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ABSTRACT Industry 4.0 incorporates the integration of cloud computing, Industrial Internet of Things
(IIoT), and modern communication technologies within the industrial automation systems. Various devices
with different network requirements of high reliability and low latency, rely on connectivity. The 5G and
Beyond (B5G) software-defined architecture facilitates Network Function Virtualization (NFV), which is an
essential solution for fulfilling these stringent demands. NFV allows for the implementation and control of
Virtual Network Functions (VNFs) in dynamic network environments. VNF placement optimization has been
extensively studied in the 5G perspective outside the industry environment with a focus on minimizing delay
and cost, increasing VNF reliability, and increasing resource efficiency. However, the complex dynamics of
the wireless channel in industrial environments have a considerable impact on the essential delay factors
that are important for optimizing the deployment of VNFs. This study focuses on modeling a Wireless
Sensor Network (WSN) based Industry 4.0 factory automation scenario at mmWave band, formulating
an optimization problem to minimize overall delay while considering packet loss rate in the 5G industrial
wireless channel. The optimization problem is formulated as a Markov Decision Process (MDP) and two
Reinforcement Learning (RL) based algorithms AVP-Q and AVP-DQN are proposed for optimizing the VNF
placement. The proposed algorithms are extensively evaluated against the Value Iteration algorithm which
assumes a completely knownMDPmodel and two other algorithms from the literature. The simulated results
show that AVP-DQN outperforms existing algorithms for this scenario by 39% and 22.6% and the achieved
performance is only close to that of the Value Iteration algorithm.

INDEX TERMS 5G, industry 4.0, deep reinforcement learning, VNF placement, URLLC, mmWave.

I. INTRODUCTION
The Internet of Things (IoT) is a network that connects
humans and objects through information-sensing devices and
actuators. The IoT has received significant attention from
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both academia and industry in recent years, primarily driven
by the rapid increase of interconnected devices and the
demand for more efficient approaches to managing large
numbers of these devices [1]. The development objectives
of the Industrial Internet of Things (IIoT) and Industry
4.0 encompass the use of highly distributed intelligent com-
puting and networking advancements in industrial production
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and manufacturing systems. These advancements aim to
enhance automation, quality, and control [2], [3]. Ensuring
reliable Quality of Service (QoS) for IoT applications
deployed in harsh industrial environments is difficult.
Under such circumstances, communication experiences a
significant reduction in signal strength due to obstruc-
tions, hence increasing the complexity of the network
design phase [4]. IIoT networks experience computationally
demanding, diverse, and complex industrial service requests
that are time-sensitive, particularly when it comes to real-time
surveillance, computation, and collaboration among various
intelligent agents [5], [6].

5G and beyond (B5G) communication enables Ultra-
Reliable Low Latency Communication (URLLC) services,
which is significant progress in facilitating new IIoT
applications with wireless connectivity [7], [8]. The 5G
network is built with a software-defined architecture, which
enables flexible programming to create distinct layers for
various applications [9]. The performance characteristics of
5G, including its exceptional reliability of up to 99.999%,
extremely low latency of less than 1 ms, and minimal
power consumption, effectively address the limitations of
current communication technologies in the industry [10].
Edge and fog computing, as well as multi-access edge
computing (MEC) [11], play a crucial role in facilitating these
applications. The primary idea is to enhance conventional
cloud computing by placing computational resources in
closer proximity to clients and end devices. Through these
methods, both end devices and central cloud servers can
transfer computing workloads to resources located at the edge
or the fog. This leads to decreased latency and increased
reliability [12]. Careful management of the network resources
included within a distributed and heterogeneous infrastruc-
ture is necessary to satisfy the stringent latency and reliability
requirements of industrial applications. Interconnected by
public and private 5G networks, the underlying infrastructure
comprises cloud/edge resources [13] that provide execution
environments for Virtual Network Functions (VNFs). The
VNF is based on software applications that provide network
functionalities, such as network segmentation and traffic
management within a factory automation network, running
on top of existing hardware infrastructure, virtualized on
servers. It is important to note that certain 5G core functions,
like the User Plane Function (UPF), have a strong connection
with the application VNFs [14]. Therefore, it is crucial
to consider the interaction between these functions while
placing VNFs at certain nodes. It is necessary to locate both
the services and the UPF at the MEC servers close to the IoT
sensors. This would effectively reduce the latency that sensors
experience.

Wireless sensor networks (WSN) are being used in the
Factory of the Future (FoF) to monitor processes and
their relevant parameters in an industrial environment. The
monitoring of this environment is commonly conducted
by utilizing diverse sensor technologies, such as micro-
phones, CO2 sensors, pressure sensors, humidity sensors,

and thermometers. The data collected from the system is
analyzed using machine learning techniques to identify any
abnormal patterns or deviations. Smart factories have become
self-sustaining, economically efficient, and automated by
incorporating wireless communications into pre-existing pri-
vate networks. WSN fully utilizes wireless technologies for
constructing industrial network infrastructure [15]. Machine
interference, signal attenuation from various materials, and
ever-changing industrial layouts are just a few of the issues
that wireless communication channels face in the industry.

In this context, resource orchestration poses a challenge
as it strives to consistently identify the optimal arrangement
of software components that provide the desired service.
The existing work discussed in section II primarily focuses
on optimizing VNFs with a strong emphasis on cost and
resource efficiency. The objective is to achieve a balance
between the inexpensive deployment of VNFs and the
efficient utilization of network resources. Furthermore, the
analysis has focused on the reliability of VNFs, which are
often used as backup functions to guarantee uninterrupted
operation in the event of breakdowns. However, in the
environment of Industry 4.0, where wireless communication
channels are integrated into production floors and industrial
facilities, the influence of these channels on the optimized
placement of VNFs has not been investigated thoroughly.
The interference from equipment, signal attenuation, and the
inherent unpredictability of the industrial environment all
contribute to the wireless channel conditions, which raises
issues beyond typical optimization concerns. Understanding
and applying the wireless channel model into the optimiza-
tion framework is essential for adjusting VNF deployments
to dynamic situations. Using cutting-edge reinforcement
learning methods, this study aims to connect the areas of
wireless channel models and VNF location optimization.

The contributions of this paper are summarised as follows:
1) Modeling of a wireless sensor network (WSN) based

industry 4.0 factory automation scenario, formulating
an optimization problem to minimize the overall delay
considering the reliability of 5G industrial wireless
channel at mmWave band.

2) Formulation of the optimization problem as Markov
Decision Process (MDP), and the development of
two Reinforcement Learning (RL) based algorithms to
optimize the VNF placement.

3) Comparative evaluation of the proposed algorithms,
through extensive simulations, with the Value Iteration
algorithm which assumes a fully known MDP model
leading to the most optimal solution. Two other
algorithms from existing literature are also used for the
evaluation of the proposed algorithms.

The rest of the paper is organized as follows. Section II
presents the existing work in 5G VNF placement opti-
mization. Section III presents the detailed system model,
the problem formulation, and the details of the proposed
RL-based algorithms. Section IV presents the perfor-
mance evaluation of the proposed algorithms against a
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benchmark on simulated network traffic. Section V draws the
conclusion.

II. RELATED WORK
Network slicing has gained significant attention in both
academics and industry in recent times. With the increasing
prevalence of virtualization technologies, there has been
a growing interest in the allocation of VNFs on physical
resources. The introduction of 5G technology has made it
easier to implement Network Function Virtualization (NFV)
architecture. The authors of [16] provide a comprehensive
survey of the challenges and solutions for VNF placement in
5G networks and discuss a network virtualization approach
that changes traditional network functions that run on non-
standard hardware into software-based virtual machines
running on standard hardware. However, there is a need
to place these virtual resources optimally otherwise it may
impact the QoS. Existing research commonly approaches the
placement of VNFs as an optimization problem, which is
typically classified as NP-hard [17].
The study in [18] focuses on optimizing the positioning

and implementation of VNFs considering both the Edge and
Cloud infrastructures. They formulate the problem as mixed
integer programming (MIP), minimizing the total delay
experienced by the user and the operational cost incurred
by the service providers. Similarly, the study in [19] uses
dynamic multi-objective optimization. In each operational
cycle, the framework receives and analyses network traffic,
determines the most relevant objective functions based on
traffic state, recomputes and then deploys the solutions.
Authors in [20] also consider the deployment of VNFs in the
central cloud and edge nodes aiming to solve minimization
of latency and maximization of service availability. They
propose a meta-heuristic genetic algorithm (GA) to solve this
optimization problem. The experimental results demonstrate
that their GA yields near-optimal solutions in less time than
an exact algorithm by CPLEX [21]. CPLEX is an integer
programming solver by IBM.

Extensive work has been done by formulating the opti-
mization problem as an Integer Programming (IP) problem
and using heuristic algorithms to find the solution. However,
considering the stochastic network environment and dynamic
workload, many researchers have explored the RL framework
utilization in optimizing the virtual resources placement
problem. In [22] two policy-based RL algorithms, Proximal
Policy Optimisation (PPO2) and Advantage Actor-Critic
(A2C), are suggested for dynamic Service Function Chain
(SFC) placement. The objective is to minimize energy usage
while considering the requisite availability levels specified
by the customer and the Service Level Agreement (SLA).
The model is defined as MDP in which SFC requests are
handled sequentially. The RL algorithms outperform the
greedy method in terms of energy usage and acceptance rate.
Similarly, [23] introduces a Deep Deterministic Policy Gradi-
ent (DDPG) RL method which aims to address the dynamic

placement of VNFs between edge and cloud networks. The
suggested method offers superior VNF placement in terms of
meeting SLA requirements, minimizing end-to-end latency,
and optimizing network resources as compared to competing
options. The dynamic nature of the network environment
and regulations may not align with the algorithms that rely
on prior information to provide optimal solutions. A novel
approach is introduced in [24] to address the issue of non-
stationary traffic situations. This approach utilizes hybrid
Deep Reinforcement Learning (DRL)-heuristic algorithms to
effectively handle changes in traffic. This system integrates
Advantage Actor Critic (AAC) with a Graph Convolutional
Network (GCN). The results demonstrate that in a practical
non-stationary network environment, the proposed hybrid
DRL-heuristic approach is more reliable than pure DRL.

VNF placement optimization has been extensively studied
in the 5G perspective outside the industry environment.
However, within the industrial environment, the latency
and reliability requirements are more strict. Also, the
consideration of reliability of wireless channel is important
in the industrial environment. In the context of wireless
channel modeling, authors in [25] discuss in detail the
wireless channel propagation modeling and characterization
for wireless IoT technologies. Similarly, authors in [26]
considered two 5G spectrums of 3.5 GHz and 28 GHz
in an industrial automation environment to investigate the
reliability in terms of network density deployment and
frequency diversity. Authors in [27] investigate the VNF
placement in industrial edge systems by minimizing the
overall cost of deployment. They formulate the problem
as an IP problem and use a heuristic method to solve
it. The study in [28] formulates the optimization problem
considering the cost of computing resources, communication
links cost, and VNF migration cost for vertical industries in
B5G. The authors solve the problem using Mixed Integer
Linear Programming (MILP) first and then propose twometa-
heuristic algorithms based on the GA approach. The results
show that GA-based algorithms reach the optimal solution
with less computational complexity. Table 1 summarizes the
approaches used in the literature for solving the complex
problem of VNF placement. Based on the literature survey,
this study focuses on the placement optimization of VNFs
in an industrial automation environment. The goal is to
minimize the overall delay in fulfilling the service requests
generated by WSNs in various areas of a factory with
consideration of the reliability of the wireless channel in the
industrial environment.

III. ADAPTIVE VNF PLACEMENT SYSTEM MODEL
This section introduces the factory model that is being used
in this study, as well as the proposed algorithms for solving
the optimization problem at hand.

A. 5G FACTORY MODEL
This study focuses on analyzing a physical WSN that is
implemented in an indoor factory environment at mmWave
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TABLE 1. Summary of VNF placement work.

band and uses a private 5G network for the provision of
services. The sub-6GHz band is not considered in this study to
remove the limitations on data rates, congestion, and latency
in simulation. 5G technology offers a significant increase in
bandwidth capacity and the primary constraint of network
resources lies in their computational capacity rather than in
network transmission. Therefore, this work assumes that the

physical network is fully connected. This assumption is made
to simplify the complexities of routing and data transmission
scheduling at the network layer. Meanwhile, the TCP traffic
is assumed for the event transmission, and the congestion
control is addressed by the migration of data to the optimized
location of the serving node. The event is defined as any
activity/traffic generated by the sensor. The main focus of
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FIGURE 1. Industry 4.0 indoor environment.

the study is on solving the VNF placement problem at the
application layer. In this scenario, the overall delay can be
defined as the total of the computational time, transmission
time, queuing time, and migration time. These parameters
will be discussed in detail later in this section.

Fig. 1 shows an indoor factory setup in an area of 10 km2,
inspired by the TESLA GIGA Nevada [41]. The factory
areas such as production, packaging, and warehouse have
WSN deployed in their respective areas which are being
served by private 5G gNBs. The network is represented as an
undirected graphG = (J ⊆ K,L)whereJ = {1, 2, . . . , J},
K = {1, 2, . . . ,K } and L = {1, 2, . . . ,L} denote a set of
edge nodes, gNBs, and physical links respectively. The set
of edge nodes is a subset of the set of gNBs. The estab-
lishment of connections, including wireless links between
sensors and gNBs, interlinks between gNBs, and physical
connections between 5G central cloud and gNBs, constitute
the communication infrastructure. The 5G core network is
assumed to be located at the central cloud and all the network
functions communicate through a common interface and can
be located at any edge node [42]. Each gNB can host an
edge cloud, which is one of the essential requirements by
the Next Generation Mobile Network Alliance to improve
the 5G systems’ flexibility [43]. Each gNB accommodates
a maximum of one edge cloud. A network service request
also referred to as a service function chain (SFC), consists
of VNFs arranged in a specific order. Service request is
modelled as F =

(
NV ,LV

)
where NV is a set of VNFs and

LV is a set of links required for servicing the request. The
wireless sensors within the factory area are grouped based
on their gNBs, and this grouping is represented as U = K .
Each traffic flow produced by a sensor of the group U at its
local gNB is identified by its gNB identifier. The serving node
refers to the central cloud or edge node that provides hosting
for the VNF. An edge cloud can accommodate multiple
VNFs, and a physical link can be associated with multiple
virtual links. The latency of a connection is determined by
the data transfer rate and the distance between the two nodes.
A node can be either a gNB or the central cloud.

TABLE 2. Glossary of symbols.

TABLE 3. Simulation parameters.

The glossary of symbols used in the study is given in
Table 2. The 5G central cloud is denoted as c0. The i-th edge
node is denoted as ei and the serving node is represented by
ex . lix represents the latency between the i-th edge node and
the serving node. ni is the number of events occurring at the
i-th edge node. The i-th gNB is represented as bi.
Three edge nodes hosted by three different gNBs covering

different areas of factory were modeled in a simplified
scenario for this study with different events rates described
as scenarios later in this section. Every edge node is
assumed to have multiple CPU cores, with a total frequency
of 10 GHz [44]. It is also assumed that these resources are
sufficient to serve the events arriving at the edge node. The
computational resources of the central cloud are assumed to
be unlimited. The simulations were conducted on a computer
equipped with an Intel Core i7 2.4 GHz CPU and 16.0 GB of
RAM.MATLAB2023awas used for the study. The important
parameter values used in the simulations are summarized in
Table 3.
The latency between edge nodes 1-2 (le1−e2 ) and 1-3

(le1−e3 ) is 12µs and 10.18µs respectively. The latency
between edge nodes 2-3 (le2−e3 ) is 12.94µs. The latency
between central cloud and edge nodes 1,2 and 3 lc0−e1/e2/e3 is
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50µs each. These wired links are based on optical fiber in this
study and the associated delays of optical fiber links based
on distance are discussed in [45]. The average queuing delay
(dq) for each event at the serving node is 0.1 ms [46]. As per
3GPP [47], the required data rate (W ) for the links between
nodes is 100 Mbps while the average packets generated per
event (X ) are 6000. The size of each packet (b) is 32 bits.

A simulated input dataset comprising the daily events
arrival at each gNB over a span of 1000 days is created.
Every day is divided into 1440 timesteps, with each timestep
representing 1 minute in a real-world situation. The events
generation from sensors follow a discrete Poisson distribu-
tion [48], [49] and multiple scenarios based on different event
rates are created. The actual number of events fluctuates daily
around the mean value mentioned in the scenarios.

• Scenario 1 (s1): Each gNB receives 50 events per day to
be processed by the serving node.

• Scenario 2 (s2): gNB 1 receives 50 events per day to be
processed while gNB 2 and gNB 3 receive 100 events
per day each.

• Scenario 3 (s3): gNB 1 receives 50 events per day,gNB
2 receives 100 events per day and gNB 3 receive
200 events per day.

• Scenario 4 (s4): gNB 1 receives 50 events per day while
gNB 2 and gNB 3 receive 250 events per day each.

• Scenario 5 (s5): gNB 1 receives 50 events per day to be
processed while gNB 2 and gNB 3 receive 500 events
per day each.

B. PROBLEM FORMULATION FOR VNF PLACEMENT
Fig. 1 depicts a typical example of network slicing where a
logical network is created as per 5G infrastructure [50]. This
logical network processes the information received through
sensors based on their generated events. This service requires
a robust network that can provide sufficient quality of service
(QoS) in all circumstances. Each sensor in a particular area
can only be connected to one gNB through which its requests
are served. In normal conditions, the delay requirements
are satisfied by deploying VNFs in central cloud c0. Due
to some unscheduled occurrences i.e. detection of some
malfunctioning in one of the assembly lines in a particular
area of the factory, during a certain time of the day, the
number of events generated by the sensors in that area may
increase significantly. This increases the load on the network
between central cloud c0 and the affected gNB bi, which
results in delays greater than 5-10 ms and exceeds the Key
Performance Indicator (KPI) recommendation by 3GPP [28],
[47] for deployment of WSN in Industry 4.0.
To decrease the latency in the affected area, MEC VNFs

might be deployed on the closest edge node, therefore
creating an additional slice to process and respond to the
events by the sensors in that area. To maintain the required
QoS, it might be necessary to shift the MEC VNFs to
other edge node based on the random occurrences of the
events generated by the sensors. The challenges and issues

in VNF placement and migration are discussed in detail
in [51]. To prevent delays during deployment and migration
operations, it is imperative to develop a VNF deployment
policy that considers all pertinent elements, including the
stochastic traffic load of the sensors. Because of the limited
computational resources of an edge node, financial costs, and
migration delays associated with the creation of VNFs, this
study assumes that the network slice created for deployment
of VNFs will be hosted at only one of the gNBs in a factory.
The factors considered for selecting a deployment policy for
VNF at either central cloud c0 or one of the edge nodes ei are
discussed below.

1) DELAY MODEL
DeployingMECVNF on the serving edge node ex costs extra
time while processing the events generated by the sensors due
to the limited resource availability at edge nodes. Therefore,
in any MEC system, the non-negligible task execution time
must be considered. On the other hand, the processing and
queuing time on the central cloud c0 is considered to be
negligible owing to its more powerful resources. Let the
number of events at time instant t for i-th edge node be
represented as ni(t), the computational resources that can be
allocated to process one event as fi(t), the average number of
packets transmitted per event as X and the size of the packet
in bits as b then the processing time for one event at edge node
ex can be calculated as [44]:

dp,i(t) =
X × b
fi(t)

(1)

In addition, when the event generated at time t reaches edge
node ex , there can be incomplete events that are waiting to be
processed because of the limited computing capabilities of
the edge node. Hence, it is important to consider the waiting
time in the queue. Let this queuing delay be represented as
dq,i(t) then the total computational delay dcomp(t) for the
generated number of events ni(t) at time instant t is the sum
of dq,i(t) and dp,i(t) and can be represented as [44]:

dcomp(t) =

J∑
i=1

[
ni(t) ×

(
dp,i(t) + dq,i(t)

)]
(2)

Several links are involved in communication between
sensors and VNFs. At first, the data generated by sensors
is transmitted through a wireless channel to its local gNB.
The characteristics of the wireless channel considered in this
study are discussed in section III-B2. The radio link delay dr
[52] is given in Table 3. Secondly, based on the gNB that is
hosting the VNFs, inter-gNB links and links between gNB
and the central cloud may be involved. Let lix be the optical
link delay between the i-th edge node and the serving node,
and dr be the wireless link delay then the communication
delay dcomm(t) is represented by [44]:

dcomm(t) =

J∑
i=1

[ni(t) × (lix + dr )] (3)
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Deploying an MEC VNF in an edge node as proposed
in [11] and moving the unprocessed sensor data from the
previous edge node leads to extra delays. The migration
methodology involves duplicating the MEC VNF and its
sensor data to a new edge node, while the original node
remains operational. Once a certain threshold is met, the
original MEC VNF is halted, and the remaining sensor data
is transferred. The events are then served with the new MEC
VNF on the serving node. The study in [53] addresses the
optimized methods of migrating the microservices in 5G
architecture. Assuming the same computational power at all
edge nodes, the only delay experienced by the sensors is the
time during which data is being transferred from the previous
serving node to the new serving node. Therefore, this study
focuses mainly on this migration downtime for the migration
delay calculation. Themigration downtime dmigr is calculated
as [44]:

dmigr (t) = dinit +
1
W

J∑
i=1

mi(t) (4)

where dinit is the initialization time of the VNFs at the new
serving cloud, mi(t) is the amount of data that needs to be
migrated from i-th edge node to the serving node at time
instant t and W is the data rate with which the data can be
migrated.

2) PACKET LOSS MODEL
Packet losses in wireless channels have a direct impact
on the reliability of a wireless channel since they might
result in partial or incorrect delivery of information. The
more frequent these packet losses occur, the less reliable
the wireless channel becomes. In recent years, mmWave
communications have become a potential contender to meet
the growing need for throughput and latency in many use
cases. mmWave allows for high data transfer rates critical for
factory automation use cases such as machine vision for real-
time inspection and quality control, high-definition video
streaming for remote monitoring and maintenance, or down-
loading large software updates for industrial machines.
mmWave also offers significantly lower latency when it
comes to applications like real-time control of robotic arms
and other automated machinery, or time-sensitive commu-
nication between machines and central control systems etc.
However, the packet loss model assumption is most relevant
due to its sensitivity to blockage and attenuation. This
research employs mmWave at 60GHz band to meet strict
industrial communication requirements. The packet loss is
not considered at the wired connections with the assumption
of reliable fiber links between the nodes. The study follows
the stochastic channel model presented in [54] that is a
Floating Intercept (FI) path loss model and is given as:

PL(d) = δ + 10β log10 d + Xσ (5)

The unit of PL is dB, δ is the floating-point intercept in dB,
β is the path loss dependence on distance, Xσ represents the

large-scale PL fluctuation with a random Gaussian variable
and d is the distance between transmitter and receiver in
meters.

The range of Bit Error Rate (BER) is obtained against
different Signal to Noise Ratio (SNR) values using the above
path loss model and then the packet loss rate is determined
from BER values [55]. Based on the packet loss rate, the
packet losses are simulated for the timestep when there is
any event according to the traffic generated for each scenario
defined previously. The distance of sensors is considered to be
within 10 m range. For the transmissions against each event
generation, the BER in the range of 10-4 to 10-1 is adopted
from [54] for the determination of packet loss rate.

C. MODELING ALGORITHMS
1) FORMULATION OF PROBLEM AS MDP
In the adaptive VNF placement scheme, the goal is to obtain
an RL-based policy that places VNFs at the location that
minimizes overall delay and considers the packet losses in
the wireless channel in stochastic network traffic conditions
over a time window T. Consideration of both latency and
the reliability of wireless channel is suitable for URLLC
application in factory automation. As minimizing overall
delay (dTotal) and considering the wireless channel reliability
using the Packet Loss Rate (PLR) are considered simultane-
ously, this problem is formulated as a multi-objective integer
programming optimization problem presented in (6).

minimize

(
T∑
t=1

dTotal(t) , PLR(t)

)
(6)

where

dTotal(t) = dcomp(t) + dcomm(t) + dmigr (t) (7)

PLR(t) =
PL(t)
PT (t)

(8)

where PL are the lost packets and PT are the total transmitted
packets. The weighted sum method can be used to transform
the multi-objective into a single-objective optimization
problem where ω1 and ω2 are the weighting factors such that
ω1 + ω2 = 1. Normalization is also applied on dTotal to
keep both objective functions on the same scale. The final
optimization problem is given in (9)

minimize
{ T∑
t=1

(
ω1

(
dTotal(t) − dmin
dmax − dmin

)
+ ω2PLR(t)

)}
(9)

where dmax and dmin are the maximum and minimum overall
delays.

This optimization problem is formulated as MDP frame-
work in which state, action, and reward function are defined
as follows.

• State s: Let the entire state space be S and the state s(t) ∈

S at time instant t be defined to contain information
about the serving node and number of events at all nodes.
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Let there be K gNBs in the network then:

s(t) = {ex , n1, n2, . . . , nK }

where ex = 0 if VNFs are deployed at the central cloud
and ex = i if VNFs are deployed at i-th edge node and
1 ≤ i ≤ K . ni refers to the number of events generated
by the sensors at the i-th gNB.

• Action a: The action a(t) at time instant t is defined to
be the selection of a node for the deployment of VNFs.
Let A be the entire action space then a(t) ∈ A is given as

a(t) = {i}, i ∈ {0, 1, 2, . . . ,N }

where a(t) = 0 means VNFs are deployed at the central
cloud while a(t) = 1, . . . ,N means VNFs are deployed
at i-th node.

• Reward R: MDP models involve the optimization of
an objective function, usually a discounted cumulative
reward. The reward functionR(s, a) quantifies the imme-
diate benefits, expenses, or impacts linked to certain
decisions, contingent upon the state s and/or action
a. Reinforcement learning algorithms typically aim to
maximize cumulative rewards. The goal of adaptive
VNF placement is to minimize the overall delay along
with minimization of packet loss rate as formulated
in (9). Hence the reward function is developed in (10) by
taking the negative of overall delay and packet loss rate
to formulate a maximization objective. By defining the
reward function as the negative value of the metric that
needs to be minimized, the algorithm aims to maximize
this negative value, hence achieving the objective of
minimizing the original metric. This approach simplifies
the optimization process and maintains consistency with
the standard practice in reinforcement learning.

R = −

T∑
t=1

(
ω1

(
dTotal(t) − dmin
dmax − dmin

)
+ ω2PLR(t)

)
(10)

2) VALUE ITERATION
Value Iteration is a Dynamic Programming (DP) approach
used to solve MDPs and find the best policies. It works by
iteratively updating the values of states until they converge
to the optimal values. The algorithm uses the Bellman
Equation [56] to show how the value of a state affects the
expected total reward, considering the transition probabilities
associated with each state. Complete knowledge of the
MDPmodel, including transition probabilities, is an essential
requirement for Value Iteration.

To implement the Value Iteration algorithm for this
study, the transition probability function is adopted from [57]
and the events arrival rate is assumed to be known. Because
of the complexity of the model, transition probabilities are
based on the events arrival rate only, and the packet loss rate
is not incorporated. As the MDP model is fully known, the
algorithm converges to the best optimal policy.

The computational complexity of Value Iteration isO(|S|
2
·

|A|) [58], where |S| is the total number of states of MDP and
|A| is the total number of actions. Though computationally
intensive, the approach provides an optimal policy and
maximizes the cumulative reward. However, in real-world
applications, it is often complicated to obtain a complete and
accurate MDP model.

3) Q-AGENT BASED ADAPTIVE VNF PLACEMENT
Q-learning is a type of reinforcement learning that does not
require a model and is used to determine the optimal action
to take based on the present state of the agent. The complete
model of theMDP e.g. transition probabilities, is not required
to be known.

In this study, one of the proposedRL based algorithms is Q-
Agent based Adaptive VNF placement (AVP-Q) presented as
Algorithm 1 in this section. Lines 5-13 form a loop in which
the agent does an action in the current state s to transition to
the next state s′. This transition results in an immediate reward
R, which is then used to update the Q-table. In the Q-table,
Q(s, a) reflects the expected long-term reward of choosing
action a in state s. Line 7 determines the actions for state s
based on the ϵ-greedy policy.

The learning rate (α) controls the extent of the modifica-
tions made by the agent to its Q-values in response to new
information. While a lower learning rate offers more stability
but slower learning, a higher learning rate enables faster
adaptation to new experiences but may also cause instability.
The discount factor (γ ) determines the agent’s evaluation of
future benefits. In situations such as VNF placement where
the implications could be long-term, the agent is more likely
to prioritize long-term reward when the γ value is higher.
This leads to more strategic decision-making. A lower γ

value, on the other hand, places more emphasis on immediate
reward, which results in more short-term decisions. The
exploration rate ϵ balances between exploiting the action
with the highest Q value and exploring additional actions
randomly.

TheAVP-Q can dynamically change the placement scheme
in real time based on the current event status and packet
loss conditions. The upper bound on the computational
complexity of Q-Learning is O(n2) [59].

4) DQN-AGENT BASED ADAPTIVE VNF PLACEMENT
The Deep Q-Network (DQN) is a reinforcement learning
technique that enhances the conventional Q-learning method
by integrating deep neural networks to estimate the Q-values.
This enables the algorithm to handle complex and high-
dimensional state spaces, making it particularly effective in
scenarios with continuous observation spaces. The ability
to handle continuous observation spaces makes DQN Agent
more flexible and versatile, suitable for a variety of real-world
applications.

The second proposed RL based algorithm in this study
is the DQN-based Adaptive VNF Placement (AVP-DQN),
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Algorithm 1 Q-Agent Based Adaptive VNF Placement
(AVP-Q)
1: Initialize Q-table as per |S| and |A|

2: Set hyperparameters: learning rate (α), discount factor
(γ ), exploration rate (ϵ)

3: for all episodes do
4: Start at initial state
5: for each step do
6: Read current events conditions and packet losses at

each gNB
7: Explore or exploit based on ϵ

8: Execute action, observe next state
9: Compute reward R using (10)

10: Update Q-value using Bellman Equation:

Q(s, a) =Q(s, a) + α · [R+ γ max
a′

Q(s′, a′)

− Q(s, a)]

11: Transition to the next state
12: end for
13: Adjust ϵ
14: end for
15: The resulting Q-table signifies learned optimal VNF

placements

presented as Algorithm 2, which allows for adaptability and
flexibility in handling larger network state spaces. In AVP-
DQN, the agent interacts with the environment according
to an ϵ-greedy strategy. During each interaction, the agent
observes network events and packet losses. The agent chooses
actions and stores experiences in an experience replay
memory (D). Periodically, a mini-batch is sampled from
this memory, and the Q-network is trained using a loss
function which is computed as the mean squared difference
between predicted Q-values and target Q-values. The trained
Q-network, after the convergence criteria are met, contains
the optimal VNF placement strategy. The DQN agent uses
Double Q-Learning [60] to overcome the overestimation of
action values.

AVP-DQN uses a neural network with three fully con-
nected hidden layers. The input layer, which receives state
observations, consists of J + 1 units where J is the number
of edge nodes, followed by hidden layers of 64,128 and
64 units respectively. The output layer of N units represents
the Q-values associated with each potential action. Rectified
Linear Unit (ReLU) activation function is used for non-
linearity. The neural network architecture was carefully
selected after a thorough assessment of several topologies to
maximize reward outcomes. The thorough testing procedure
enabled the choice of an architecture that regularly provided
excellent performance in improving overall rewards. The
neural network is trained with a mean squared error loss
function and an Adam optimizer.

The selection of batch size and update frequency in
DQN significantly influences the learning dynamics and

Algorithm 2 DQN-Agent Based Adaptive VNF Placement
(AVP-DQN)
1: Initialize replay memory (D), Q-network weights (θ),

target network weights (θ ′)
2: Set hyperparameters: learning rate (α), discount factor

(γ ), exploration rate (ϵ), batch size, and update frequency
3: Initialize state (S) and action (A) spaces
4: Initialize Q-network Q(s, a, θ) with weights θ and target

Q-network Q(s, a, θ ′) with weights θ ′

5: for all episodes do
6: Initialize state s.
7: for each step do
8: Read current events conditions and packet losses at

each gNB
9: Select action a using ϵ-greedy strategy from

Q(s, a, θ)
10: Deploy VNF at the selected placement position,

observe new state s′

11: Compute reward R using (10)
12: Save experience tuple (s, a,R, s′) in replay memory

D
13: Compute target Q-values, update θ using loss from

mini-batch
14: Periodically update target Q-network weights θ ′

15: end for
16: Adjust ϵ
17: end for
18: The trained Q-network represents optimal VNF place-

ments

efficiency of the agent. The batch size specifies the number
of experiences taken from the replay buffer for updating the
neural network’s weights in each training iteration. Increasing
the batch size can yield more consistent and precise updates,
but it may require greater computational resources. On the
other hand, reducing the batch size may increase the amount
of variation, but it can result in quicker learning with lower
computational requirements. Similarly, the update frequency
determines the frequency at which the target neural network is
updatedwith experiences from the replaymemory. Increasing
the frequency of updates enables the agent to promptly
adjust to new information, but it may also result in increased
correlation among experiences. Reducing the frequency of
updates can help reduce correlation, but it may lead to slower
learning.

The computational complexity of DQN-based algorithms
is determined by several parameters, such as the neural
network’s size, the state space’s dimensionality, the envi-
ronment’s complexity, and the number of training episodes.
The complexity increases with the increase in the number
of hidden layers. If the number of layers of DQN neural
network is represented by L, and the number of neurons in
layer l ∈ L is represented by ul , the time complexity of DQN
based algorithm is O(MT

∑L−1
l=0 ulul+1) [61] where M is the
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number of iterations in each episode and T is the number of
episodes.

IV. PERFORMANCE EVALUATION
For the evaluation of AVP-Q and AVP-DQN, median daily
reward is chosen as the evaluation metric. The training
process consists of 1000 episodes with each day representing
one episode. The median reward of last 140 days (episodes)
was used to evaluate the performance of the algorithms. The
median reward is chosen rather than the average because the
median value is more resistant to outliers that could occur
in the data than the average value. The event rate scenarios
were simulated using the Monte Carlo approach, with events
created using the Poisson distribution over various random
seeds. Based on the results of these Monte Carlo trials, the
reinforcement learning agents were trained to achieve the
reported outcomes.

AVP-Q and AVP-DQN were compared with the Value
Iteration algorithm presented in section III-C2 and two other
algorithms namely One Step Look Ahead and Random
Location described in [44]. One step look ahead algorithm
evaluates the anticipated results of each placement selection
and chooses the placement that maximizes the network’s
performance in the next time step. This algorithm is like
RL algorithms but with short-term reward only. The random
location algorithm chooses a VNF placement randomly at a
timestep in which there is an event. It retains that location
until the events on that gNB are served completely.

A. RL HYPERPARAMETERS TUNING
The optimal performance of RL agents is dependent on
the selection of suitable hyperparameters. Properly selected
hyperparameters have a substantial influence on the conver-
gence rate, stability, and overall performance of these agents.
The selected hyperparameters for AVP-Q and AVP-DQN are
summarized in Table 4. AVP-Q was implemented utilizing
a Q-table structure. The learning rate of 0.01 resulted in
better performance when compared to other rates, as depicted
in Fig. 2. Other hyperparameters were selected after a
methodical assessment, enhancing the overall optimization of
the model’s performance. The discount factor was set to 0.99,
giving priority to future rewards. The starting exploration rate
was set at 0.9 and decreased progressively (Epsilon Decay) to
0.1 over 1050 episodes. This approach allowed for adequate
exploration in the early stages while also encouraging the
convergence towards optimal policies.

In AVP-DQN, the DQN agent is trained on a learning rate
of 0.0001 selected among the multiple candidates as shown in
Fig. 3. Although 0.00001 produces a slightly greater reward,
the chosen learning rate exhibits a more efficient convergence
by achieving its highest reward value in fewer episodes.
To improve stability, a replay memory buffer of size 10,000
was implemented. This allows the agent to learn from a wide
range of past experiences. To address the issue of frequent
changes in target values causing instability, a target network

TABLE 4. Hyperparameters for AVP-Q and AVP-DQN.

FIGURE 2. Learning rate comparison for AVP-Q.

FIGURE 3. Learning rate comparison for AVP-DQN.

was also implemented and updated using the smoothing
factor (τ ) of 0.001.

B. OPTIMIZATION BASED ON OVERALL DELAY ONLY
In this section AVP-Q and AVP-DQN are compared with
Value Iteration, One Step Look Ahead, and RandomLocation
algorithms while considering overall delay only.

Fig. 4 shows that the value iteration performs best in all
scenarios. This is because the MDP model is fully known in
this case and the reward converges to its best possible value.
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FIGURE 4. Delay minimization comparison.

AVP-Q and AVP-DQN provide comparable performance to
the value iteration algorithm for all considered scenarios.
On average over all scenarios, Value Iteration shows an
advantage of 9.64% and 4.05% only over AVP-Q and AVP-
DQN respectively. These results show that both algorithms
are equally effective in addressing the optimization problem.

Similarly, on average over all scenarios, AVP-Q out-
performs Random Location and One Step Look Ahead
algorithms by 43.2% and 23.83% respectively. AVP-DQN
shows even more superiority with 47.41% and 29.8% average
improvement over Random Location and One Step Look
Ahead algorithms respectively.

It can also be observed from Fig. 4 that as the number of
events per day increased, AVP-Q and AVP-DQN adapted to
this change and kept their performance close to the Value
Iteration algorithm while Random Location and One Step
Look Ahead resulted in lower reward values. Fig. 5 shows
the normalized absolute reward differences between Value
Iteration and every other algorithm across all scenarios. It can
be observed that as the rate of events increases Random
Location and One Step Look Ahead move away from the
Value Iteration while AVP-Q and AVP-DQN maintain their
performance.

C. OPTIMIZATION BASED ON OVERALL DELAY AND 5G
WIRELESS CHANNEL RELIABILITY
Fig. 6 shows the results when channel reliability factor is
added to the reward function. The ω1 and ω2 which are the
weight factors in (10) are set to ω1 = ω2 = 0.5. Because
of the packet losses, the retransmissions occur and the
delay increases, hence reducing the reward value. Given the
complexity of the MDP model, especially when accounting
for channel reliability, the Value Iteration algorithm is
excluded from consideration due to its potential inability to
produce the most optimal solution with a partial MDPmodel.

AVP-Q surpasses Random Location and One Step Look
Ahead algorithms on average over all scenarios by 34.67%
and 16.85% respectively. Similarly, AVP-DQN performs

FIGURE 5. Absolute reward difference with value iteration algorithm.

FIGURE 6. Integrated performance: minimizing delay and packet loss rate.

better than Random Location and One Step Look Ahead
algorithms by 39% and 22.6% respectively. The results show
that even in the complex scenario while considering the
wireless channel reliability in terms of packet losses, AVP-Q
and AVP-DQN adapt to the environment to maximize the
reward and get the optimal solution among the contending
algorithms.

Fig. 7 shows the boxplot of normalized rewards obtained
from 1050 episodes for each algorithms considering scenario
3. The normalized Inter Quartile Range (IQR) values are
0.21, 0.23, 0.18 and 0.12 for Random Location, One Step
Look Ahead, AVP-Q and AVP-DQN respectively. The lower
interquartile range shows that throughout 1050 episodes, the
episode reward values are more stable and consistent in the
case of AVP-DQN.

In summary, for the considered VNF placement scenario,
both AVP-Q and AVP-DQN perform better than Random
Location and One Step Look Ahead algorithms. Although
AVP-Q almost reaches the same optimal solution as AVP-
DQN but from Fig. 2 and 3 for the selected learning rates
it can be concluded that AVP-Q converges to its optimal
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FIGURE 7. Algorithm performance distribution across 1050 episodes.

solution in fewer episodes than AVP-DQN. Also, AVP-DQN
has the advantage of continuous state space representation in
its model so in case of a complex network model where state
space is large, AVP-DQN is preferred over AVP-Q.

V. CONCLUSION
This study focused on the hard problem of optimizing the
placement of VNFs in 5G networks, specifically focusing on
the issues present in the Industry 4.0 environment. The study
formulated an optimization problem that focused on reducing
overall delay and considered the reliability of 5G industrial
wireless channel at mmWave band using packet loss rate
as the reliability parameter. Two RL-based algorithms were
presented that can adapt to changing wireless conditions.
These algorithms were rigorously evaluated using extensive
simulations. The results show that the Value Iteration
algorithm has an advantage of 9.64% and 4.05% only over
AVP-Q and AVP-DQN respectively while considering the
overall delay only. In minimizing the overall delay while
considering the effects of the wireless channel as well,
AVP-DQN performed better than AVP-Q and surpassed the
Random Location and One Step look Ahead algorithms by
39% and 22.6% respectively. AVP-DQN was also shown to
be more consistent and converged to the optimal solution in
fewer episodes than AVP-Q. The thorough evaluation of these
algorithms through extensive simulations, benchmarking
against the optimal Value Iteration algorithm, and comparison
with algorithms from existing literature emphasized the
importance of taking into account wireless channel dynamics
to achieve robust and efficient VNF placements in Industry
4.0 settings.

The future work involves exploring the performance of
AVP-DQN in complex industrial environments such as large
network sizes, increased femtocells in a factory area, and
evolving resource availability. The current study is focused
on a controlled simulated environment. Future research
will examine the use of AVP-DQN in an actual industrial
environment to evaluate its scalability, adaptability, and
real-time performance. In addition, investigating advanced

RL agents such as Dueling DQN, Proximal Policy Optimiza-
tion (PPO) and Deep Deterministic Policy Gradient (DDPG)
shows potential for better performance in more complex
scenarios. Moreover, it is worth exploring the integration of
VNF reliability into the placement strategy to guarantee the
quality of services.
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