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ABSTRACT Among the inherently interpretable learning algorithms are associative classifiers, which are
induced in steps. Regarding the ranking step, it is carried out using objective measures in order to sort the
rules. Generally, the CSC method is used based on the two standard measures of association rules (support
and confidence). However, several measures are available in the literature, leading to a secondary problem,
as there is no measure that is suitable for all explorations. In this context, new proposals have emerged, one
of which aims to aggregate a set of measures in order to use them simultaneously. The idea is to reduce the
need to choose a single measure, also considering different aspects (semantics) for ranking the rules. Works
in this context have been proposed. However, they present problems in relation to the performance and/or
interpretability of the generated models. In them it is possible to observe an inverse relationship between
performance and interpretability, i.e., when model performance is high, interpretability is low (and vice versa).
Therefore, this work presents a rule ranking method via aggregation of objective measures, named AC .RankA,
to be incorporated into associative classifiers induction flows, aiming to obtain models that present a better
balance between performance and interpretability. The method was evaluated by comparing several induction
flows when ranking takes place via CSC (baseline) and via AC .RankA. The results demonstrate that AC .RankA
can maintain the performance of the models, but with better interpretability.

INDEX TERMS Associative classifiers, aggregation, interpretability, objective measures, performance, rule
ranking.

I. INTRODUCTION
One of the most common machine learning tasks is
classification, which aims to assign a category, named class,
to unlabeled instances. Among the techniques that stand out in
this task is associative classifier (AC). Associative classifiers
are part of a larger family of algorithms, named rule-based,
which use rules to represent the extracted knowledge. ACs
make use of association rules (ARs) to generate a classifier.
This is done through a special type of AR known as a
classification association rule (CAR). A CAR is a rule of
type A ⇒ C in which the antecedent (A) leads to a certain
consequent (C). A contains a set of <attribute = value> pairs
and C contains a class of a given problem. Thus, an AC is
a model composed of rules of this type in order to classify
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new instances. The use of these rules is advantageous, as they
are easily interpretable by experts who can analyze them and
make decisions with computational aid. Due to its inherent
interpretability, several areas have used it, such as medical [1],
[2], [3], security [4], [5] and software [6], [7].
According to [8] recent studies demonstrate that AC

has the following advantages over traditional interpretable
classification approaches: (i) accuracy, the algorithms
in this family are capable of building efficient and
accurate models since the training phase is based on ARs,
allowing the discovery of all possible relationships between
<attribute = value> pairs; (ii) usability, unlike the decision
tree family, AC algorithms do not require redesigning the
entire model when the rule set is updated and adjusted;
(iii) readability, the final model of an AC is composed of a
simple set of rules that allows the end user to easily understand
and interpret the results. However, some advantages such as
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accuracy are still subject to debate. Much of this is due to
the balance between interpretability and accuracy, reported
in several works [9], [10], although this has been questioned,
as discussed in [11]. Even with several XAI (Explainable
Artificial Intelligence) methods available today, such as LIME
and SHAP, there are works such as [11] that propose the use
of more interpretable classifiers instead of trying to create
explanation models for black box algorithms via such methods.

As in other families of algorithms, efforts have been made
to further popularize AC through the implementation of
packages, as seen in [8], [12], and [13], which contribute
by making algorithms available for general use. The algorithm
that stands out the most is CBA [14], available in all
implementations surveyed, which is generally used as
a baseline for comparison with new proposals/solutions.
According to [15], CBA is probably the most used algorithm
in the family.
Most AC algorithms perform model induction in three

or four steps, namely: [A] Extraction, [B] Ranking and/or
Pruning and [C] Prediction. Regarding ranking (step [B]), it is,
in general, carried out through the use of objective measures
(OMs), used, among other purposes, to rank the rules by their
degree of importance.1 An objective measure (OM) evaluates
the statistical strength, or characteristics, of a given pattern
based solely on data [16]. The best known OMs are support
(P(AC)) and confidence (P(C|A)), used in the extraction of
ARs. In CBA the CSC (Confidence, Support, Cardinality)
method is used to order the rules as follows: a rule ri precedes
a rule rj, in an ordered list, if the confidence of ri is greater
than rj; in case of a tie, if the support of ri is greater than rj;
in case of a tie, ri was generated before rj (cardinality).
Although support and confidence are the most traditional

OMs,more than 60measures are found in the literature, as seen
in [17] and [18]. This large number of existing OMs has
generated a secondary problem, since there is no OM that
is suitable for all explorations [19]. Therefore, new proposals
have emerged aiming to modify the ACs ranking step, either
through: (i) newmeasures and/or measures that already exist in
other contexts, but applied at this step in a unique way; (ii) the
merge (aggregation) of existing measures in order to use them
simultaneously (see Section III-A). Strategy (ii), adopted in
this work, has the advantage of reducing the need to choose a
single measure, also considering different aspects (semantics)
for sorting the rules.
Works related to strategy (ii) have been developed, such

as [20], [21], and [22], which have shown promising results.
However, they present problems in relation to the performance
and/or interpretability of the generated models. In the works
of [22] and [23] it is possible to verify an inverse relationship
between performance and interpretability, i.e., when model
performance is high, interpretability is low (and vice versa).
In this work performance is estimated via F1-Macro and
interpretability via model size (see Section II-D).

1Ranking, ordering and sorting are used as synonyms in this work.

Considering the above, this work presents a method for
ranking rules via aggregation of OMs, named AC .RankA,
which can be incorporated into ACs induction flows aiming
to induce models that present a better balance between
performance and interpretability. It is considered, in this
work, that these criteria are analyzed in relation to some
baseline. For AC .RankA to work, it must be instantiated
with a set of OMs and an aggregation method. The
sets of OMs explored were obtained or generated from
works in the literature. The aggregation methods were
extracted from both ranking aggregation and multi-criteria
decision analysis (MCDA) approaches. The proposed method
was evaluated in several ACs induction flows regarding
performance and interpretability. The analysis was carried
out by comparing different induction flows when ranking
takes place via CSC (baseline) and via AC .RankA. The
results obtained demonstrate that AC .RankA can maintain the
performance of the models, but with better interpretability.
It is worth mentioning that this work is an extension
of the proposal presented in [23], with the following
differences:
• in [23] the motivation for the work was to propose a
rule ranking method via aggregation of OMs that would
improve the execution time and interpretability of the
proposals previously found in the literature, namely: [20]
and [21]. In [20] the authors present a solution based
on Pareto and [21] based on a ensemble of classifiers.
Both works have an execution time higher than CBA
(baseline). Furthermore, the solution proposed by [21]
does not, in fact, generate an interpretable model, as it is
composed of a set of models. On the other hand, in this
work, the motivation is to maintain the balance between
performance and interpretability, as in [22];

• in [23] only a small part of the configurations explored
here via AC .RankA are evaluated, i.e., a small number of
experiments are carried out, making it difficult to obtain
generalizable conclusions. In this work, the proposal
initially presented in [23] was extended to a rule ranking
method via aggregation of OMs, which was evaluated
in several induction flows, in different configurations
(diverse sets of OMs combined with different aggregation
methods). Considering the total number of experiments
carried out here, 185,760, in different experimental flows,
it is possible to verify the contribution of AC .RankA to
the area;

• in [23] only ranking aggregation methods are considered;
here, in addition to these, MCDA methods are also
explored, due to their recent use in ARs contexts, such
as in [24], [25], and [26];

• in [23] only two sets of OMs are explored; here, the
analysis was extended to five sets;

• in [23] the analyzes are carried out by comparing the
proposal with the works of [20] and [21]. However,
they were not designed to simultaneously optimize
performance and interpretability. On the other hand,
the work of [22] is aimed at optimizing both aspects.
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Therefore, an analysis in relation to this work is presented
here, unlike the previous work.

Finally, it is mentioned that this work is the result of our
master’s thesis [27]. Besides, it is worth noting that other
works, which also aim to improve the interpretability of
models, have been proposed in the literature, such as [28],
[29], and [30]. However, the proposals are focused on other
steps of the induction process. The step that this work aims to
address is ranking.
The paper is structured as follows: Section II presents the

concepts that support this work; Section III the works related
to each of the induction steps of an AC, describing some
methods used in the evaluation of the method proposed here;
Sections IV and V present, respectively, the proposed method,
AC .RankA, as well as its evaluation; Section VI presents
conclusions and future work.

II. THEORETICAL FOUNDATION
This section briefly presents the concepts that underlie this
work, namely: Association Rules (Section II-A), Objective
Measures (Section II-B), Associative Classifiers (Section II-C)
and Evaluation Criteria (Section II-D).

A. ASSOCIATION RULES (ARs)
An association rule (AR) expresses a relation between items
that occur in a given dataset. The relations are of type A ⇒
C , where A represents the antecedent, C the consequent and
A∩C = ∅. A rule occurs with a support sup and a confidence
conf . Support, defined asP(AC), indicates the frequency of the
pattern while confidence, defined as P(C|A), the probability
C occurs given that A occurred. A and C are itemsets, a subset
of a set of items I that appear in the dataset. An item, in this
paper, is a pair <attribute = value>, since we are dealing
with relational tables. There are many algorithms that can be
used to extract a set of ARs, with Apriori [31] being the most
traditional.2

B. OBJECTIVE MEASURES (OMs)
Objective measures (OMs) are present in ARs and,
consequently, in ACs. An OM evaluates the statistical strength,
or characteristics, of a given pattern, based solely on the
data [16]. OMs can be used (i) during rule extraction, in order
to prune the search space, and/or (ii) to order, i.e., rank the
rules by their degree of importance, in order to find relevant
patterns. In general, the higher the value of a measure in a
given rule, the better ranked the rule will be.
In order to evaluate the importance of a rule through an

OM, it is necessary to know the rule’s contingency table.
Table 1 presents the structure of a contingency table and its
possible values for an abstract rule A⇒ C . A represents the
antecedent,C the consequent, A the negation of the antecedent,
C the negation of the consequent, n(X ) the frequency of X
and N the number of transactions. Thus, n(XY ) represents the

2The implementation of this and other algorithms is available at
http://www.philippe-fournier-viger.com/spmf/.

TABLE 1. Contingency table of an abstract rule A ⇒ C .

frequency with which X and Y happen simultaneously in the
N transactions of the dataset. OMs are defined as a function of
these absolute frequencies. However, the most usual notation
is by means of probabilities (relative frequency), obtained
by dividing each element of the table by N . Rule support,
for example, is defined as P(AC) = n(AC)

N and confidence
as P(C|A) = P(AC)

P(A) , where P(A) =
n(A)
N . The mathematical

definition of all the measures mentioned and used in this work
can be found in Appendix B.
Although support and confidence are the most traditional

OMs,more than 60measures are found in the literature, as seen
in [17] and [18], aiming to overcome limitations of some of the
previously existing measures, like confidence itself (it does
not detect positive or negative correlations, nor the absence
of correlation [32]). This large number of existing OMs has
generated a secondary problem, since there is no OM that is
suitable for all explorations [19].
Choosing one or more measures to explore a set of rules

becomes important given the benefits that are obtained by
opting for one or another OM. However, choosing which one
to use is a difficult problem [19], [33], as there are significant
differences in relation to objectives (semantics), among other
aspects, that distinguish them. To this end, different ways were
proposed to make this choice. Selection proposals, according
to [34], are divided into two categories, namely: ranking and
clustering. The aim of ranking-based approaches is to list the
OMs in order of importance so that the user selects the first n.
The aim of clustering-based approaches is to cluster OMs into
groups so that the user can select a representative measure
from each group. In this way, both aim to reduce the search
space. Both ranking and clustering can be carried out based on
the similarity of OMs in relation to the properties they present
or in relation to their behavior with regard to the ordering
generated by them in a given set of rules. The ‘‘Clustering’’
solution based on ‘‘Behavior’’ is used in this work to select the
sets of OMs to be aggregated, as will be seen in Section IV-A.

C. ASSOCIATIVE CLASSIFIER (AC)
In the AC literature, some algorithms have become traditional
due to their uses and concepts. Among those widely cited are
CBA [14], CMAR [35] and CPAR [36]. A review of ACs can
be found at [37]. CBA is, in general, used as a baseline in
most related works, and is also the first algorithm proposed in
this category. According to [15], CBA is probably the most
used algorithm in the family and is therefore presented here.
Algorithm 1 presents the necessary steps for inducing a model
via CBA, i.e., Extraction, Ranking, Pruning and Prediction,
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which are described below. For reasons of simplicity and
ease of understanding, some CBA steps were omitted from
Algorithm 1.

Algorithm 1 CBA Algorithm. Adapted from [14].
Require: Dataset D
Ensure: Classifier C
1: R← CARs(D) ▷ Extraction of CARs

2: R← Sort(R) ▷ Ranking

3: for all r ∈ R do ▷ Pruning
4: temp← ∅
5: for all d ∈ D do
6: if d satisfies the conditions of r then
7: store d .id in temp
8: mark r if it correctly classifies d
9: end if
10: end for
11: if r is marked then
12: insert r at the end of C
13: delete all cases with ids in temp of D
14: select a default class for the current classifier C
15: end if
16: end for
17: return C

1) RANKING
From the extracted CARs (line 1), stored in R, order them from
largest to smallest according to the relationship ≻ (line 2).
Given two rules, ri and rj, ri ≻ rj, that is, ri has higher
precedence than rj if: the confidence of ri is greater than
rj; in case of a tie, the support of ri is greater than rj; in
case of a tie, ri was generated before rj (cardinality). This
ranking method is known by the acronym CSC (Confidence,
Support, Cardinality), which will be referred to as [CSC] (see
Section V).

2) PRUNING
For each rule r ∈ R, ordered by precedence, the training
set D is traversed in order to find the transactions d ∈ D
that are covered by r , that is, that satisfy the conditions
imposed by r (line 6). If r correctly classifies any of the
transactions covered by it, the algorithm marks r (line 8),
so that r becomes a potential candidate for the classifier
(lines 11-15). Subsequently, all cases covered by r are
deleted from D (line 13) and a default (majority) class
(considering the remainder of D) is associated with the current
classifier (line 14). Finally, when there are no more rules
r or transactions in D, the rule selection stopping criterion
is reached (line 16). This pruning method is known by the
acronymM1, which will be referred to as [M1] (see Section V).
In the end, a classifier C , given by C = {r1, r2, r3, . . . , rn,
default class}, is returned, where ri ∈ R and ri ≻ rj.

3) PREDICTION
From the obtained model, for a new instance to be classified,
the class associated with the first rule that matches the
characteristics of the object is used. This prediction method
will be referred to as [O] (Ordinal prediction) (see Section V).

D. EVALUATION CRITERIA
The classification task aims to assign a category, named class,
to unlabeled instances. Thus, once the models are obtained,
they need to be evaluated according to a performance metric
on data not yet seen. To this end, evaluation measures are
used, such as Precision, Recall and F-measure (micro and/or
macro and/or weighted macro versions). Furthermore, in order
to guarantee a good estimate of the evaluation measure,
as well as to enable the configuration of hyperparameters,
different validation strategies can be used, such as holdout,
cross-validation and stratified cross-validation. Therefore,
in relation to performance, this work evaluates AC .RankA,
in ACs flows, via F1-Macro estimated via 10-fold stratified
cross-validation. Due to the fact that these concepts are basic
in machine learning literature, they will not be detailed here,
which can be consulted at [32].

However, another important criterion to be used to evaluate
models induced via rule-based algorithms is interpretability.
According to [38], interpretability has become increasingly
important in the context of predictive tasks, although there
is still no consensus on this notion. In general, as noted
in [11], [38], and [39], it is possible to obtain interpretable
prediction models (i) via non-interpretable algorithms, such
as deep neural networks, on which XAI methods are applied,
or (ii) via inherently interpretable algorithms, such as those
based on rules and trees. Still according to [38], although
inherently interpretable algorithms seem easy to understand,
there is no exact mathematical definition for the concept of
interpretability. Therefore, each work chooses to evaluate this
criterion using a different measure.
Given the above, in this work we chose to measure

interpretability through the number of rules contained in the
model, as in other recent works in the context of AC [22],
[29], [30], [40], [41], [42]. In all these works, the smaller the
number of rules, the better the induced model, i.e., the more
interpretable it is. Finally, it is worth mentioning that it is also
estimated via stratified 10-fold cross-validation. This criterion
was called model size (L).

III. RELATED WORKS
Asmentioned, most traditional ACs algorithms performmodel
induction in three or four steps, namely: [A] Extraction, [B]
Ranking and/or Pruning and [C] Prediction, as can be seen
in Fig. 1. They directly influence the quality of the generated
model. In view of this, efforts have been made to improve
each of these steps. It is noted, in the respective figure, that
each step of the process can be seen as an independent method,
which together are capable of generating a model. CBA, like
CMAR and CPAR, can be seen in this way. Therefore, with
regard to the rule ranking method via aggregation of OMs
proposed here, AC .RankA, it can be seen in Fig. 1 that the
highlighted step is the one in which the AC .RankA must be
used.

Given the above, this section aims to present works related
to the steps presented in Fig. 1, i.e., different methods per step,
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FIGURE 1. Induction steps of an AC.

with some of them being used later in the evaluation of the
method proposed here (Section V). Finally, in Section III-D a
work well correlated to this one is presented, from which some
methods were used during the evaluation of AC .RankA. It is
worth mentioning that the extraction step is not covered below,
since in this work this step was the only one in which different
methods were not evaluated. According to [43] this step is
often associated with two widely used algorithms, Apriori and
FP-Growth, although other strategies are possible together
with other algorithms, as in [44]. Therefore, in this work, only
the Apriori algorithm was used.

A. RANKING STEP
The ranking step, the focus of this work, is of great importance,
as it directly affects the performance of the classifier, as it
impacts the subsequent steps (pruning and prediction) (see
Fig. 1). Therefore, several works seek to improve this step,
aiming to organize the rules that favor the performance of the
generated model and/or interpretability through a compact set
of rules.

Ranking is often performed using confidence, followed by
support and cardinality (CSC (see Section II-C)). However,
other proposals have emerged over the years, either through:
(i) new measures and/or measures that already exist in other
contexts, but applied at this step in a unique way; (ii) the
merge (aggregation) of existing measures in order to use them
simultaneously. In general, the solutions are based on works
developed for the context of ARs, which are then adapted to
the context of ACs.

Considering the above, in relation to item (ii), works were
developed in the context of ARs, such as that of [45] via
Integral Choquet, and those of [46] and [47] via Pareto
dominance. Recently, other ways of aggregating OMs, using
solutions from the area of multi-criteria decision analysis
(MCDA), have been used. References [24] and [25] employ
similar ideas regarding aggregation through the use of
ELECTRE I [48]. On the other hand, [26] employ ELECTRE
II [48] aiming at ranking rules via the simultaneous use of
support, confidence and lift. It is worth mentioning that,
both in solutions that use Pareto and in those that use
MCDA, the motivation for aggregating OMs comes from the
fact that each measure provides a ranking according to its
semantics and, therefore, considering them all simultaneously,
we obtain multiple views that, together, contribute to a more
comprehensive ranking, not being restricted to the biased view
of one or two OMs.
On the other hand, considering aggregation, but in the

context of AC, some work has been carried out. Reference [20]
explore the aggregation of OMs via Pareto, when applied
to rank the rules, based on the work of [46]. In this case,

the proposed method is evaluated in the CBA ranking
step. Reference [21] perform the aggregation through
a ensemble of classifiers, in which each model of the
ensemble is induced using a different measure. Finally, [22]
explore the aggregation of OMs in the ranking step via
a multi-objective optimization model, described in greater
detail in Section III-D. As mentioned before, although these
works are promising, they present problems in relation to the
performance and/or interpretability of the generated models.
Of the three works, the one by [21] does not, in fact, generate
an interpretable model, since it is composed of a set of models
(ensemble). Thus, in itself, it already presents interpretability
problems. The work of [20], as presented and discussed
in [23], presents an inverse relationship between performance
and interpretability, i.e., when model performance is low,
interpretability is high (and vice versa). However, the solution
was not designed to optimize both criteria simultaneously. The
solution presented in [22] is aimed at optimizing both aspects.
However, even in this case, it is possible to observe the inverse
relationship between performance and interpretability.

B. PRUNING STEP
Pruning, like ranking, can be omitted depending on themodel’s
induction flow. However, when it is present, its impact is large,
being responsible, for example, for reducing the size of the rule
set and removing redundant and/or low-quality rules. Although
the pruning process is often carried out after ranking, so as
not to directly affect the ranking itself, the performance of the
induced model depends on the ‘‘agreement’’ between the steps
when both occur. Works that present solutions involving the
pruning step in the context presented here are found in [28],
[29], [49], [50], and [51].
As mentioned, each step of the induction process can be

seen as an independent method (see Fig. 1). Thus, to evaluate
the method proposed here, some pruning methods from the
literature were selected to compose different algorithmic flows,
together with the ranking method under analysis, in order to
evaluate its performance. Therefore, the methods described
below are used, in addition to [M1] (CBA), in the experiments
in Section V.
[DN] — DyNamic Pruning of [40]. The pruning method

presented by [40] was one of those selected and adapted for
this work. In the aforementioned work, an AC is induced
through iterative pruning, which works in conjunction with a
ranking step, as described below:
(i) Ranking: the rules of the set R are ranked according to

an OM;
(ii) Selection: the first rule ri from set R is selected;
(iii) Instance Deletion: all instances (transactions) covered by

ri are removed from the dataset;
(iv) Rule Deletion: rule ri is removed from the rule set R;
(v) Update of OMs: the remaining rules from setR have their

OMs values updated based on the remaining instances.
The process is repeated until all rules have been processed or

there are no more instances to cover. The process is expensive,
as it involves recalculating all OMs used at each iteration.
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However, each iteration ensures that the best rule is selected,
given the current state of the dataset.
[CV]— CoVerage Pruning of [22]. The pruning method

presented by [22] is based on the coverage with which the
rules, already ordered, match the transactions. This method is
described in Section III-D.

C. PREDICTION STEP
Prediction is the step in which the class for unseen instances
is determined. In this step, two procedures are generally used:
one through the precedence of the rules, directly impacted
by ranking and/or pruning, named Rule List, and the other
through multiple rules, named Rule Set [52]. In the first,
a single rule is used to determine the class, the one with the
best precedence that matches the instance, while in the second,
a set of rules is used to define it. As an example, while CBA
uses the Rule List procedure, CMAR and CPAR the Rule
Set. Works that present solutions involving this step are found
in [40] and [53].

To evaluate the method proposed here, as in the pruning step,
some prediction methods from the literature were selected to
compose different algorithmic flows, together with the ranking
method under analysis, in order to evaluate its performance.
Therefore, the methods described below are used, as well as
[O] (CBA), in the experiments in Section V.

[R]—Rank-based Prediction of [54]. In the aforementioned
work, the prediction takes place via Rule Set, but it also takes
into account the order of the rules, characteristic of Rule
List. The proposed method aims to (i) solve the problem
of considering only the first rule, resulting in the discarding
of other potentially useful rules, as well as (ii) avoid using
complex mathematical equations to compute the weight of
the rules, making the interpretability of the process difficult.
To this end, the authors propose the following process: the
class of a given instance is given by the largest sum, obtained
between two scores, in one of the possible classes. The first
score is obtained by adding the ranks of the rules that match
the instance to be predicted in a given class. The second by
the number of rules of a given class that match the instance.
[V] — Voting prediction. This method is a simplified

version of the Rule Set methods. Most methods use some
weighting between the rules to perform the prediction, for
example, in CPAR, which is made from the average of the
accuracies of the top-k rules that cover the instance to be
classified in each of the classes. In this work a simplified
version is used, so that the class is selected through a simple
majority voting procedure among the rules that cover the
instance.
[P] — Probabilistic Prediction of [22]. The prediction

method presented by [22] is based on probabilities computed
based on the k best rules that cover the instance to be predicted.
This method is described in Section III-D.

D. MoMAC
As mentioned, the work of [22] is the most related to the
work presented here, as it was designed to simultaneously

optimize performance and interpretability. For this reason,
it is described here. The others, such as [20] and [21],
also mentioned in Section III-A, although related, were not
proposed to optimize both aspects.

In [22], although the authors present a complete algorithmic
flow, the focus of the work is precisely on the ranking
step through the simultaneous use of multiple values, which
provide the basis for calculating several existing OMs,
namely: P(A), P(A), P(B), P(B), P(AB), P(AB), P(AB), P(AB),
P(A)P(B), P(A|B), P(A|B), P(A|B), P(A|B), P(B|A) e P(B|A).
Thus, ranking can be seen as an aggregation of values, from
which a value is generated so that the rules can be ordered in a
way that improves the performance and interpretability of the
induced models. The algorithm, named MoMAC, is designed
to optimize these two criteria. Its pruning and prediction
methods were selected and implemented to compose different
algorithmic flows, as previously mentioned, to evaluate the
ranking method proposed here. Considering the flow in Fig. 1,
below is the description of each of the MoMAC steps. It is
worth mentioning that the extraction step, as in this work, is not
explored by them, with only the mention of a modification
in the Apriori algorithm for a more efficient extraction of the
CARs.

1) RANKING
The ranking method they proposed can be seen as presented
in Fig. 2 (Section IV, page 88868), i.e., a method where it is
necessary to specify a set of OMs and an aggregation method.
The set of MOs is, in fact, as already mentioned, composed of
the 15 probabilities presented above. The aggregation method
is a multilayer neural network composed of 2 hidden layers,
with 8 and 4 neurons, respectively, and sigmoid activation
functions. The network receives the 15 probabilities as input
and generates a single value as output, which represents their
aggregate value. Based on this learned value, the ranking
of the rules is carried out. The proposal was modeled as
a multi-objective optimization problem, since two criteria
must be optimized: performance and interpretability. The
network weights are optimized using a genetic algorithm
named NSGA-II [55], enabling the selection of the best
individuals considering the model’s total error and/or its size.
The final result is given by a set of individuals considered
optimal, leaving it up to the user to select the model considered
ideal.

2) PRUNING
The pruning method is based on the coverage with which the
rules, already ordered, match the transactions. From a set of
ordered rules, iterations are performed, unstacking them one
by one until there are no more rules left or until the coverage of
all transactions is greater than the parameter k (default: k = 3).
Thus, each transaction must be covered by at least k rules. For
each rule, transactions with coverage less than k are checked
and those that the rule covers are increased by one. If the rule
covers at least one transaction then it is added to the model.
Uncovered or partially covered transactions (k < 3) are used
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to determine the default class; otherwise, all transactions are
used and the majority class is considered.

3) PREDICTION
In order to predict the class of a given instance xi, the prediction
method they proposed finds all the first k rules that match
it. Let Rk be the set of rules found. For each possible class
l ∈ L, the probability of the instance xi belonging to the class
is calculated using (1). In equation, zl , which represents the
instance’s membership in class l, is divided by the instance’s
membership in relation to all other classes. zl is computed
via (2), which is divided into two parts: the first, in which the
aggregated value (I (.)), learned in the ranking step, associated
with each rule rj is added, as long as rj belongs to the same
class as the current class l; the second, in which 1−I (rj)

L−1 is
added to each rule rj that does not belong to the current class l.
In the end, the class with the highest probability is the one
chosen to be assigned to instance xi.

P(yi = l|xi) =
zl∑L
j=1 zj

(1)

zl =
∑
j∈Rk
Cj=l

I (rj)+
∑
j∈Rk
Cj ̸=l

1− I (rj)
L − 1

(2)

IV. AC .RANKA
This section presents the proposed rule ranking method via
aggregation of OMs, named AC .RankA. The motivation for
proposing it is based on the discussions previously presented,
from which it is possible to note that:
• The ranking step presents itself as a step of great
importance, as it influences the other stages and,
consequently, the performance and interpretability of
the model;

• In general, the CSC method (Section II-C, page
88864) is used to order the rules, based on the standard
OMs of association rules, i.e., support and confidence;

• Over the years, several OMs have been proposed, as seen
in [17] and [18], aiming to overcome limitations of some
of the previously existing measures, such as confidence
itself (Section II-B);

• This large number of existing OMs has generated a
secondary problem, since there is no OM that is suitable
for all explorations [19];

• In this context, new proposals have emerged aiming
to modify the ACs ranking step, as described in
Section III-A, either through: (i) new measures and/or
measures already existing in other contexts, but applied
at this step in a unique way; (ii) the merge (aggregation)
of existing measures in order to use them simultaneously;

• Strategy (ii), adopted in this work, has the advantage
of reducing the need to choose a single measure, also
considering different aspects (semantics) for ordering the
rules;

• Works in this context, such as [20], [21], and [22],
have been proposed, which have shown promising

FIGURE 2. AC .RankA method to be incorporated into ACs induction flows.

results. However, they present problems in relation to
the performance and/or interpretability of the generated
models. In these works, through the works of [23]
and [22], it is possible to verify an inverse relationship
between performance and interpretability, i.e., when
model performance is high, interpretability is low (and
vice versa).

Considering the above, this work presents a method for
ranking rules via aggregation of OMs that can be incorporated
into ACs induction flows in order to inducemodels that present
a better balance between performance and interpretability.
The results demonstrate that AC .RankA can maintain the
performance of the models, but with better interpretability.
Therefore, the ranking step, highlighted in Fig. 2, is modified
to incorporate the method proposed here. For AC .RankA
to work, it must be instantiated with a set of OMs and an
aggregation method (parameters OMs and Agg in the figure).
Possible sets of OMs are [TW], [GF], [C1], [G1] and [G2],
described in Section IV-A. Possible aggregation methods are
[BD], [BM], [BL], [BG], described in Section IV-B2, [TS],
[WS] and [WP], described in Section IV-B1.

A. OBJECTIVE MEASURES SETS
As mentioned in Section II-B, due to the large number of
existing measures, choosing one or more measures to explore
a set of rules becomes important given the benefits that are
obtained when opting for one or another measure. However,
choosing which one to use is a difficult problem [19], [33],
as there are significant differences in relation to objectives
(semantics), among other aspects, that distinguish them.
To this end, different ways were proposed to make this choice,
such as clustering, adopted in this work. The focus here is the
clustering carried out based on the similarity of the OMs in
relation to the ordering generated by them in a given set of
rules. In this way, three works found in the literature were
selected and used, [17], [56], and [57], which are briefly
described below.

1) [TW] GROUP
References [17] and [18] present a behavioral study of a set
of 61 OMs when used to rank ARs. To do so, the authors
group the OMs that present similar behavior based on how
they rank a set of rules; thus, those that order the rules in
the same way are clustered into the same group. Once the
clustering is obtained, a measure from each cluster can be
explored, thus reducing the exploration space. Since the work
of [18] presents similar results to those of [17], it was not
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considered. Thus, in [17], applying the method they proposed,
21 groups of OMs are obtained. A brief description of this
work, as well as how the clustering is carried out, can be found
at [57].

Of the 61 OMs analyzed by the authors, only 50 were used
to perform the clustering. The 11 OMs that were left out
are mathematically equivalent to other measures and were,
therefore, removed. Thus, one of the sets of OMs used in this
work by the AC .RankA method is the one proposed by [17],
named here [TW]. Since the obtained groups represent the
equivalence between the OMs in relation to the ranking, [TW]
group was constructed by selecting one measure from each
cluster, since there is no indication of which group or groups to
use, different from the methods described below. The selected
OMs, which make up the [TW] group, are as follows: Support,
Prevalence, K-Measure, Least Contradiction, Confidence,
TIC, Leverage, Dir, Loevinger, Odds Ratio, Added Value,
Accuracy, Lift, J-Measure, Recall, Specificity, Conditional
Entropy, Coverage. The choice of a given measure, within
each cluster, was based on its computational cost, opting
for those with the lowest cost, as well as their relevance
in the literature. It is worth mentioning that three groups
presented in [17] were not considered, either because they
present measures with high computational cost, or because the
cluster, according to the authors themselves, can be joined to
another group. Therefore, this set of OMs includes measures
with completely different semantics when applied to order
a set of ARs, i.e., the context of ACs is not taken into
account.

2) [GF] GROUP
Reference [56] present a study similar to the works of [17]
and [18], but in the context of ACs when used on imbalanced
data. The aim is to analyze the behavior of OMs when
applied to ACs. Applying the method they proposed, of the
55 measures given as input, only 26 are selected by their
clustering approach, which are divided into two groups: the
most appropriate measures to be used for datasets with a
distribution smaller than 0.4 (G<) and those with a distribution
larger than 0.4 (G>). The measures presented in each cluster
are as follows:3

• G<: Correlation Coeficient, Collective Strength,
Kappa, Piatetsky-Shapiro, Putative Causal Dependency,
Zhang, Intensity of Implication, Confirm Causal,
Goodman–Kruskal, Entropic Implication Intensity 1,
Implication Index, Levarage, Added Value;

• G>: Odd Multiplier, Complement Class Support,
Conviction, Yule-Q, Sebag–Schoenauer, Yule-Y, Odds
Ratio, Confirm Causal, Confirmed Confidence Causal,
Example andCounterexample Rate, Ganascia, J-Measure,
Confidence.

3In the original work, other OMs are found in the respective groups;
however, as shown in [17], some of them are equivalent (i.e., produce the
same ranks) and, therefore, were removed.

According to the analyses, the G< group performs well on
extremely imbalanced data, with most of the group’s measures
performing poorly on balanced data; on the other hand, the
G> group performs well on slightly imbalanced data, with
most of the group’s measures showing better results when
used on more balanced data. Thus, another set of OMs used
in this work by the AC .RankA method is G>, named here
[GF]. Therefore, this set of OMs includes the most appropriate
measures, according to the authors, to rank a set of rules in
the context of ACs in relation to the ranking step. The set
G< was not considered, since this work does not deal with
imbalanced datasets (see Section V-A). A brief description of
this work, as well as how the clustering is carried out, can be
found at [57].

3) [C1], [G1] AND [G2] GROUPS
As with [56] and [57] also aims to cluster OMs according to
their performance when applied to ACs. However, the authors’
study is aimed at balanced or slightly imbalanced datasets.
The work was motivated by some limitations, identified
by them, of the work of [56], including the use of the
CBA algorithm to generate the rules, which is not viable
in the context of imbalanced data. Other algorithms are
more appropriate in these cases, such as CBA2 [58]. For
the clustering they propose to be viable, the authors modify
the CBA algorithm, named by them as CBA’, in which all
model extraction steps are the same as those of CBA, with
the exception of ranking. In this case, given a measure m,
a rule ri precedes a rule rj (ri ≻ rj) if the value of m in ri
is greater than rj; in case of a tie, ri was generated before
rj. The authors state that in this way it is possible to access
how much each measure influences the performance of the
classifier.
Of the 61 OMs presented in [17], [18], and [57] used 44,

since there are equivalences between them (as demonstrated
in [17]) and that some of them present a high computational
cost. After applying the clustering method they proposed,
the 44 OMs were grouped into 15 groups, which were
ranked according to their average performance measured
via F1-Macro, i.e., through the average of the F1-Macro
values associated with the models induced by each OM
contained in the group. A comparison of the obtained groups
with those presented in [56], as well as the impact of these
groups applied in the method proposed by [21], are also
presented in the paper. Thus, another set of OMs used in
this work by the AC .RankA method is the one composed by
the measures belonging to the best ranked group, Cluster-1,
named here [C1]. According to the authors, this group contains
the most appropriate measures to rank a set of rules in the
context of ACs in relation to the ranking step, since the group
presents the best F1µ. The measures that make up this group
are as follows: Odd Multiplier, Complement Class Support,
Confidence Causal, Loevinger, Added Value, One Way
Support, Comfirmed Confidence Causal, LIFT, Confidence,
Putative Causal Dependence, Leverage, Confirm Causal, TIC,
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FIGURE 3. Dendrogram obtained after re-executing the experiments
presented in [57] considering the modifications made here.

DIR, Normalized Mutual Information. A description of this
work, as well as how the clustering is carried out, can be found
at [57].
Since AC .RankA aims to favor the induction of models

that present a better balance between performance and
interpretability, we decided to make some adjustments to
the method proposed by [57]. Furthermore, it was decided
to evaluate, in each group, not only the average F1-Macro,
but also the average size of the models. Thus, the following
modifications were made:
• the CBA’ was modified to incorporate the support
measure. In this case, given a measure m, a rule ri
precedes a rule rj if the value of m in ri is greater than rj;
in case of a tie, if the support of ri is greater than rj; in
case of a tie, ri was generated before rj. As CBA’ is based
on CBA, keeping the sorting as in CBA, i.e., changing
only the confidence measure for m, the impact of a given
measure m on the induction process is better analyzed in
relation to CBA;

• aiming to obtain more cohesive groups, a similarity value
of 99% was used as a cutoff point in the generated
dendrogram (in [57] the value is 95%).

Re-running the experiments, as described in [57], but with
the changes presented above, the dendrogram in Fig. 3 was
obtained, and the respective groups in Table 2 were found.
The groups are ranked according to their average performance
(F1µ), i.e., through the average of the F1-Macro values
associated with the models induced by each OM contained in
the group. Furthermore, the average size of the models in each
group is also presented (Lµ), which is obtained by averaging
the size of the models induced by each OM contained in the
group. Unlike the dendrogram presented in [57], it is noted
that the cutoff point is close to the zero distance ( 1−0,992 =

0,005= 0,5%), since the similarity value used was high (99%).
In this case, 26 groups were obtained.
Thus, the last two sets of OMs used in this work by

the AC .RankA method are those composed by the measures
belonging to the two best ranked groups, Group-1 andGroup-2,
named here, respectively, [G1] and [G2]. The two are the ones
with the highest average F1-Macro values (F1µ). However,

TABLE 2. Groups of OMs obtained after re-executing the experiments.

although [G1] presents a small difference in relation to [G2] in
terms of F1-Macro, in terms of size, [G2] obtains a significant
advantage over [G1], obtaining an average value around 28%
lower, a significant gain compared to a drop of just 0.48% in
F1-Macro. For this reason, both groups were selected.
Finally, through Fig. 4 it is possible to visualize the

inverse relationship between performance and interpretability,
based on the data in Table 2. The figure was constructed
via linear regression. The x axis indicates the group ID,
which corresponds to a rank value: the higher the group’s
average performance, the lower its ID. This construction
allows visualization of the balance between performance and
interpretability. Associated with the average F1-Macro of each
group (ID), i.e., F1µ (blue line), we have the corresponding
average size, i.e., Lµ (orange line). It is noted that the
regressions generally present an inverse trend to what is
understood as ideal for the models, i.e., high F1µ and low Lµ;
thus, in this case, it is noted that the greater the value of F1µ,
the greater the value of Lµ (and vice versa), i.e., it is difficult
to balance performance and interpretability.
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FIGURE 4. Relationship between performance and interpretability based
on data from Table 2.

B. AGGREGATION METHODS
As already mentioned, for AC .RankA to work it is
necessary to also define the aggregation methods to be
used. Previous studies have already used Pareto [20],
ensemble of classifiers [21] and optimization through genetic
algorithm [22]. However, as seen, they present problems in
relation to performance and/or interpretability. Therefore,
in this work we chose to use multi-criteria decision analysis
(MCDA) and ranking aggregation. The reason is due to the
recent use of MCDA methods in the context of ARs, such
as ELECTRE I in [24] and [25] and ELECTRE II in [26].
The ranking aggregation methods are similar to those of
MCDA and, therefore, were also considered. These methods
are proposed to support decision making such as the one
proposed in this work. Therefore, this section presents such
methods. Finally, before presenting the methods themselves,
it is important to mention that:

• The AC .RankA method is executed in the same way as the
aggregation methods described below; however, in this
case, the matrices m × n, presented in Tables 3 and 6,
are matrices of Rules x OMs, in which the measures that
compose them are those belonging to the selected sets,
i.e., [TW], [GF], [C1], [G1] and [G2];

• All OMs, in MCDA methods, receive the same weight
with regard to theW vector.

1) MULTI-CRITERIA DECISION ANALYSIS (MCDA)
MCDA methods were created to assist decision makers in
choosing the best options (alternatives) based on a set of
criteria, which may or may not have different weights [59].
The use of MCDA methods also fits the task of aggregating
OMs, as they can assist in decision making when evaluating
several rules (options) on several criteria (OMs).
Due to the large number of existing methods, [59]

provides a framework to support the choice of the most
appropriate methods for a given problem. This work utilized
this framework to select the methods to be used. Among
the methods suggested by the framework, TOPSIS [60]
was selected, which is commonly cited in the literature.

TABLE 3. Alternatives x criteria matrix.

TABLE 4. Example of a set of alternatives and their respective values by
criteria.

Furthermore, the two most basic and classic MCDA methods
were also considered, namely: WSM [61] and WPM [61].

In order to adapt the terms used in this work with those in
the MCDA literature, OMs are named criteria and CARs are
named alternatives. Thus, the aim is to order the alternatives
(rules) according to the established criteria (OMs), in order to
prioritize, through the first positions of a given ranking, the
best alternatives. In this context, A = {Ai|i = 1, . . . ,m} is
defined as the set of m alternatives, C = {Cj|j = 1, . . . , n} the
set of n criteria andW = {Wj|j = 1, . . . , n} the set of weights
associated with the criteria. The data are organized into an m
X n matrix, as in Table 3, where xij indicates the intersection
of an alternative i and a criterion j. In order to support the
understanding of the methods described below, Table 4 will
be used, which contains three alternatives and three criteria,
in addition to the weights of the respective criteria (lineW ).
[WS] — WSM [61]: The value Vi of each alternative Ai

is given by the sum of the n criteria of the alternative Ai
multiplied by their respective weights, where Vi =

∑n
j=1Wj×

xij. Using the values in Table 4 we would have the value of
1.55 for the alternativeA1 (V1 = 1×0.2+2×0.67+0.5×0.02).
For alternatives A2 and A3 the values of V2 = 1.1 and
V3 = 0.91. Considering these values, the alternatives would be
ranked in the following order {A1,A2,A3}, with the alternative
A1 having preference over the others.
[WP] — WPM [61]: The value Vi of each alternative Ai

is given by the product among the criteria of the alternative
Ai, raised to their respective weights, where Vi =

∏n
j=1 x

Wj
ij .

Using the values in Table 4 we would have the value of
0.012 for the alternative A1 (V1 = 0.21×0.672×0.020.5). For
alternatives A2 and A3 the values of V2 = 0 and V3 = 0.006.
Therefore, the alternatives would be ranked in the following
order {A1,A3,A2}, with the alternative A1 having preference
over the others.
[TS] — TOPSIS [60]: This method is divided into three

parts. In the first part, the matrix values are normalized by
dividing each value by the square root of the sum of the
squared values, which are, finally, weighted by the weight
of the criterion, according to (3). In the second part, for each
alternative Ai, the Euclidean distance of its values, in each
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TABLE 5. Values from Table 4 after normalization. The largest values in
each column are in bold and the smallest in italics.

of the criteria, is computed in relation to the best (Dmaxi ) and
worst (Dmini ) values of each criterion, as seen in (4) and (5).
Finally, in the third part, the value Vi is obtained by dividing
Dmini by the sum between Dmaxi and Dmini , as seen in (6).

xnormalizedij =
xij√∑m
i=1 x

2
ij

×Wj (3)

Dmaxi =

√√√√ n∑
j=1

(xnormalizedi,j −max{Cj})2 (4)

Dmini =

√√√√ n∑
j=1

(xnormalizedi,j −min{Cj})2 (5)

Vi =
Dmini

Dmaxi + Dmini

(6)

Using the values from Table 4, after the first part, the
normalized values would be those presented in Table 5.
Equation (7) presents the calculation for x1,1. In the second part
the distances are computed. Equations (8) and (9) present the
values obtained for the alternativeA1. Finally, the value ofV1 is
obtained by (10), resulting in a value of 0.68. For alternatives
A2 and A3 we would have the values of V2 = 0.35 and
V3 = 0.44. Therefore, the alternatives would be ranked in the
following order {A1,A3,A2}, with the alternative A1 having
preference over the others.

x1,1 =
0.2

√
0.22 + 0.12 + 0.22

× 1 = 0.67

(7)

Dmax
1 =

√
(0.67− 0.67)2 + (1.49− 1.49)2 + (0.1− 0.49)2

Dmax
1 = 0.39 (8)

Dmin
1 =

√
(0.67− 0.33)2 + (1.49− 0.73)2 + (0.1− 0)2

Dmin
1 = 0.83 (9)

V1 =
0.83

0.39+ 0.83
= 0.68 (10)

2) RANKING AGGREGATION
The ranking aggregation methods are similar to those of
MCDA, as they aim to evaluate multiple criteria at the
same time, and, therefore, were also considered. However,
the methods in this family combine the ranks generated
by different criteria to generate a final ranking [62]; thus,
these methods do not consider the values themselves as in
MCDA. Thus, the methods are more robust to outliers [63] and
invariant to transformations and normalizations, as long as the

TABLE 6. Example of a set of alternatives and their respective ranks by
criteria.

order of the alternatives is maintained. The Borda [64]methods
are the most traditional of this family, being widely used due
to their simplicity. Thus, its four versions were selected here.

In order to guarantee standardization between the selected
methods, both in examples and explanations, the same MCDA
nomenclature was adopted. As a reference for the equations,
Table 3 was considered. For the examples, Table 6 was
constructed from Table 4 modifying its values to rank values.
It is worth mentioning that alternatives with equal values
receive the average of their ranks. Ranks are expressed in
ascending order, in order to preserve the premise that the
higher the value, the better the rank.

[BM]— Borda Arithmetic Mean [63]: The value Vi of each
alternative Ai is given by the arithmetic mean of the values

of the alternative in each of the criteria, where Vi =
∑n

j=1 xij
n .

Using the values from Table 6 we would have the value of
2.5 for the alternative A1 (V1 = mean(2.5, 3, 2)). Being V2 =
1.33 and V3 = 2.17, the ranking is given by {A1,A3,A2}, with
the alternative A1 having preference over the others.
[BD] — Borda Median [63]: The value Vi of each

alternative Ai is given by the median of the values of
the alternative in each of the criteria, where Vi =
median{xi1, . . . , xin}. Using the values from Table 6 we
would have the value of 2.5 for the alternative A1 (V1 =
median(2, 2.5, 3)). Being V2 = 1 and V3 = 2.5, the
ranking is given by {A1,A3,A2}, with the alternative A1 having
preference over the others.
[BG] — Borda Geometric Mean [63]: The value Vi of

each alternative Ai is given by the geometric mean, which
refers to the product of the values raised to the inverse of the
number of criteria, i.e., Vi = n

√∏n
j=1 xij. Using the values from

Table 6 we would have the value of 2.47 for the alternative A1
(V1 =

3
√
2.5× 3× 2). Being V2 = 1.26 and V3 = 1.96, the

ranking is given by {A1,A3,A2}, with the alternative A1 having
preference over the others.

[BL]—Borda 2-norm [63]:The valueVi of each alternative

Ai is given by Vi =
n

√∑n
j=1 x

2
ij

n , named the Euclidean norm,
a special case of p-norm, where p = 2. Using the values from
Table 6 we would have the value of 1.86 for the alternative
A1 (V1 = 3

√
6.25+9+4

3 ). Being V2 = 1.26 and V3 = 1.76, the
ranking is given by {A1,A3,A2}, with the alternative A1 having
preference over the others.

V. EXPERIMENTAL EVALUATION
In order to evaluate the proposed method, this section presents
the experiments carried out, as well as the results and
discussions. Since the aim of the work is to propose a
rule ranking method via aggregation of OMs that can be
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incorporated into ACs induction flows, the experiments were
designed to test it in conjunction with different pruning
and prediction methods. In this way, several flows were
created, using both the CBA ranking, i.e., [CSC] (Section II-C,
page 88865), and the one proposed here, so that an analysis of
its impact could be carried out. All flows were created based
on CBA, since it is the most used algorithm in the family [15].
Therefore, this work considers it as a baseline.

Fig. 5 follows the same flow as Fig. 2, i.e., extraction,
ranking, pruning and prediction, but it is instantiated with
the methods to be explored in each one of the aforementioned
steps. Each combination generates a different flow to be used
in inducing an AC model. Thus, the following methods are
available at each step:
• Extraction: Apriori (AP) (Section II-A);
• Ranking: AC .RankA (Section IV); [CSC] (Section II-C,
page 88865);

• Pruning: [M1] (Section II-C, page 88865); [DN]
(Section III-B, page 88866); [CV] (Section III-B,
page 88867);

• Prediction: [O] (Section II-C, page 88865); [V]
(Section III-C, page 88867); [R] (Section III-C; page 88867);
[P] (Section III-C, page 88867).
Each flow is executed sequentially, where the output of the

method of one step is used as input to the method of the next
step. It is worth noting that although the ‘‘Set of OMs’’ and
‘‘Aggregation Methods’’ boxes, belonging to the AC .RankA
method, have been arranged sequentially, just to indicate the
possible combinations, their execution occurs simultaneously.
Finally, it is worth mentioning that the methods highlighted in
orange in Fig. 5 are those used in CBA; thus, the combination
[CSC]+ [M1]+ [O] refers to its execution.
Considering the possible flows, we obtain a total of

432 possibilities: 420 related to the AC .RankA ranking and
12 to the [CSC] ranking. Each of them induces a different
model, which is evaluated in terms of performance (F1-Macro)
and interpretability (model size (L)) (see Section II-D).
The 432 flows were explored in 43 datasets, summing up
to a total of 185,760 experiments (432 × 43×10), as the
measures were estimated, in each dataset, via stratified
10-fold cross-validation. Therefore, more specific details
about the experimental setup are presented in Section V-A.
In Section V-B the results are presented and discussed. Finally,
in Section V-C a complementary analysis, in relation to
works in the literature, is carried out.

A. EXPERIMENTAL SETUP DETAILS
Although the methods to be used in each of the steps have
already been presented, as well as in Fig. 5, it is necessary
that some details, related to the execution of the experiments,
be here described.

1) DATASETS
43 datasets, available in the KEEL tool repository,4 were
used. The repository provides 76 datasets in total (section

4https://sci2s.ugr.es/keel/datasets.php

‘‘Standard classification data sets’’). However, of these, only
those with balanced, or partially balanced, distribution were
selected, i.e., those with proportions of up to 1:2.5 between
the minority and majority classes. The reason is due to
the fact that the algorithms used here do not deal with the
issue of imbalance between classes. Table 7 presents the
selected datasets with their respective characteristics, namely:
number of transactions (#Transactions); number of features
(#Features); number of distinct items after converting the
dataset to transactional format, where items are represented
by an <attribute = value> pair (#Distinct Items); number
of classes (#Classes); the imbalance rate (IR) of the sets
(IR = #Maj

#Min ); the minimum support value (sup-min) used
to perform rule extraction (see below) (#Support).

2) PREPROCESSING
All datasets were pre-processed. Numerical attributes were
discretized, both real and integers containing more than ten
unique values. It is worth mentioning that in order to avoid data
leakage, discretization was performed only on the folds used
as training in a given cross-validation run. In other words, the
transformations were performed only on the training set and
later applied to the test set. The discretization algorithm used
was the one proposed by [65]. After discretization, attributes
that presented unique values were excluded.

3) RULE EXTRACTION
Unlike the other steps, the extraction stage was the only one
that used just one algorithm, in this case, Apriori. For it to
be executed and the rules extracted, it is necessary to set
the minimum support (sup-min) and minimum confidence
(conf-min). In order to avoid its impact on the results, we chose
to reset the conf-min value to zero, therefore extracting all
possible rules within the specified sup-min. In order to avoid
a combinatorial explosion in the number of rules, sup-min
was set so as not to generate sets of rules above ten thousand
rules. The average sup-min values used for each dataset can
be found in Table 7 (column ‘‘Support %’’). Furthermore,
it was defined that the maximum size of the itemset would be
equal to 5 items, as frequently used, which implies rules with
a maximum of 4 items in the antecedent. An exception was
made in the sets Ionosphere, Spambase, Texture and Satimage,
where the size was set to 3 items, since any extraction with
4 or 5 items resulted in generation of more than 10 thousand
rules.

4) EVALUATION CRITERIA
As alreadymentioned in Section II-D, themeasures considered
were the F1-Macro, in terms of performance, and the model
sizeL, in terms of interpretability, both estimated via stratified
10-fold cross-validation. In order to compare the obtained
results, statistical tests were carried out using the Friedman
test with α = 0.05 and the Nemenyi post-hoc test (Friedman+
Nemenyi), together with the critical difference diagrams
(CD). Although other combinations are possible, such as
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FIGURE 5. Methods used in each induction step, which, together, generate the flows evaluated in this work.

Quade + Nemenyi, the choice was based on [66]. To this
end, although good packages are currently available, such
as StaTDS,5 we chose to use the R Stats6 package, together
with scikit-posthocs,7 as they are more consolidated in the
community.

B. RESULTS AND DISCUSSION
The results were organized and analyzed in order to verify
the impact of the AC .RankA method, in relation to [CSC]
(baseline), in many ACs induction flows. In order to better
understand how the analysis was performed consider Tables 8
and 9. The first presents the results of F1-Macro and the
second of model size (L), both referring to the Hayes-roth
set with AC .RankA instantiated with the set of OMs [TW]
in the different aggregation methods. Each line contains the
result of 8 different flows. Line 1, for example, is associated
with the following flows:
• [CSC]+[M1]+[O];
• [TW+BD]+[M1]+[O];
• [TW+BG]+[M1]+[O];
• [TW+BL]+[M1]+[O];
• [TW+BM]+[M1]+[O];
• [TW+TS]+[M1]+[O];
• [TW+WP]+[M1]+[O];
• [TW+WS]+[M1]+[O].
Note that in all of them pruning is instantiated via [M1]

method and prediction via [O]. What changes between flows
is the ranking step, which is instantiated by both [CSC] and
AC .RankA in all possible aggregation methods together with

5https://github.com/kdis-lab/StaTDS
6https://www.rdocumentation.org/packages/stats/
7https://github.com/maximtrp/scikit-posthocs

the set of OMs [TW]. In line 2, for example, all flows have
the pruning fixed to [M1] and the prediction to [P], with the
rankings varying as in line 1. The green column presents the
F1-Macro values obtained when flows use [CSC] in their
ranking step. The columns in blue show the AC .RankA method
instantiated via MCDA aggregation methods together with
the set of OMs [TW]. Finally, the columns in yellow show
the AC .RankA method instantiated via ranking aggregation
methods together with the set of OMs [TW].
Analyzing the first line of Table 8, it is noted that CBA,

combination [CSC]+ [M1]+ [O], can be compared to a CBA’
in which all steps are the same as CBA, with the exception
of the ranking step, replaced by AC .RankA. In this case, it is
observed that in all combinations in which AC .RankA is used,
it presents better F1-Macro values, obtaining gains of up to
11% (from 0.7936 (79.36%) in [CSC]+ [M1]+ [O] to 0.8854
(88.54%) in [TW+BM] + [M1] + [O] and [TW+WS] +
[M1]+ [O]). The results obtained on all of the 432 explored
flows, both in terms of F1-Macro and model size, are available
in https://bit.ly/resultados-experimentos-defesa.
Given the above, it is possible to check whether flows

that use AC .RankA as a ranking method are better or not
compared to those that use the standard CBA method ([CSC])
in terms of performance and interpretability. The analysis is
done by grouping the results by set of OMs, as in Table 8.
To this end, statistical tests are performed (Friedman with
Nemenyi’s post-hoc test (see Section V-A)). The tests are
applied to each flow in which the pruning and prediction
method is fixed and the ranking method is varied. The aim is
to verify whether there are significant differences in relation
to F1-Macro and model size between the ranking methods
evaluated. Using Table 8 once again, tests are applied to the
configurations (flows) present in each row of the table, but
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TABLE 7. Characteristics of the datasets used in the experiments.

TABLE 8. F1-Macro results on the hayes-roth set with AC .RankA instantiated with the set of OMs [TW] in the different aggregation methods.

across the 43 datasets. Considering line 1 as an example, the
Friedman test is applied to the 8 configurations listed above
(bullets) across the 43 datasets, i.e., the test is applied to a

43× 8 matrix. The significance level used was 5%. In cases
where the null hypothesis is rejected, i.e., there is no difference
between the rankings, the Nemenyi post-hoc test is applied,
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TABLE 9. Model size results on the hayes-roth set with AC .RankA instantiated with the set of OMs [TW] in the different aggregation methods.

FIGURE 6. Critical difference (CD) diagram, in relation to the F1-Macro
values, to compare the 8 configurations (flows) present in line 1 of Table 8
across the 43 datasets.

FIGURE 7. Critical difference (CD) diagram, in relation to model sizes,
to compare the 8 configurations (flows) present in line 1 of Table 9 across
the 43 datasets.

also obtaining the critical difference (CD) diagram, as shown
in Fig. 6. This is the diagram, after applying the tests, for
the configurations present in line 1 of Table 8 across the
43 datasets in relation to the F1-Macro values. The same
procedure is also carried out, under the same conditions,
in relation to the size of the model, following Table 9. Fig. 7
shows the generated diagram.
In the CD diagrams, the lines leaving the enumerated axis

indicate the average rank of the respective configuration. Lines
connected by a bar are equivalent to configurations that do not
present critical differences between them. The analysis carried
out, for example, in Fig. 6, indicates that the configuration
referring to the [CSC] method presents an average rank of
approximately 2.9, showing no difference in relation to the
methods [BD], [BM], [BL] and [WS]. Thus, analyzing the CD
diagrams in Fig. 6 and Fig. 7 at the same time, since a balance
is sought between F1-Macro and model size, i.e., performance
and interpretability, it is possible to note that:

• In relation to F1-Macro (Fig. 6), although [CSC] appears
in the first position, standing out with the lowest average
rank, it does not present a significant statistical difference

against AC .RankA instantiated with methods [BD], [BM],
[BL] and [WS] with the set of OMs [TW];

• Regarding model size (Fig. 7), [CSC] appears in the
last position, standing out with the highest average rank,
presenting a significant statistical difference in relation
to the AC .RankA instantiated with methods [BG], [WP],
[TS], [BM], [WS] and [BL] with the set of OMs [TW];

• Thus, considering both criteria at the same time, it is
noted that AC .RankA, instantiated with the methods
[BM], [BL] and [WS], maintains the performance
of the models in relation to [CSC], but with better
interpretability.

This analysis methodology was used in all other
combinations, in order to compare the [CSC] ranking
(baseline) with the AC .RankA. As the number of CD diagrams
generated is large, in order to facilitate analysis, Table 10
was constructed from them. In the first column there is the
set of OMs used to instantiate AC .RankA, in the second the
pruning method, in the third the prediction method and in
the other columns the aggregation method used to instantiate
AC .RankA. Each cell of the table expresses the existence or
not of a critical difference between the rankings [CSC] and
AC .RankA, in both criteria analyzed, in a given configuration.
The first value in the cell refers to the existence of a difference
in relation to the F1-Macro and the second in relation to
the size of the model (L). The indication of the existence
or not of a statistical difference is represented by three distinct
symbols: ≡ for cases where there is no difference; ▲ for cases
where there is a difference and it is positive for the ranking
AC .RankA; ▼ for cases where there is a difference and it
is negative for AC .RankA, i.e., it is positive for the ranking
[CSC].

To illustrate, consider the CD diagrams in Fig. 6 and Fig. 7,
which correspond to the analyzes in the first line of Table 10).
As noted previously, the [BD], [BL], [BM] and [WS]methods,
in [TW] set, did not present statistical differences in relation
to [CSC] regarding F1-Macro; therefore, in this table, they all
have a ≡ in the first position of their respective cells. On the
other hand, [BG], [TS] and [WP], as they showed a negative
difference in relation to [CSC], have a ▼ in the first position
of their respective cells. Regarding the model size criterion,
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TABLE 10. Results referring to the critical difference analysis between the AC .RankA and [CSC] ranking methods in different induction flows.
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[BG], [BL], [BM], [TS], [WP] and [WS], as they showed
a positive difference in relation to [CSC], have a ▲ in the
second position of their respective cells. On the other hand,
[BD] has a ≡, as it did not present a difference in relation
to [CSC].

Finally, some results were highlighted in Table 10. Cells in
which there is a positive statistical difference for both criteria
were highlighted in dark green (▲ and ▲). Cells in which
there is a positive statistical difference in at least one of the
criteria, as long as the other does not present a difference, were
highlighted in green ((≡ and ▲) and (▲ and ≡)). Both colors
indicate favorable results for the AC .RankA ranking in relation
to [CSC], as they improve both criteria or just one, as long as
the other is maintained, ensuring a balance between the two.
On the other hand, cells in which there is a negative

statistical difference for both criteria were highlighted in
dark red (▼ and ▼).8 Cells in which there is a negative
statistical difference in at least one of the criteria, as long as
the other does not present a difference, were highlighted in red
((≡ and ▼) and (▼ and ≡)). Both colors indicate unfavorable
results for the AC .RankA ranking in relation to [CSC], since
they worsen both criteria or just one, as long as the other
remains the same. The remaining cases, which represent
inversely proportional behaviors, were highlighted in light
blue ((▲ and▼), (▼ and▲)). Note, in relation to the previously
used example (first line), that three instances of AC .RankA are
highlighted in green in relation to [CSC].

Considering the above, analyzing Table 10, it is possible to
note that:
• Regarding the set of OMs used to instantiate AC .RankA,
it is noted that the groups [TW], [GF] and [G2] were the
ones that obtained the most satisfactory results (green
cells), but with differences between them:
– The [TW] group presents good results in 45.24% (38 of

84 cells) of the configurations (green cells). However,
the group presents the same rate when the evaluation
criteria express an inverse relationship, i.e., 45.24%
(38) of blue cells, with the models having a smaller
F1-Macro (▼) and a better size (▲) compared to [CSC].
Therefore, on average, it does not present itself as a
good option, since, in most cases, a result at least equal
to that of [CSC] is not guaranteed;

– The [GF] group presents good results in 47.62% (40)
of the configurations (light green cells). Furthermore,
in 3.57% (3) of the configurations it presents
better results in relation to both evaluated criteria
(dark green cells). Finally, it maintains the same
performance compared to [CSC] in 40.48% (34) of
the configurations (yellow cells). Therefore, it presents
itself as a good option, as it is possible to improve or
maintain results more than 90% of the time;

– The [G2] group is between [GF] and [TW]. It presents
good results in 52.38% (44) of the configurations
(green cells). However, although the group maintains

8There were no configurations in this condition.

the same performance in relation to [CSC] in 28.57%
(24) of the configurations (yellow cells), it presents
a rate of 14.29% (12) when it comes to the inverse
relationship between the criteria (blue cells). However,
these cases only occur in flows where [DN] pruning
is used. Thus, disregarding the flows related to [DN]
(28), it presents results similar to [GF]: 50% of green
cells (28/56) and 42.86% of yellow cells (24/56).

Considering the above, the [GF] group is the most
suitable for instantiating AC .RankA. It is worth
mentioning that the groups [C1] and [G1] did not obtain
good results: [C1] presents similar results to [CSC]
(77.58% of yellow cells (65)), with some lower results
(20.24% of light red cells (17)); [G1] presents, in more
than half of the configurations, lower results than [CSC].

• Regarding the aggregation methods used to instantiate
AC .RankA, it is possible to note that:
– When combined with the [TW] group, [BL], [BM]
and [WS] stand out, all of them covering 75% of the
settings (9 out of 12 cells);

– When combined with the [GF] group, [BL] and
[TS] stand out, both covering 91.67% of the settings
(11/12);

– When combined with the [C1] and [G1] groups, [BD]
stands out, covering, respectively, 16.67% (2/12) and
25% (3/12) of the settings;

– When combined with the [G2] group, [BL] stands out
covering 83.33% of the settings (10/12).

Considering the above, the method that stands out the
most is [BL].

Considering the discussion presented above, it is therefore
clear that the best instance of AC .RankA is the one that
combines [GF] + [BL] and should, therefore, be the one
used. However, it is worth mentioning that, in relation to the
[GF] group, the [TS] method also stands out, also presenting
itself as a viable alternative (the difference in relation to [BL]
occurs in just one configuration ([DN]+ [O])). Both are stable
when used together with the [GF] group. Nevertheless, [BL]
was also stable in other sets of OMs.

C. COMPLEMENTARY ANALYSIS
As mentioned, the work most related to the one presented here
is that of [22] (MoMAC, Section III-D), since it was designed
to simultaneously optimize performance and interpretability.
Therefore, this section aims to discuss some aspects related to
it when compared to the results presented here.

Initially the idea was to run MoMAC on the same datasets
used here and include it in the comparative analysis. Therefore,
we downloaded its implementation from GitHub9 and tried
to obtain the same results reported in the paper. However, the
output of the method, as it is based on a genetic algorithm,
is a collection of individuals, making it necessary to select a
specific solution (individual). To do so, a graph is presented to
the user, so that he or she can select the desired solution. The

9https://github.com/banhdzui/MoMAC-v1
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graph presents a set of candidate solutions, all of them aiming
to optimize Accuracy and L. In this way, while the x axis of
the graph indicates the error (1)-Accuracy) obtained by each
of the solutions, the y axis indicates the size of the models
(L). The idea is to analyze the graph and choose the individual
that produces the best balance between error and L. Therefore,
it was not possible to reproduce the results, as the solution
they chose to carry out the analyzes and statistical tests is not
known. Furthermore, choosing the most appropriate solution
to be used is not trivial in some of the datasets explored here.
Thus, it was decided to hold a discussion based on the results
presented in their paper.
Regarding performance, computed by them via F1-Micro,

the authors compare MoMAC with several other algorithms,
including CBA and CMAR. In relation to these algorithms
MoMAC is superior; however, in relation to other algorithms
it does not present a significant statistical difference (the
authors used Friedman with Bonferroni-Dunn). However,
it is worth mentioning that the average ranks obtained for
the explored configurations are close and, depending on the
solution (individual) chosen, the results of the statistical
tests may change (small differences in values change the
ranks).
Regarding model size, MoMAC presents much larger

models (more rules) than CBA and other explored algorithms.
Thus, even modeling the solution through an optimization
problem, MoMAC presents an inverse relationship between
performance and interpretability. Finally, it is worth
mentioning that the user must specify the maximum error
that the model can make, as well as the maximum number of
rules that can be contained in the models. There are several
choices that affect the results.

Considering the above, it can be said that AC .RankA is the
one that guarantees a better balance between performance
and interpretability. Finally, another criterion not addressed
in this work, included in the MoMAC reference, refers to
the execution time of the methods. As it is a solution based
on neural networks and genetic algorithm, it is, in general,
much slower than almost all the algorithms used in the
comparative analysis carried out by the authors, including
CBA and CMAR (MoMAC just does not lose to one of
the selected algorithms). On the other hand, the method
proposed here, as it uses less computationally expensive
strategies, ends up not being impacted in relation to this
aspect. [23] present some experiments in relation to this
aspect.

VI. CONCLUSION
This work presented amethod for ranking rules via aggregation
of OMs, named AC .RankA, to be incorporated into ACs
induction flows, aiming to induce models that present a
better balance between performance and interpretability.
Previous studies had already used Pareto [20], ensemble
of classifiers [21] and multi-objective optimization [22].
However, an inverse relationship between performance and
interpretability was verified in them. Therefore, in this work

we chose to use multi-criteria decision analysis (MCDA) and
ranking aggregation.

For AC .RankA to work, it must be instantiated with a set of
OMs and an aggregation method. The sets of OMs explored
were obtained or generated from works in the literature,
namely: [TW], [GF], [C1], [G1] and [G2]. The selected
aggregation methods were [BD], [BM], [BL] and [BG],
referring to the ranking aggregation family, as well as [TS],
[WS] and [WP], referring to the MCDA family.
The proposed method was evaluated in several ACs

induction flows in terms of performance, measured via
F1-Macro, and interpretability, measured via model size. Both
criteria were estimated via stratified 10-fold cross-validation.
The experiments were performed on 43 datasets. The ranking
method used as baseline was the one used in CBA, i.e., [CSC].
The analysis was based on statistical tests, comparing the
different flows when ranking takes place via [CSC] and via
AC .RankA. Regarding the obtained results, it was noted that:
• The AC .RankA method, in comparison to other works,
is the one that guarantees a better balance between
performance and interpretability;

• it was noticed, in several experiments, the inverse
relationship between performance and interpretability,
being possible to observe in different settings an
improvement in the size of the model and a worsening in
performance (and vice versa), such as the configurations
related to the [TW] group;

• The suggested instantiation for AC .RankA is the one that
combines [GF]+[BL]. This combination guarantees a
good balance between the criteria analyzed in relation
to the [CSC] ranking, as it is possible to improve or
maintain results more than 90% of the time. In other
words, it is possible to improve interpretability without
losing performance. It is assumed that the [GF] group
performed better because it was extracted from sets with
different distributions (IR) and that, in a certain way,
it contributed to the ordering of the rules in the different
classes;

• Among the aggregation methods, [BL], [BM], [WS],
[TS] and [BD] stand out depending on the set of OMs
used; however, [BL] is what stands out the most.

Since AC .RankA is proposed to be instantiated with a set of
OMs and an aggregation method, with regard to future work
it can be mentioned:
• the exploration of other ranking aggregation methods,
such as those available in the FLAGR library [67];

• the exploration of other MCDAmethods, as well as ways
of assigning weights to measures (criteria), since, in this
work, they all received the same weight;

• the investigation and/or proposition of other sets of OMs,
since the impact of this parameter on the results was
notable, being responsible for major changes in both the
interpretability and performance of the model.

Thus, AC .RankA can continue to be explored by the
community, aiming not only to balance the two criteria, but to
improve both.
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TABLE 11. Equations of the OMs mentioned and/or used in this work.
Adapted from [17]. The measure (ID) highlighted with a ‘‘*’’ was adjusted
according to the definition in [68]. The measures, identified via IDs, are as
follows: (1) Accuracy; (2) Added Value; (3) Chi-Square; (4) Collective
Strength; (5) Complement Class Support; (6) Conditional Entropy
(CON_EN); (7) Confidence; (8) Confidence Causal; (9) Confirm Causal;
(10) Confirm Descriptive; (11) Confirmed Confidence Causal; (12)
Correlation Coefficient; (13) Cosine; (14) Coverage; (15) Dir; (16)
F-Measure; (17) Gini Index; (18) Goodman Kruskal; (19) Implication Index;
(20) J-Measure; (21) Kappa; (22) Klosgen; (23) K-Measure; (24) Kulczynski
2; (25) Least Contradiction; (26) Leverage; (27) Lift; (28) Loevinger; (29)
Logical Necessity; (30) Mutual Information; (31) Normalized Mutual
Information; (32) Odd Multiplier; (33) Odds Ratio; (34) One Way Support;
(35) Piatetsky Shapiro; (36) Prevalence; (37) Putative Causal Dependency;
(38) Recall; (39) Relative Risk; (40) Specificity; (41) Support; (42) Theil
Uncertainty Coefficiente; (43) TIC; (44) Two Way Support.

TABLE 11. (continued.) Equations of the OMs mentioned and/or used in
this work. Adapted from [17]. The measure (ID) highlighted with a ‘‘*’’ was
adjusted according to the definition in [68]. The measures, identified via
IDs, are as follows: (1) Accuracy; (2) Added Value; (3) Chi-Square; (4)
Collective Strength; (5) Complement Class Support; (6) Conditional Entropy
(CON_EN); (7) Confidence; (8) Confidence Causal; (9) Confirm Causal; (10)
Confirm Descriptive; (11) Confirmed Confidence Causal; (12) Correlation
Coefficient; (13) Cosine; (14) Coverage; (15) Dir; (16) F-Measure; (17) Gini
Index; (18) Goodman Kruskal; (19) Implication Index; (20) J-Measure; (21)
Kappa; (22) Klosgen; (23) K-Measure; (24) Kulczynski 2; (25) Least
Contradiction; (26) Leverage; (27) Lift; (28) Loevinger; (29) Logical
Necessity; (30) Mutual Information; (31) Normalized Mutual Information;
(32) Odd Multiplier; (33) Odds Ratio; (34) One Way Support; (35) Piatetsky
Shapiro; (36) Prevalence; (37) Putative Causal Dependency; (38) Recall; (39)
Relative Risk; (40) Specificity; (41) Support; (42) Theil Uncertainty
Coefficiente; (43) TIC; (44) Two Way Support.
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APPENDIX A
ABBREVIATIONS
The most used acronyms in this work are presented below:

L Model Size.
AC(s) Associative Classifier(s).
AP Apriori.
AR(s) Association Rule(s).
BD Borda Median.
BG Borda Geometric Mean.
BL Borda 2-norm.
BM Borda Arithmetic Mean.
C1 Set of OMs C1.
CAR(s) Classification Association Rule(s).
CBA Classification Based on Association

Rules.
CD Critical Difference Diagram.
Conf Confidence.
CSC Confidence, Support, Cardinality.
CV Coverage Pruning.
DN Dynamic Pruning.
G1 Set of OMs G1.
G2 Set of OMs G2.
GF Set of OMs GF.
IR Imbalanced Ratio.
M1 M1 Pruning.
MCDA Multi-criteria Decision Analysis.
O Ordinal Prediction.
OM(s) Objective Measure(s).
P Probabilistic Prediction.
R Rank-based Prediction.
Sup Support.
TS Topsis.
TW Set of OMs TW.
V Voting Prediction.
WP WPM.
WS WSM.

APPENDIX B
DEFINITION OF OBJECTIVE MEASURES
This appendix presents in Table 11 the equations of the OMs
mentioned and/or used in this work.
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