distance for the best chasing, avoiding
falling early into one local minima location.

Those main inspirations are described and simulated as
mathematical equations in the below sections.

B. INITIALIZATION
A population of N dholes are placed on the ground, randomly
initialized as follows:

xi,j = xmini,j + randi,j ∗ (x
max
i,j − x

min
i,j )

i = 1, . . .N ; j = 1, . . .D (1)

where xi,j is the random position vector of i − th dhole
with D dimensions, xmini,j , and xmaxi,j denote the minimum and
maximum values for the j− th dimension of i− th agent, and
rand is a uniform random value in the interval of [0, 1].

Let f ∈ RD be the criterion function of m variables
according to the problem space dimensions. The xbest is the
optimal solution (agent) if function f (xbest ) value if global
minimum or maximum. In DhoH, the position of prey is the
optimal position the dhole tries to reach.

C. CLUSTERING-HUNTING BASED
This subsection describes the first step in the main DhoH
algorithm. The algorithm is motivated by dholes’ swarm
hunting, ambushing tactics, and prey chasing. Moreover, they
cannot all compete for each prey because of the large number
of prey, so they will split into smaller groups to make hunting
more efficient. To have a reasonable pack division, we base
on the K-means algorithm to separate into many groups so
that the members of each group tend to be close together.
At the same time, the distance between the groups is as far as
possible. Using K-means as an essential step in helping dhole
have good distance separation. In other words, the algorithm
makes it a point to maintain its distribution diversity. When
the group members are close to each other, the probability of
them falling into the same valley is higher, so the gradient

approximation can be applied to compute a local minimum.
In addition, it is possible to replace the K-means algorithm
by selecting neighbors with the K-nearest neighbor selection
algorithm. In our study, the K-means algorithm instead of
KNN ensures uniform clustering in the optimal domain.

For the initial set with k random centroids (c1, c2, . . . , ck ),
each observation should be assigned to the cluster with the
mean closest to it using the least-squares error (Eq. 2).
For each cluster allocated data, the update phase should
recalculate the means centroids (Eq. 3).

C (t)
i =

{
xp :

∥∥∥xp − c(t)i ∥∥∥
2
≤

∥∥∥xp − c(t)j ∥∥∥
2
∀j, 1 ≤ j ≤ k

}
,

(2)

c(t+1)i =
1∣∣∣C (t)
i

∣∣∣
∑
xj∈C

(t)
i

xj (3)

D. PACK HUNTING STRATEGY-MULTI-LOCAL SEARCH
PHASE
This subsection describes the main algorithm, which is based
on swarm interaction, acceleration, and capture strategies.
Dholes move around their territory in search of potential prey
as a herd of elk, caribou, and wild pigs. When prey is spotted,
the pack starts to approach quietly from different directions
as close as possible, trying to stay undetected. When they
reach a good location, they run as fast as possible to attack
by surprise. However, it will run in the opposite direction
and try to find the locations where it feels safe that the dhole
swarm can hardly find (local optimal point). Simultaneously,
the pack members must surround the prey and keep a distance
from other members.

For mathematical modeling, suppose the position of the
prey is xp, and the members of the dhole swarm are xdi ,
respectively (2 ≤ i ≤ nmembers where nmembers is the number
of members in the dhole swarm). In the first step, the prey
always has an advantage over the members of the dhole
swarm.

The complete process of pack hunting is presented in
Algorithm 1, where ∇v is seen as the gradient vector and
vsupport helps guide the dholes to keep their distance from
each other.

We can see that the graph f (x) illustrated in Fig. 3 has
more than one local optimal point. However, for close sets
of locations, we would expect them to lie in the same valley.
Besides, this algorithm can still work well even if several
points are not in the same valley or are in the case of an
imperfect valley. However, there is still one issue: how to
group dholes into the same packs so that the corresponding
dholes belong to the same valley. Since points in one group
are usually close to each other, we expected that their location
falls into a unique valley. In the chasing process, the dholes
try to approach their prey while the prey runs away from all
the dholes. The location of the dhole and prey are updated
according to ∇v. However, the prey will be able to speed up
and slow down depending on the terrain, so we use the kltarget

93336 VOLUME 12, 2024



B. M. Nguyen et al.: Dholes Hunting—A Multi-Local Search Algorithm

Algorithm 1 Pack Hunting Strategy
1: Input: xd are the set of dholes’ positions in the pack, and
xp is the prey’s position.

2: Output: Find the best prey position x∗p
3: kltarget ← 1.0, t ← 1
4: initialize r1, r2
5: for t ≤ nmoves do
6: i← 1
7: for i ≤ nmembers do
8: ∇v← xp − xdi
9: xp← xp + kltarget ∗ ∇v ∗ log |∇v|

10: xdi ← xdi + random() ∗ ∇v
11: j← 1
12: for j ≤ nmembers do
13: if i ̸= j then
14: vsupport ← xdi − xdj
15: xdi ← xdi − vsupport
16: i← i+ 1
17: update kltarget using Eq. 4
18: t ← t + 1
19: Change klmul and kldiv using r1 and r2
20: Return: xp

coefficient to accelerate the convergence trend.

kl =


f (x ip)− f (x

i−1
p )

f (x ip)−
(f (xi−2p )+f (xi−3p ))

2

, if 2 ∗ f (x ip)

̸= (f (x i−2p )+ f (x i−3p ))
1, otherwise

(4)

kltarget =


kltarget
kldiv

, if kl ≤ 1

kltarget ∗ klmul, otherwise
(5)

klmul = klmul ∗ r1, if kl ≥ 1 (6)

kldiv = kldiv ∗ r2, otherwise (7)

where f (xpi ) is the fitness of dhole p in the i-th moves. kldiv
is the coefficient decrease speed of divergence, and klmul is
the coefficient increase speed of divergence. kldiv and klmul
fluctuate from 1.0 to 2.0. nmoves is the number of moves
in the pack-hunting strategy. It is different in the course
of nature and thus different for the different optimization
problems. After the packs catch their prey, they regroup into
the super pack to share food and information about the local
area.

In the hunting search phase, the algorithm adjusts the
movement speed of dholes using the klmul and kldiv param-
eters, which can increase or decrease the speed appropriately
to help dholes achieve local optimization quickly. Simul-
taneously, a probability parameter is determined to avoid
getting stuck in small local areas. Moreover, two acceleration
parameters (r1 and r2) are used to vary klmul and kldiv,
respectively. The acceleration parameters (r1 and r2) help

FIGURE 2. Visualization of local and global search phase in DhoH.

FIGURE 3. Illustration of movement of points in the same ‘‘valley’’ to
reach the local minimum.

to adjust the velocity of the dhole to change more rapidly
in areas of high variability, allowing for faster exploration
of the search space. However, the sensitivity of these two
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parameters is quite large when changing the domain space,
and there is not a single fixed value. Therefore, evaluating
many different benchmarks makes it very difficult to select
the fixed value of these two parameters. In this study, these
two parameters (r1 and r2) are selected to be small and
fixed to avoid too much deviation. The value of nmoves has
a significant impact on the running time of the algorithm.
However, nmoves does not necessarily need to be set to a very
large value because the speed of the dhole can be increased
exponentially by adjusting the numerical parameters r1 and
r2. During testing, we use a fixed value for nmoves in all
benchmark sets.

E. RE-FORMING PACKS-GLOBAL SEARCH PHASE
In forming packs and hunting together, there can be many
conflicts among the dholes in the pack. Although they
can stay close and communicate with each other, the food
distribution issues make the habitat in the local area not as
suitable as it was before. They may leave the pack and join
another or re-form a new pack. In addition, dholes also face
other dangers, such as being hunted by humans or other big
predators like lions and leopards. Of course, if they cannot
survive in the herd, they will have to find a way to reproduce
(natural selection), adapt to the environment, or switch to
another pack to live.

In DhoH, the weak dhole in the herd has to find a way to
settle in another herd. If they successfully find a new pack,
they can survive and join it to hunt and share food. If they
can’t find other flocks, they may become lost, have to hunt
by themselves, or be attacked by other predators (or possibly
die due to food shortage).

The successful re-forming pack process of dholes is
described in Section II-E1. An unsuccessful re-forming pack
process of dholes consists of two parts: the lost dholes have
to go hunting alone, and the dholes starve or die by other
predators described under Section II-E2. Fig. 2b) shows the
visualization of the pack reforming process.

1) MOVING TO ANOTHER PACK
If a dhole successfully joins the new herd, it must adapt to
the new environment and learn how to hunt prey from the
new leader and other dholes in the new group. Therefore, our
algorithm combines the features of three dholes, including
a current dhole, a leader dhole, and a random strong dhole,
to form the integration process.

xnewd = xoldd +
δ(x∗d1 − x

old
d )

2
× rand1 +

(1− δ)x∗d2
2

× rand2

(8)

where xoldd and xnewd are the old and new positions of the
chosen dhole, δ is a user-defined parameter, x∗d1 is the position
of the leader dhole, and x∗d2 is the position of the strong dhole
selected randomly from one of the K best dholes currently
(x∗d1 ̸= x∗d2 ). rand1 and rand2 are random vectors with the
same dimension as x, values in (0, 1).

2) STRAYING FROM THE PACK
The dhole encounters many obstacles when finding a new
herd from its current herd. For example, bad weather or being
chased by other predators causes them to stray from the pack.
In addition, dholes can also die from lack of food on the
way, especially old dholes that do not have enough strength
to move.
• For those dholes killed by the other predator or due to
natural selection in searching for a new herd, a random
dhole in the environment will reproduce and replace the
dead one using Eq. 1.

• Meanwhile, dholes that survive being hunted by other
predators or natural selection must possess unique
characteristics and skills to adapt to new environments
and the process of hunting alone. To simulate the
foraging process of these dholes, we use the Levy-flight
technique.

In the Levy-flight trajectory, the step length follows
the heavy-tailed Levy distribution to model the foraging
trajectory of dholes [58]. Numerous researchers have demon-
strated that many creatures, including birds, insects, and
marine animals, follow the mathematical Levy distribution
when feeding. These studies formed the Levy flight for-
aging hypothesis: Levy-flight can improve the efficiency
and accuracy of natural foraging and is more naturally
adaptable. As a global searching operator, the Levy-flight
trajectory searches for space using short-distance walking
and long-distance jumping routes. Those two abilities help
improve the population’s diversity and local exploitation
ability, especially with the approximate formula proposed by
Mantegna [59], which generates random numbers obeying
the Levy distribution. In general, Levy step size can be
expressed as:

Levy(s) ∼ |s|−1−β with 0 < β ≤ 2 (9)

s =
µ

|v|1/β
, µ ∼ N (0, σ 2

µ), v ∼ N (0, σ 2
v ) (10)

σµ =

[ 0(1+ β)× sin(π.β/2)
0((1+ β)/2)× β × 2(β−1)/2

]1/β
, σv = 1

(11)

where s is the step length of the Levy flight calculated by
Mantegna’s algorithm, µ and v are chosen from the normal
distribution, β in (0, 2], and 0 is a gamma function.

xnewd = Levy(xoldd ) (12)

where xoldd and xnewd are the previous position and the current
generated position of the current dhole.

3) EXPLORATION AND EXPLOITATION RATE
In the DhoH algorithm, four coefficients help the exploration
and exploitation process and balance those two processes.α is
calculated by Eq. 13 and is used to calculate δ (Eq. 14) and
θ (Eq. 16). δ is a parameter mentioned in Eq. 8. Meanwhile,
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θ and γ (Eq. 15) are used to discount the convergence speed.

α = arctanh(−(
g+ 1
gmax

+ 1)) (13)

δ =
exp(α)

exp(arctanh( gmax−1tmax
)
) (14)

γ = (1−
g+ 1
gmax

)× cos(
π

3
×
g+ 1
gmax

) (15)

θ =
(1− g+1

gmax
)

2
× exp(

α

2
) (16)

where g is the current generation (iteration/epoch), and gmax
is the maximum number of generations. For termination with
the maximum number of function evaluations, g and gmax
are replaced by current evaluation count fes and maximum
evaluation bound fesmax .

Algorithm 2 Dholes Hunting-Based Optimization (DhoH)
1: Input: gmax is the maximum number of epochs, tmax is

the time-bound, population P with N dholes randomly,
2: Output: The global best solution Xbest
3: while not termination do
4: Shuffle the population
5: Split the population into theG (set of the packs) using

the K-means algorithm
6: n← G size
7: P′← ∅
8: i← 1
9: for i ≤ n do

10: xnew← hunting strategy (Alg 1)
11: Add xnew into P′

12: i← i + 1
13: Update γ , θ , δ
14: while |P′| < N do
15: if rand() < γ then
16: if rand() < θ then
17: xnew ← generate a dhole and add into P′

using Eq. 1
18: else
19: xold ← random dhole from P
20: xnew ← find a new dhole using

Levy-flight technique (Eq. 12)
21: else
22: xold ← randomly select one of the best K

dholes in the population P′

23: xnew←find a new dhole using xold and global
best from Eq. 8

24: Update the global best solution Xbest
25: P← P′

26: Return: Xbest

4) ALGORITHM COMPLEXITY
With the assumption that we have a population with N
dholes, D is the number of dimensions of the problem, the

maximum number of generations is gmax , and the cost for
the fitness function is C . The proposed algorithm uses nmoves
moving steps to find a local best solution in the pack hunting
strategy. The number of function evaluations in this step is
N∗nmove
Gsize

. In the re-forming pack phase, the DhoH algorithm
only uses common transforming operators. The number
of evaluations in this step is 2N/Gsize. Consequently, the
average complexity of the proposed algorithm is estimated
as O(gmax ∗ N ∗ nmove ∗ C).

III. EXPERIMENTAL STUDY
A. PARAMETER TUNING AND THEORETICAL EXPERIMENT
This part comprises both the first experiments: parameter
tuning to decide the best setup for DhoH and prove its
effectiveness in comparison with state-of-the-art methods.
The experiments use benchmark functions from theCEC2017
test suite [60] with 10 dimensions to test the proposed
algorithm. DhoH’s performance is evaluated with different
values for its three key parameters: the number of local
searches nmoves and the two acceleration parameters r1 and r2.
The results of DhoH with the best parameter set are also
compared with all seven algorithms mentioned above.

1) BENCHMARK FUNCTIONS
The performance of DhoH has been experimented on
29 benchmark functions (except f2, which has been depre-
cated from the official suite). They are divided into four
groups of functions:
• 2 unimodal functions (f1 and f3): they have only one
global optimal point in the search space.

• 7 multimodal functions (f4 − f10): they have one global
optimal point going along with several local minimum
points.

• 10 hybrid functions (f11 − f20): the variables are ran-
domly divided into sub-components, and then different
basic unimodal and multimodal functions are used for
different sub-components.

• 10 composition functions (f21 − f30): they merge the
properties of the sub-functions better and maintain
continuity around the global/local optima.

The optimal value of each function fi is f ∗i = 100× fi. For
The details of functions, characteristics can be found in [60].
The 3D plots of several benchmark functions are presented in
Fig. 4.

2) PERFORMANCE METRICS AND TEST CASES
The experimental results of each model are produced by
calculating the mean (Eq. 17) and standard deviation std (Eq.
18) of 10 running times.

mean =
1
N

N∑
j=1

f (x j) (17)

std =

√√√√√ 1
N

N∑
j=1

(f (x j)− µ)2 (18)
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FIGURE 4. 3D illustrations of some benchmark functions.

where N = 19 is the size of the observed population,
f (x j) (j = 1, 2, . . . ,N ) are observations, and µ is the
population mean. After calculating the mean and std values
for each function and each algorithm, the best results will be
highlighted in both. The following rules determine the best
results:
• Mean values are considered first. If, in a case,
an algorithm owns the bestmean value, it will be ranked
as the best optimizer.

• In the case where two or more algorithms have the same
mean value, the one that has the most stable std value
will be chosen as the best one.

3) PARAMETER SETTINGS
In this experiment, the focus is on tuning three important
parameters, nmoves, r1, and r2, to improve the performance
of the simulated annealing algorithm. There are two sub-
experiments.

The first sub-experiment aims to estimate the optimal value
of nmoves, which determines the number of iterations or moves
that the algorithm makes at each temperature level. The
other two parameters, r1 and r2, are fixed to 1.25 and 1.05,
respectively. Three different values of nmoves, namely 3, 5,
and 7, are tested to determine which value produces the best
results.

In the second sub-experiment, the goal is to tune the values
of r1 and r2 for a fixed value of nmoves. In this case, nmoves is
set to 5, and a parameter grid of 16 combinations of r1 and
r2, with values of 1.05, 1.15, 1.25, and 1.5, is evaluated to
find the best combination that maximizes the algorithm’s
performance.

4) ALGORITHMS FOR EXPERIMENTATION
After selecting the optimal settings for DHoH, it was
compared with ten recent metaheuristic algorithms listed
below. Note that some of these algorithms were implemented
using the MEALPY Python library [61].
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• A more modern variation of the well-known whale
optimization technique is the hybrid improved whale
optimization algorithm (HI-WOA [62]). In order to
increase variety and convergence speed, a novel feed-
back system with a nonlinear convergence factor and
inertia weight coefficient is introduced.

• The Artificial Bee Colony (ABC [63]) is an algorithm
proposed by Karaboga and Akay The algorithm
describes the behavior of bees searching for honey with
an effective strategy to optimize a large set of numerical
test functions.

• Biogeography-Based Optimization (BBO [64]) involves
examining how biological organisms are distributed
geographically. The algorithm is inspired by the idea that
we can gain insights from nature, leading to the use of
biogeography in solving optimization problems.

• A new version of the genetic algorithm known as
the enhanced real-coded genetic algorithm (RCGA-
rdn [65]) aims to increase searchability by incorporating
three newly created operators: ranking group selection,
direction-based crossover, and normal mutation. Both
challenging numerical puzzles and real-world engi-
neering issues have demonstrated the viability of this
technique.

• The gaining-sharing knowledge-based algorithm
(GSKA [66]) is based on the idea that information is
acquired and shared during human life, with two key
stages: junior and senior. Its solutions in continuous
optimization problems are competitive.

• The adaptive equilibrium optimizer (A-EO [67]), which
implements adaptive decision-making of dispersal for
search agents who do not perform well, enhances the
standard equilibrium optimizer. It has been said that it
outperforms many cutting-edge algorithms.

• Successful history-based adaptive differential evolution
with linear population size reduction (L-SHADE [68])
is a variant of DE [69], renowned for its exceptional
aptitude for numerical function optimization. As implied
by its name, L-SHADE employs two noteworthy
mechanisms: productive history-based adaptation and
linear population size reduction. L-SHADE was the
winner of CEC2014.

• jSO [70] is an improved variant of L-SHADE with sev-
eral parameter control tweaks and a modified mutation
operator. jSO was also the runner-up of CEC2017.

• An optimization technique called the slime mould
algorithm (SMA [71]) is based on the slime mold’s
foraging and diffusion behavior. It provides a special
model that simulates feedback processes using adap-
tive weights and is helpful for both exploration and
exploitation.

• Improved Grey Wolf Optimizer (I-GWO [72]) is an
enhanced version of Grey Wolf Optimizer (GWO [34]),
a nature-inspired optimization algorithm that mimics the
hunting behavior of grey wolves to solve optimization

problems. It introduces modifications to the original
algorithm, such as a new position update equation and
a modified search mechanism, to improve its efficiency
and performance in finding the global optimum solution.

These algorithms, along with DHoH, were evaluated in
two additional experiments. The first experiment focused
on theoretical evaluations, utilizing 29 benchmark functions
from the CEC2017 competition. The second experiment
concentrated on real-world performance evaluations, aiming
to optimize the decentralized level of a modern blockchain
protocol.

To ensure fairness in the running time of the different
algorithms, we set the maximum number of function
evaluations at nfesmax = 1000000. For all algorithms,
a population size ps = 100 was used for each function within
a 10-dimensional search space. The parameter choices were
based on the setups described in the original papers of each
algorithm. For our proposed DHoH algorithm, the parameter
values that yielded the best results were selected after an
initial parameter tuning experiment.

The code of this study is available at2 [73].

B. PRACTICAL EXPERIMENT
In this experiment, we apply the proposed DhoH algorithm
to solve a challenging optimization problem in blockchain:
decentralized level optimization for the recent consensus
protocol named Meta-heuristic Proof of Criteria (MPoC)
proposed in [56]. First, we provide insights into consensus
protocols, especially MPoC, and the importance of the
decentralized level within this context.

Blockchain, introduced by Satoshi Nakamoto in 2008,
is a decentralized, tamper-resistant ledger recording trans-
actions across a distributed network of computers, ensuring
transparency, security, and immutability [74]. Consensus
protocols, crucial in blockchain ecosystems, enable agree-
ment among network participants on transaction validity
and ledger state. From Proof of Work (PoW [74]) to
Proof of Stake (PoS [75]), these protocols establish trust
in a trustless environment. PoW relies on miners solving
cryptographic puzzles, consuming computational power,
while PoS uses validators staking cryptocurrency holdings as
collateral. Recently, many blockchain platforms have adopted
Delegated Proof-of-Stake (DPoSDPoS [76]). DPoS builds on
PoS by allowing token holders to vote for a limited number
of delegates to validate transactions and produce blocks,
enhancing scalability and efficiency. However, DPoS tends
to centralize block production to a few outstanding nodes,
as network participants often vote for nodes likely to become
block producers.

The recent consensus protocol MPoC [56] has effectively
addressed centralization issues and overcome the disadvan-
tages of DPoS. The authors introduced a novel ‘‘decentralized
level’’ metric that enables multiple operational criteria to

2https://github.com/NeiH4207/DhoH
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evaluate all blockchain nodes during the block producer
selection. MPoC’s scheme is as follows: criteria are assigned
unique weight factors and aggregated to formulate a final
objective value to evaluate blockchain nodes and choose
the best block producer for each transaction. For each
set of weight factors, the decentralized level measures the
democracy achieved during the selection process of block
producers. This metric is assessed based on two key factors:
the number of nodes becoming block producers and the
variance in the occurrence of all nodes becoming block
producers in specific rounds. A higher number of nodes
assuming block producer roles signifies greater network
democracy.

Consequently, to achieve optimal democracy in the
blockchain network, MPoC addresses an optimization prob-
lem aimed at maximizing the decentralized level:

W ∗ = argmax
W

(decentralized_level) (19)

decentralized_level = 1−

√√√√ 1
m− 1

m∑
i=1

(Ñi − N )2 (20)

Ñi =
Ni

max[N1,N2,...,Nm]
(21)

criteria_total_value = W ∗ criteria =
h∑
i=1

wi ∗ criteriai

(22)

where N is the mean value of [Ñ1, Ñ2, . . . , Ñm]. m is
the number of blockchain nodes, and Ni is the number
of times that node i became block producers. The vector
[N1,N2, . . . ,Nm] is calculated by the blockchain simulator.
W is a vector of h-dimensions [w1,w2, . . . ,wh], where h
is the number of criteria, and wi is the weights of ith

criterion. Note that a node with a higher criteria_total_value
than others indicates that it is more worthy of becoming a
block producer than others. Subsequently, an optimization
algorithm is applied to find the optimal set of criteria weights
that maximize the decentralized level of the node selection
process, thereby enhancing the democracy of the blockchain
network.

The block producer selection process of MPoC is based on
various operational factors to evaluate all blockchain nodes,
rather than relying on a single staked value as in DPoS.
This allows blockchain networks using MPoC to design their
block producer selection strategies without compromising the
network’s security. However, this introduces a new challenge:
balancing criteria quality and optimization complexity.While
more diverse and reliable criteria improve the quality of
the block producer selection process, they also increase the
scale of the optimization problem. Selecting an effective opti-
mization algorithm that can handle a significantly increased
number of factors is a top priority.

To address this, the practical experiment was conducted
to evaluate the performance of DHoH and other methods
(HI-WOA, GSKA, L-SHADE, SMA and A-EO) on this

TABLE 2. Noteworthy performance results of DhoH with different
parameter settings on CEC2017 benchmark functions. The bold values
indicate outstanding mean values for each function.

specific problem, demonstrating DHoH’s capability in real-
world applications.

IV. RESULTS AND DISCUSSION
In this section, the impact of some parameters on DhoH’s
effectiveness is discussed. After that, we show the results of
the DhoH algorithm against various well-known algorithms
and discuss some critical points among the compared
algorithm’s performance on both the benchmark function
tests and practical tests.

The algorithm model utilizes strategies for discovering,
exploiting, and maintaining population diversity to optimize
its performance. Analyzing the effect of each component
through experimental results is complicated as all strategies
are combined with each other. However, for the discovery
strategy, the parameter N (number of dholes in the popula-
tion) can bring different effects depending on the complexity
and size of the spatial domain. The larger and more complex
the domain, the more dholes will be needed to save the
model’s discovery time in the early stages. However, the
number of dholes does not affect the convergence rate of
the algorithm on each epoch after the model has found good
local optimal points. Additionally, the discovery process can
be observed during hunting when dhole groups in different
regions interact randomly with each other.

For the discovery process, the model uses a gradient
approximation optimization approach based on information
about groups of dholes that are close to each other. Local
optimal points are quickly found as soon as dholes and prey
fall into these areas. The speed of this search process is
influenced by two parameters, klmul and kldiv, which help
to effectively combine mining discovery and increase or
decrease the moving speed of the dhole when the slope of
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TABLE 3. Mean results for DhoH and other algorithms on CEC2017 benchmark functions. The bold values indicate the best mean values for each function.

TABLE 4. Statistical results of Wilcoxon signed rank test for DhoH versus other algorithms.

the search area changes. Moreover, a probability parameter is
used to enable dhole to accept changes in position and cross
saddle points easily.

A. PARAMETER TUNING
The results of DhoH with different settings for three
parameters nmoves, r1, and r2 are summarized in Table 2.
We have reported results for only three specific functions,
namely f1, f12, and f30, as these are the only functions
that exhibit significant differences in results across DhoH’s
settings. In contrast, the performance of the other functions
remains largely unchanged across all settings.

In the first part of the table, with fixed parameters
r1 = 1.25 and r2 = 1.05, the optimal values for nmoves are
either 5 or 7. An interesting observation is that these points
form an optimal range [5, 7] within the tested range of nmoves.
Therefore, we choose nmoves = 5 to represent this range in
subsequent experiments.

However, in the second part, with nmoves = 5, there
is no significant difference among the results achieved
by the 16 distinct value pairs of (r1, r2). The pair
(r1, r2) = (1.15, 1.05), which yields the most positive results,
is selected. As a consequence, the chosen setting for DhoH in
later experiments is nmoves = 5, r1 = 1.15, and r2 = 1.05.

B. THEORETICAL EXPERIMENT
As described in section III-A, we compare the results of
DhoH with seven existing methods to prove the proposed
algorithm’s effectiveness. The average results on the bench-
mark set are observed and verified with statistical tests. The
convergence trend and stability of the mentioned methods are
also analyzed.

1) GENERAL PERFORMANCE
Table 3 summarizes the mean values obtained from
10 consecutive runs of each considered algorithm on each
benchmark function. In the Unimodal set, many algorithms
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FIGURE 5. Convergence trend of DhoH and other algorithms on unimodal and multimodal functions.

can reach the optimal point, especially HI-WOA, which
reaches this point in a short time. However, the proposed
algorithm can not accomplish this as quickly, partly because
the running time is not fast enough, but the main reason is
that the algorithm prioritizes discovery rather than diving into
a single local optimal point. On other complex functions,
most of the methods fail to reach good results. In particular,
HI-WOA and A-EO do not show good performance enough.

The DhoH algorithm is designed to find the optimal
solution in the most complex space domain. The algorithm
always maintains the diversity of the population by keeping
the maximum distance between clusters in K-means and
generating new random Dhole individuals in unexplored
areas. In addition, the algorithm converges very quickly at
local optimal points and can overcome bad local optimal
points due to the probability parameter for selecting move-
ments. The experimental results show that the algorithm
achieved the best results for benchmark sets with high
dimensions and complex domains (5/5 composition sets).
In detail, L-SHADE, jSO, and the proposed DhoH are
the most remarkable in most complex cases. L-SHADE,
jSO, and DhoH have the best results on 10/30, 21/30, and

12/30 functions, respectively. Since composition is the most
complicated type of benchmark, these results show that the
proposed method is suitable for highly complex functions.
It is worth noting that almost all other algorithms are stuck
at local optima, while the DhoH algorithm can find more
optimal points, even themost optimal point with high stability
across 10 different runs.

We also conducted a Wilcoxon signed-rank test on the
results provided in Table 3 to verify the performance of
DhoH. With a significance level of α = 0.05, this
statistical hypothesis test can check whether the proposed
DhoH is better than other methods. Since we perform seven
comparison tests, Bonferroni Correction should be applied.
Thus, the new significance level is 0.05/10 = 0.005.
Statistical results are collected in Table 4. This table shows
that DhoH outperforms eight methods: HI-WOA, GSKA,
RCGA-rdn, SMA, A-EO, I-GWO, ABC, and BBO. Their
corresponding p-values are smaller than 0.006, and the
comparison ranks favor DhoH. On the contrary, the p-values
for the pairs DhoH - L-SHADE and DhoH - jSO are bigger
(0.226 > 0.006 and 0.367 > 0.006). This means there is
no significant difference between the results of DhoH, jSO,
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FIGURE 6. Convergence trend of DhoH and other algorithms on hybrid and composition functions.

and L-SHADE. Since the proposed algorithm outperforms
multiple existing methods and almost equals L-SHADE
and jSO, we can conclude that DhoH works effectively in
optimizing benchmark functions.

2) CONVERGENCE TREND
In this subsection, we visualize the convergence process of
each algorithm in 500 iterations. Fig. 5 and Fig. 6 visualize
the convergence trend during one run to optimize some
benchmark functions. We notice that the convergence trend
of algorithms has different characteristics depending on the
benchmark type. Since unimodal functions such as f3 have
smooth and simple shapes, all methods tend to converge
to optimal solutions early. Surprisingly, f1 proves to be a
difficult challenge as only L-SHADE comes close to the
optimal value. The same can be said about hybrid ones since
a major part of their components is unimodal functions.
In contrast, most methods have trouble with multimodal
functions (which have a vast number of local optima).
As shown in f4 and f9, L-SHADE and the proposed DhoH
have the best result, which means it is better at escaping
local optima. The same challenge can be in hybrid functions,
which combine the traits of different sub-functions. Thus,

only L-SHADE and DhoH can give decent results for f11
and f16. Similarly, the asymmetrical and complex form of
composition functions f21 and f25 make them difficult to
optimize. The two last sub-figures give the clearest view of
the distinctive convergence trend of compared algorithms.
The proposed DhoH tends to descend much faster than others
and still maintains the optimization process long enough
before reaching the convergence point.

3) STABILITY PERFORMANCE
To evaluate the stability aspect, we focus on the boxplot
representation of values obtained after ten runs for some
functions provided in Fig. 7. The boxes with larger margins
and a longer rectangular shape mean that the variance of
the corresponding method is high, which results in unstable
output. These figures pinpoint that the most stable methods
are DhoH and SMA since their results have low variances
for most functions. Thus, we can confirm that the proposed
method has decent stability.

C. PRACTICAL EXPERIMENT
The decentralization quality of block producers was evalu-
ated and compared among the proposed DhoH algorithm and
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FIGURE 7. Visualization of the stability of some algorithms on benchmark functions.

six well-known algorithms. The mean value of the maximum
decentralized level on ten runs is provided in Table. 5. As can
be seen, the proposed algorithm gives approximate results of

0.254237, followed by L-SHADE and A-EO at 0.254181 and
0.254193. Almost all algorithms show that the decentralized
quality is high and stable. DhoH is the stablest in most

93346 VOLUME 12, 2024



B. M. Nguyen et al.: Dholes Hunting—A Multi-Local Search Algorithm

TABLE 5. The decentralized level results of the DhoH algorithm versus
others.

FIGURE 8. The convergence chart of DhoH and other algorithms in the
practical test.

cases, with a standard error of approximately 5.55E-17.
According to the convergence trend graph shown in Fig. 8,
the convergence of DhoH is faster than other algorithms. The
obtained experimental results are slightly similar to those
in the theoretical experiment, showing that each algorithm’s
stability is promising. However, to get the best results on
complex and multi-dimensional space, it is necessary to have
an algorithm with good coverage and a suitable optimization
method. We assume that DhoH is ideal for these problems,
especially for the decentralized level optimization problem
for the blockchain network.

V. CONCLUSION
A novel swarm-inspired optimization technique called the
DhoH algorithm, inspired by the unique hunting behaviors
and adapting skills in the new environment of dholes in
nature, is proposed for dealing with different optimization
tasks in this work. Both local and global searches of general
metaheuristics have been deployed in DhoH. The pack-
hunting process of dholes represents local search. Besides,
global search is described as the pack reforming process.

To demonstrate the performance of DhoH, we set up
two types of experiments, including both the theoretical
and practical aspects. On the theoretical aspect, four sets of
different benchmark functions are implemented to evaluate
the performance results of DhoH versus the other seven state-
of-the-art algorithms. The results show that DhoH can find
the global optimum and is competitive with other algorithms.

In terms of practicality, we use DhoH and the other four
algorithms to optimize the decentralization of the MPoC
consensus protocol in the blockchain network. The results
demonstrate the applicability and potential of the proposed
optimizer in practice.

The standard version of DhoH is simple but effective
with a few parameters. There are several directions to
further improve the algorithm in future works: (1) integrate
some stochastic operators such as chaotic maps, opposition-
based learning techniques, and deterministic operators.
(2) equipped with some components from different algo-
rithms to form a hybridized version. (3) design DhoH to solve
binary or multi-objective optimization problems.
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