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ABSTRACT Recent studies have revealed that visual-auditory sensory substitution devices (SSDs) can
effectively convey visual information to visually impaired or blind individuals through sound. However,
SSDs are still not widely available to the visually impaired and blind community. Addressing these
challenges requires not only the development of efficient SSD algorithms but also the evaluation of the impact
of SSDs on the devices and environments in which they are used. This study represents the first attempt to
analyze the impact of the device or environment used for SSDs on users’ perceptual abilities. To achieve this
goal, we developed an experimental procedure that involves both the training of the SSD algorithm and the
changing environment and devices that receive the audio signal. Two user experiments were conducted and
revealed that user perception is significantly affected by the device and environment used for SSDs. These
findings underscore the importance of considering the effect of the device and environment in which it will
be used when designing an SSD algorithm or training system.

INDEX TERMS Sensory substitution, visual-auditory conversion, visual perception.

I. INTRODUCTION
The lack of vision not only impacts daily life, causing
mobility issues, but also limits experiences and understanding
of situations. Several research studies have been conducted
to convey visual information to visually impaired or blind
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individuals. One of the most promising methodologies is
the utilization of visual-auditory sensory substitution devices
(SSDs), which employ specific algorithms to convert visual
data into auditory signals. Previous studies have demon-
strated the potential of SSDs in supporting visually impaired
individuals across various applications. For example, using
visual-auditory SSDs, those with visual impairments or
partial sight can effectively identify objects [1], [2], detect and
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evade obstacles [3], extract depth cues and estimate distance
to object [4], [5], [6], perform navigation task [7], [8], [9] and
even recognize facial expressions [10], [11].
Recently, several efforts have been made to investigate

the viability of employing deep learning for visual-auditory
SSDs, using these methodologies to assess the quality of the
substituted signal produced by the SSDs. For instance, in a
study conducted by [12], deep learning was applied to assess
two distinct encoding schemes for a visual-auditory SSD.
In another study, Kim et al. [13] employed a cross-modal
generative adversarial network (GAN) to identify the most
effective auditory sensitivity, aiming to minimize transmis-
sion latency in visual-auditory sensory substitution. The
same researchers further utilized deep learning techniques
to optimize the sensory substitution algorithm concerning
frequency range and mapping function [14].
Despite the prevalence of various technical approaches, the

visually impaired and blind communities have not yet widely
adopted SSDs [15], [16]. Several factors, such as their high
cost, complexity of use and operation, and the time required
to comprehend and adapt to the algorithms, hinder their use.
Moreover, most studies have been conducted in laboratory
environments, without considering the real-world conditions
in which SSDs are used. Therefore, we believe that analyzing
and researching the various conditions under which SSDs are
used can help to close this gap.

The process of training a visual-auditory SSD entails
acquiring the ability to interpret spatial patterns or environ-
mental information conveyed through sound [4], [17], [18],
[19], [20]. However, given its exclusive reliance on sound,
this approach is susceptible to changes in the device deliv-
ering the audio signal and the user’s auditory environment.
Unfortunately, most research on visual-auditory SSDs has
focused on developing effective systems without considering
actual operating conditions. To assess the efficacy of a
visual-auditory SSD, it is essential to conduct an evaluation
examining the extent to which visual information is conveyed
through the substituted audio input across diverse conditions.

Previous studies have used devices such as headphones
and bone conduction headsets as visual-auditory SSDs.
However, no studies have directly compared the effectiveness
of these devices. Moreover, there have been no reported
cases studying the effectiveness of SSDs in various living
environments. Therefore, it is important to analyze changes
in the extent to which users perceive visual information con-
veyed by substituted audio signals under various conditions,
in conjunction with the development of efficient algorithms
or SSDs.

To address these issues, we first developed an integrated
experimental procedure to train individuals without prior
experience with SSDs. We aimed to evaluate their ability
to distinguish visual information from transmitted audio
signals, considering changes in devices and environments.
This experiment demonstrated how participants’ perceptions
of SSDs change under real-world use conditions. Three
representative types of commercially available devices and

three categories of environmental sounds in daily life were
used. To the best of our knowledge, this is the first study to
analyze the extent to which users visually perceive changes
based on the device and environment used for SSDs. The
findings of this study indicate that the development of
efficient SSD algorithms requires full consideration of the
conditions under which SSDs are used. Additionally, they
can serve as guidelines for designing programs and platforms
to train users on the effective use of SSDs. The main
contributions of this study can be summarized as follows:

• We present an experimental procedure that con-
sider both SSD algorithm training and changing
device/environment conditions to verify the ability
to select correct visual image corresponding to the
presented substituted audio signal.

• We investigate whether the type of device used for SSD,
such as earphones, headphones, or bone conduction
headsets, had a significant impact on user performance.

• We show that changes in outdoor ambient sounds impact
the efficiency of visual-auditory SSDs.

The remainder of this paper is organized as follows: Sec-
tion II presents an overview of the related work on the training
of visual-auditory sensory substitution. A detailed description
of the proposed method, including the experimental setup
and procedure, is given in Section III. Experimental results
are presented in Section IV. The impact of device and
environment and future work for the development of efficient
visual–auditory SSDs are discussed in Section V. Finally, the
conclusions are set out in Section VI.

II. RELATED WORK
Visual-auditory SSD enables the interpretation of visual
information through auditory signals. To what extent can
visual information be transmitted using SSD, and how
can user efficiently learn the SSD algorithm? These issues
have always been raised as major concerns because visual
information is artificially coded using an audio frequency.
Therefore, training visual-auditory SSD involves learning to
perceive visual patterns from auditory signals.

In an early study by Amedi et al. [17], blindfolded
sighted subjects were trained on pattern recognition using
the vOICe (the letters in the middle of the abbreviation
stand for ‘‘Oh I see’’) [21]. Over a period of 20 days,
participants underwent training to identify a range of object
positioned in front of them. At the end of the training period,
participants demonstrated approximately 70% accuracy in
selecting the appropriate image for a given sound. In addition
to pattern recognition, Auvray et al. [18] conducted a study
that demonstrated the possibility of object localization with
vOICe training. They showed that blindfolded participants
were able to approach a table in a room and accurately point
to an object placed on the table from one of nine possible
locations. In a similar study conducted by Jacomuzzi and
Bruno [19], blindfolded participants were presented with
one of nine rectangles at various locations on a screen.
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They then listened to the corresponding sound generated by
the vOICe and indicated the location in the screen where
the target rectangle was located. The task resulted in a
performance accuracy of around 90%. In addition, Butorova
et al. [4] conducted an experiment to test the effectiveness
of depth perception in visual-auditory SSD. The aim of this
study was to evaluate the influence of linear perspective,
one of the monocular depth cues, on the accuracy of
object localization using vOICe. The study demonstrated that
participants tended to overestimate distance in depth more
than in width. However, the group with linear perspective
exhibited greater overestimation in both depth and width.
Moreover, a study by Pesnot Lerousseau et al. [20] found
that participants’ ability to identify sounds was influenced
by visual distractors presented simultaneously, indicating
shared processes between vision and sound. Additionally,
participants’ performance during training and their associated
experiences depended on their auditory abilities.

Following the recent success of deep learning, several
efforts have been proposed to enhance the efficiency of the
visual-auditory SSD algorithm. The study by [13] proposed
a cross-modal GAN-based evaluation method to identify the
optimal auditory sensitivity for analyzing suitable auditory
sensitivity in visual-auditory SSD. They modelled that the
temporal length of the auditory signal for sensory substitution
can be reduced by 50% using a deep learning model.
The model was validated on three groups of participants
(congenitally blind, late blind, and sighted users). In another
study [14], a deep learning method was used to optimize the
vOICe algorithm’s frequency range and frequency mapping
function. However, these studies only showed the possibility
of applying deep learning methods to visual-auditory SSDs,
and the training method was identical to existing behavioral
experiments.

As described so far, behavioral findings from existing
visual-auditory SSD studies have shown the potential for
conveying visual information through sound. However, it is
important to note that these studies have been conducted
primarily in laboratory settings, without consideration of the
real-world environments in which SSDs are actually used.

III. PROPOSED METHODS
A. THE VOICE ALGORITHM
We employed the vOICe algorithm, which is designed to
convert and translate visual images into auditory input.
As illustrated in Fig. 1, the vOICe algorithm converts
visual information captured by a camera into sound using
three parameters. To convert two-dimensional visual images
into audio, the vOICe algorithm processes the image using
column-wise scanning. The vertical position of each column
is then coded into a predefined sound frequency, with a higher
position corresponding to a higher frequency. The horizontal
dimension of the image is mapped to time, with each column
representing a moment in time from left to right, and the

FIGURE 1. Description of vOICe conversion method. The vOICe
visual-auditory sensory substitution method converts visual data into an
audio signal. The Y-axis information (pixel position) of each column of
the image is translated into the pitch and frequency of a sinusoidal
sound. Consequently, the higher position within the column is
represented by a higher pitch compared to the lower positions. The X-axis
information of each column in the visual image is conveyed temporally.

leftmost column of the image represents the earliest moment.
Additionally, the visual intensity of each pixel in the image
is converted into the corresponding volume of a sound. Thus,
the conversion of a visual image into a sound occurs from left
to right by adding up the sounds represented by the vertical
position of all pixels in the corresponding column at a given
time point.

B. PARTICIPANTS
A total of 45 sighted individuals with normal hearing,
aged between 19 and 47 years (23 men, 22 women, mean
age = 27.9 ± 7.1 years), participated in this study. All
participants were unfamiliar with the vOICe algorithm and
had no prior experience with any other SSDs. Although
SSDs are generally aimed at supporting visually impaired and
blind people, we recruited sighted participants in accordance
with the recommendation in a study by [22] and [23]. All
participants were randomly assigned to one of three groups
based on the type of audio transmission device: wireless
earphones—Sennheiser MOMENTUM True Wireless 3 Ear-
buds (N=15, 7 women, mean age 25.7±6.18); wireless
headphones— Sony WH-1000XM5 (N=15, 8 women, mean
age 30.8±7.25); and bone conduction headsets— Shokz
OpenRun Pro (N=15, 7 women, mean age 27.3±7.23).

All participants provided written informed consent and
received monetary compensation for their participation. The
study was conducted in cooperation with the Graduate
School of Welfare at Kangnam University. All research
procedures and experiments were conducted in accordance
with the principles of the Declaration of Helsinki. The
Institutional Review Board (IRB) at Kangnam University
(KNU-HR2022007) approved the study.

C. STIMULI
The visual images consisted of simple black and white
shapes, including five basic shapes (circle, triangle, square,
pentagon, and hexagon) and 20 variations. The auditory
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FIGURE 2. Auditory stimuli sequence for the experiment. Visual feedback
was used during training to teach the participants to interpret and
perceive the SSD sound of vOICe. To maintain their concentration during
the experiment, visual feedback was provided using symbols and images
corresponding to the onsets of the SSD sound stream. The white plus
symbol in the visual stream for training and testing indicates the start
and end signals and the yellow plus symbol represents the vOICe sound
of the image playing.

stimuli were converted from visual images using the vOICe
algorithm. A given visual image was divided into 64 rows
and 64 columns of pixels. For vertical information, a column
consisted of 64 pixels, each corresponding to a predefined
sound frequency from a range of 80 to 7,600 Hz, in the
increasing order of the Mel-scaled frequency distribution
with a higher row in a higher vertical position. For horizontal
information, an image divided into 64-pixel columns was
scanned from left to right at the rate of 1.05 seconds per
frame. The pixel sounds corresponding to 64 pixels in the
same column were generated following the abovementioned
vertical information conversion method and played simul-
taneously. The loudness of the sound was determined by
the intensity of the visual image, with white producing the
loudest sound and black being silent. The 16 gray levels
were used to map the intermediate values between white
and black.

The sequence shown in Fig. 2was used to generate auditory
stimuli for the visual-auditory conversion of a given image.
To conduct the experiment in an environment similar to that
of visually impaired people, all participants were blindfolded
and relied on their hearing throughout the experiment.
A one-second starting sound was given to participants to
indicate the beginning of the visual-auditory conversion
signal transmitted through the headset. After the starting
sound, a converted sound for a given visual image using
the vOICe followed. A short end sound followed the vOICe
sound to indicate that the transmission of the visual-auditory
conversion signal for the corresponding image frame had
ended. Participants may have been confused with the starting
point if SSD sounds were conveyed continuously. To prevent
this confusion regarding the starting point, an additional
50 ms click sound was provided to inform the participants
of the start of the next vOICe sound. Upon wearing the audio
device, the volume was set at 15% and adjusted within ±5%
upon participants’ request.

D. EXPERIMENTAL SETUP
The experiment was conducted on laptop computers using
off-the-shelf devices to convey visual-auditory sound. Images
were transformed into artificial sounds, which were then
played through the above mentioned three types of hearing
devices.

We developed a program consisting of seven-step sessions
to conduct the experiment and collect data from participants
at each stage. Sessions were held at intervals of a minimum
of two to a maximum of four days, and each participant
participated in no more than one trial per day. To reduce
fatigue and maintain concentration, participants were per-
mitted to take a break at any point during the experiment.
When they resumed, the experiment continued from the
stopping point. However, the total time for each session did
not exceed 45 minutes. Furthermore, all participant activities
were automatically saved on a NoSQL server database
(MongoDB) for analysis purposes.

E. EXPERIMENTAL PROCEDURE
The experimental procedure is summarized in Figure 3.
Following the experimental design, the entire experiment
procedure was divided into three task blocks: (1) learning
the SSD algorithm, (2) inter-device discrimination task,
and (3) inter-environment discrimination task. Each step
of the experiment consists of a training and test stage.
Before advancing to the next step, participants underwent a
four-alternative forced choice test: they were presented with
four images and had to select the one that corresponded to
the vOICe sound they heard. This test aimed to quantitatively
evaluate the extent of participants’ learning during each step.

Before commencing the experimental procedure, all par-
ticipants were provided with an explanation of the image-to-
sound conversion rule and instructed to utilize and visualize
these rules during their tasks. Subsequently, they completed
the SSD algorithm learning, which constituted the first block
of the task procedures, without any exposure to the vOICe
sound.

The SSD algorithm learning task comprised four sessions,
each with a training and test stage. The task involved three
training groups, which differed with regard to the type of
device used to hear auditory stimuli during training: wireless
earphones (Group A), wireless headphones (Group B), and
bone conduction headsets (Group C). During the training
stage, we used five basic shapes and 10 out of 20 variant
images (randomly selected). These 15 selected images were
converted to audio 10 times in a pseudo-randomized order,
resulting in a total of 150 items for training. Participants
were instructed to observe changes in sound accompanying
changes in the images and to imagine the relationship
between the image and the related audio. Each vOICe sound
was heard by all participants, followed by the display of
the visual image on the screen for feedback purposes. After
receiving visual feedback for the heard audio, participants
continued to the next stimulus by pressing the space bar.

90504 VOLUME 12, 2024



M. Kim et al.: Impact of Device and Environment on Visual-Auditory Sensory Substitution

FIGURE 3. Illustration of experimental procedure. The experiment involved three groups of sighted participants, each using a different device to
receive SSD sounds. All participants completed seven-step sessions, divided into three task blocks. The training stage procedure was identical for all
steps, except for the randomly selected images. To examine the dependency between the device and the environmental sound, participants from
each user group were randomly assigned to one of three subgroups and participated in the fifth and seventh tasks of the experiment.

After completing 150 training trials, participants were
automatically directed to the test stage to evaluate their
ability to identify visual images from audio stimuli. The
test stage followed the same procedure as the training stage.
However, all visual images were taken from the completed
training stage, while the remaining images were new to the
participants. During this stage, we randomly repeated the
procedure five times, resulting in a total of 125 test items.
For each trial of the test stage, participants were presented
with an audio stimulus and four visual images and asked to
select the visual image that corresponded to the heard sound.
Each participant completed four forced-choice tasks, with a
chance level of 0.25, to identify the correct visual image for
each sound. The remaining three steps of the SSD algorithm
learning task were identical, except for the shapes randomly
selected for use in each training stage.

To compare the identification of SSD sounds across dif-
ferent experimental conditions, an inter-device identification
task was conducted after the first four sessions of the
procedure. Participants were instructed to train the vOICe
sound corresponding to the change in the transmission
device. Each participant group was randomly divided into
three sub-groups according to the device used to convey
sound. For example, user group A (n=15) was divided into
three subgroups: AA, AB, and AC, each consisting of five
participants. Consequently, the experiment was conducted
with a total of nine subgroups (AA, AB, AC, BA, BB, BC,
CA, CB, CC). The first letter of the group name indicates
the group, and the last letter indicates the sub-group within

the group using the changed device. Therefore, the AA,
BB, and CC subgroups used the same device as in previous
steps and served as a reference group for comparison with
other subgroups within the same group. The experimental
procedure for the training and test stages was similar to that
of the SSD algorithm learning task.

After completing the inter-device discrimination task,
participants in subgroups that used different devices were
required to conduct an adaptation session where they returned
to using their original device. This was completed during
the sixth session of the experimental procedure and was
necessary to ensure consistent results in the following steps,
as variations could occur due to subjects using different
devices. The experimental procedure for the training and test
stages was identical to that of the previous steps.

To investigate the impact of environmental sounds on the
effectiveness of SSDs, we conducted an inter-environment
discrimination task. In the last session of the experimental
procedure, the training stage for this step was conducted
using the same procedure as in the previous steps. During
the test stage, each group was divided into three subgroups
were presented with three different types of environmen-
tal sounds through separate speakers (Bang & Olufsen
BeosoundA1). These soundswere: natural environment (E1),
which included wind and rain sounds; outdoor environment
(E2), which included object sounds such as of roads and
crossroads; and indoor environment (E3), which included
conversation and radio sounds. Throughout the experiment,
environmental sounds were played at a volume ranging from
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30 dB to 70 dB. The test stage of this step followed the same
procedure as those of all previous steps.

IV. RESULTS
A. BEHAVIORAL PERFORMANCE
As the first part of our experimental procedure to investigate
the differences in efficiency between different devices used
to receive SSD sounds, we conducted SSD algorithm learning
on participants with no prior experience with SSDs. This task
comprised four sessions, each conducted every four days. The
experiment’s performance was evaluated by calculating the
proportion of participants and groups that selected the correct
answer during each session’s testing stage.

Fig. 4 illustrates the changes in average training time
and proportion of correct answers obtained during the SSD
algorithm learning task. The results indicate that, despite
slight differences in the change rate depending on indi-
vidual characteristics, the participants’ overall training time
decreased as they progressed through the task. In addition,
participants in both Group A, who wore wireless earphones,
and Group B, who wore wireless headphones, gradually
perceived visual information from the converted vOICe
sounds as training progressed. No significant difference was
found between the two groups. However, in the case of
group C, who wore wireless bone conduction headphones,
the average increased as the sessions progressed but did not
reach the overall average of all user groups involved in the
task.

B. EFFECT OF DEVICE CHANGE
Our study aimed to investigate the extent to which changes in
the device used to receive SSD sounds affect the recognition
of visual information. This task was conducted during the
fifth step of the experimental procedure. To achieve this
goal, we divided the participants into three subgroups,
two of which were tested with different audio devices,
while the third was tested without any changes to their
device. The collected data were statistically analyzed using
SigmaPlot 14.5 software. We evaluated how experimental
participant groups perceived information differently when
changing devices by calculating group-specific means and
standard deviations. Statistical evaluation was conducted
using one-way analysis of variance, and post-hoc verification
was performed using the Bonferroni t-test. Significance was
considered when the p-value was less than 0.05.

A significant difference was found in group A, in which a
difference in the recognition level of subgroups was observed
depending on the device used in the test, even if learning is
carried out using the same device. Fig. 5 illustrates the com-
parison of subgroup recognition within the group, according
to the change in SSDs. Among the three subgroups in Group
A that used earphones, subgroup AA, which did not change
the device during the test, showed a t-value of 2.98 and a
significance value (p) of 0.034 compared to subgroup AC,

which changed the device to bone conduction headphones.
Furthermore, subgroup ABwho switched to headphones, and
subgroup AC who switched to bone conduction headphones
exhibited a significant difference, with a t-value of 3.94 and
a significance value (p) of 0.006. However, no significant
difference was observed between subgroup AA and subgroup
AB. Group B, who used headphones for SSD learning,
also experienced a change in visual recognition when they
changed devices. Subgroup BB, who did not change devices
during the test, and the subgroup BC, who switched to bone
conduction headphones, showed a significant difference with
a t-value of 3.39 and a significance value (p) of 0.016.
However, no other difference was observed in switching from
headphones to other devices, other than an overall decrease
in participants’ perception. In Group C, where participants
used wireless bone conduction headphones, the percentage of
correct responses increased even after participants switched
to wireless earphones (subgroup CA) and wireless head-
phones (subgroup CB). In all device change experiments,
recognition rates increased across all experimental groups
when switching to headphones. Conversely, when the device
was changed to a bone conduction headset, the ability to
recognize visual information decreased in all experimental
groups. These results indicate that SSD performance is
influenced not only by efficient algorithms but also by the
specific device used.

C. EFFECT OF AMBIENT SOUNDS
Finally, to investigate a potential dependency on the envi-
ronment for perceiving visual information from an audio
signal, we conducted the final test stage of this experiment,
presenting three types of environmental sounds to each group
of participants through separate speakers. Fig. 6 depicts the
change in visual perception when three environmental sounds
were played to each group of participants using different
devices. For Group A, who used wireless earphones for SSD
learning, environmental sounds did not affect the perception
of visual information, except for the indoor environment (E3).
In this group, for the E1 subgroup (natural environment), the
t-value was 3.08 and the significance value was 0.028, and
for the E2 subgroup (outdoor environment), the t-value was
3.95 and the significance value (p) was 0.006, indicating a
significant difference compared to the E3 subgroup (indoor
environment). Group B, who used wireless headphones
for SSD learning, showed similar results to Group A: the
environmental sounds did not affect the perception of visual
information, with the exception of the indoor environment
(E3). In this group, only the E2 subgroup (outdoor envi-
ronment) had a t-value of 2.88 and a significance value
(p) of 0.042, showing a significant difference compared to
the E3 subgroup. However, for Group C, who used bone
conduction headsets, no significant difference was observed
in any of the subgroups according to environmental sound.
In particular, the other two groups whose ears were covered
or blocked showed similar perceptual abilities when using
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FIGURE 4. Mean performance of the three participant groups in the training sessions. Participants (n=15) were randomly assigned
to one of three groups based on the type of audio device: wireless earphones, wireless headphones, or bone conduction headsets.
The figure depicts changes in consumption time and the average proportion of correct answers as the procedure progressed. The
upper row depicts the former, while the lower row depicts the latter. The results were plotted against the change in the average
behavioral score across the subject groups. The following variables were measured: (a) training time of each session, (b) testing
time for evaluation, (c) total execution time of each session, (d) proportion of correct answers for trained images in each session,
(e) proportion of correct answers for untrained images in each session, and (f) proportion of correct answers for all images.

FIGURE 5. Comparison of recognition in accordance with the change of
hearing devices. Each subject group was divided into three subgroups.
(a) Group A trained with wireless earphones, (b) Group B trained with
wireless headphones, and (c) Group C trained with bone conduction
headset. The first letter of the subgroup name indicates the original
group, and the last letter indicates the sub-group within the group using
the changed device. Asterisks atop the bar plot indicate the significance
level (* p < 0.05, ** p < 0.01).

bone conduction headsets in E1 (natural environment) and
E3 (indoor environment), which were clearly different. These
results demonstrate that Group C is particularly affected
by environmental sound. Our experimental results reveal
differences in the visual information perceived by users
depending on the environment in which the SSD is actually
used.

FIGURE 6. Comparison of recognition in accordance with the change of
hearing environment. The experimental groups were divided into
subgroups labelled E1, E2, and E3, which used sounds from natural,
outdoor, and indoor environments, respectively, during the test stage.
(a) Group A trained with wireless earphones, (b) Group B trained with
wireless headphones, and (c) Group C trained with bone conduction
headset. Asterisks atop the bar plot indicate the significance level (* p <
0.05).

V. DISCUSSION
A. IMPACT OF DEVICE AND ENVIRONMENT
We have demonstrated how the visual information perceived
by the user from the transmitted audio signal varies depending
on the SSD and environment in which it is used. To achieve
our goal, we developed an experimental procedure that
considers both the training of the SSD algorithm and the
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changing conditions of the device and environment in which
the audio signal is heard.

With regard to learning the visual-auditory SSD algorithm,
all participants underwent four training sessions in which
they learned to identify visual image from vOICe sound. The
aim of this task was to evaluate whether subjects’ ability
to identify visual images from audio input changed as they
progressed through the learning procedure. Performance was
evaluated using the trained as well as untrained images. The
experimental results reveal that the learning time decreased
and the user’s perceptual ability increased during the learning
process, regardless of the subject groups classified by
the device used for training. Participants performed above
chance levels on all tasks, regardless of prior knowledge
of the test items. This demonstrates that visual-auditory
conversion using vOICe can be effectively understood with
short-time training and is highly adaptable to users with
no experience of SSDs. However, some differences were
observed depending on the type of device used. In particular,
the group of participants using bone conduction headsets,
which exposed them to external noise while listening to the
audio signal, had more difficulty learning than the groups
using other devices. This finding suggests that although
performance improvements may occur after a short period of
training, they are highly dependent on the SSD used and the
ambient noise.

Assessing the impact of changing the device used to
train the SSD algorithm and that used in practice on the
user’s perceptual abilities revealed that the impact varied
depending on the device. Our experiment demonstrated that
the user’s overall perceptual ability increased during testing
when headphones were used, regardless of the devices used
in training. However, if the training was conducted using
earphones or headphones but tested with a bone conduction
headset, the time taken for the participant to complete the test
increased and their performance significantly decreased. The
reason for this result is that, although the experiment was
conducted under well-controlled laboratory conditions, the
vOICe sound transmitted was different from the other two
devices, which may have made it difficult for participants
to adapt. Another finding from this task was that the
participants’ performance improved when they were trained
with the bone conduction headset and then tested with
another device. However, this increase was not statistically
significant. The experimental results reveal that learning with
a bone conduction headset can provide a lower bound for
recognizing information through SSD, regardless of changes
in the actual device or environment. Therefore, considering
the practical use of SSDs, this finding recommends using
a bone conduction headset as the device for efficient SSD
learning.

We were also interested in the issue of the environment
of SSDs, which has not been explored before. We thus
investigated the extent to which users could recognize visual
information from audio as the ambient sound changed.

For visual-acoustic SSDs, it is important for users to hear
surrounding sounds in addition to the visual information
converted to audio. Therefore, to develop efficient SSD
algorithms, these situations must be considered. Thus,
we examined the impact of the environment on perceptual
abilities when using the SSD. The study revealed that
alterations in the environment had a noteworthy effect
on the learning times of the subjects. However, their
perceptual abilities continued to improve. The experiment
resulted in the highest and lowest performance in the
outdoor and indoor environments, respectively, across all
subject groups. Overall, the experiment results revealed
significantly higher performance when vOICe sounds were
played in conjunction with ambient sounds from natural
or outdoor environments. However, the group that used
bone conduction headsets did not exhibit any significant
differences in the ambient sounds used during the experiment.
The performance difference between subject groups seems
to be attributed to the impact of external sounds, which
depends on the characteristics of the device used by each
group. Furthermore, superior performance in outdoor settings
may be attributed to the implementation of a Mel-scale
frequency mapping function in the vOICe algorithm utilized
in our experiments. In addition, the study specifically
revealed that alterations in the environment exerted a
greater influence on learning time than did changes in the
device.

B. FUTURE WORK AND LIMITATION
This study has demonstrated that the visual information
perceived by the user from an audio-visual converted SSD
is influenced by the device or environment in which it is
used. However, there are some possible improvements that
can be made to this study. First, our experiments did not
include a sufficient number of participants to validate the
concept. In behavioral experiments, individual participant
characteristics can significantly impact the results, particu-
larly with small sample sizes. Therefore, it is important to
consider the effect of each individual’s results on the overall
average. This experiment’s sample size of 45 participants
may be small to draw conclusions. While the findings may
be valid for this sample size, extending the conclusions to
the general population may not be justified. Furthermore,
we recruited sighted individuals as participants based on the
recommendation of previous studies. Therefore, the findings
of this study may not produce similar outcomes in visually
impaired or blind individuals. Future work should thus
expand on this study by increasing the sample size and
including a more diverse group of participants for behavioral
experiments.

Second, the current study used the vOICe algorithm for
visual-auditory SSD. It is noteworthy that even with the
vOICe algorithm used in this experiment, the user’s percep-
tion may vary depending on the frequency mapping function
used. While we used the Mel-scale function as the frequency
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mapping function for the vOICe algorithm, to obtain more
definitive results, direct experiments should be performed
with different frequency mapping functions, including the
traditional exponential mapping function. Another possible
improvement to this study would be to use different SSD
algorithms for generalization, including vOICe. The main
reason for choosing vOICe for this study is that it is the most
widely used SSD algorithm. Existing visual-auditory SSD
algorithms use different conversion methods. Because of this
methodological difference, the converted sound of the visual
image is qualitatively different. Therefore, this research can
be extended by comparing different SSD algorithms to derive
generalized results.

Finally, the current study was strictly limited by the
training time. Long training times are undesirable in cognitive
studies because participants may become bored and lose
concentration toward the end of the session. During the four
training sessions in this study, subjects were allowed to stop
and restart at any time to maintain concentration, but the
total pure training time for each session did not exceed
45 minutes. This study can be extended by comparing the
effects of long-term training with a wide range of visual
data. In addition, although research on sensory substitution
has typically been conducted using behavioral experiments,
which are time consuming and resource intensive, making
them unfeasible for use with large numbers of participants.
Recent research has proposed methods using deep learning
as an alternative to these problems. Therefore, future
research may also consider using deep learning method
to evaluate the performance of SSD algorithms in various
environments.

VI. CONCLUSION
This study investigated the effects of device and environment
on the performance of visual-auditory SSDs. To achieve
this objective, we extended previous research by introducing
new experimental procedures and conducted behavioral
evaluations to analyze the impact of changes in device
and environment on user performance. Our results revealed
that user performance varied significantly depending on the
device used for the visual-auditory SSD and the ambient
sound. Although this study is laboratory-based and limited
by a small sample size, it highlights the pros and cons of
the devices used in visual-auditory SSDs, and considerations
for future use in real-world environments. While the use
of bone conduction headsets is efficient for learning the
visual-auditory SSD algorithm, our experimental results also
reveal that visual-auditory SSDs are most effective in outdoor
environments. However, given that behavioral experiments
depend on many factors, including user characteristics and
the environment, further research is clearly needed to support
or refute our findings. The findings of this study, nonetheless,
can guide future research in various directions, including the
design of SSD algorithms and devices and the development
of learning programs.
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