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ABSTRACT Index modulation (IM) leads to a decrease in power consumption and transmitter complexity
compared to classical orthogonal frequency division multiplexing (OFDM) systems. The overall bit-error
rate (BER) performance of the OFDM with IM (OFDM-IM) system is significantly influenced by the
accuracy of index-bit detection. To take advantage of IM, in this paper, we propose a recurrent neural
network-based signal detection scheme for OFDM-IM. In addition, we introduce a more effective long-
short-term memory (LSTM)-based detection technique to improve the BER performance of the OFDM-IM
system. The Adam optimization algorithm is utilized to reduce the total system loss. Before entering the
network, the received signal and channel matrix are pre-processed based on domain knowledge to enhance
the performance of the proposed system. At first, the model is trained in offline to minimize BER using
the simulation dataset, and then the trained model is employed in the online phase to detect the OFDM-IM
signal. We compare the performance of the proposed LSTM-based detector with traditional detectors and
other deep learning (DL) detectors. The simulation outcomes show that our proposed detector outperforms
conventional detectors and other DL detectors under perfect and imperfect channel conditions.

INDEX TERMS OFDM-index modulation, long-short-term memory (LSTM)-IM, BER, channel state
information, deep learning IM.

I. INTRODUCTION
Orthogonal frequency division multiplexing (OFDM), pre-
sented by Robert W. Chang of Bell Labs in 1966, operates
as a FDM system [1]. In OFDM, the complete channel
is subdivided into numerous narrow-band subchannels,
which are concurrently transmitted to uphold high-data-
rate transmission [2]. Moreover, OFDM effectively mitigates
intersymbol interference (ISI) induced by the frequency
selectivity of the wireless channel. Due to this capabil-
ity, OFDM has emerged as the predominant multicarrier
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transmission technique in wireless communications and has
been widely adopted as an essential component of IEEE
802.16 standards [3]. However, the orthogonality of subchan-
nels is compromised due to the rapid fluctuations of the
wireless channel throughout the OFDM block transmission
for the frequency-selective fading channels where mobile
terminals reach high vehicular speeds. Therefore, it is a
challenging task to design an OFDM system that operates
efficiently under high mobility conditions, as mobility
support stands out as a crucial feature in next-generation
broadband wireless communication systems [4], [5]. Due to
its low spectral decay rate, traditional OFDM is inadequate
for accommodating asynchronous access, customized subcar-

89538

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-1233-7482
https://orcid.org/0000-0002-6792-3825
https://orcid.org/0000-0002-6323-2613
https://orcid.org/0009-0004-9419-0702
https://orcid.org/0000-0002-3274-4982
https://orcid.org/0000-0003-0647-1009


M. A. Aziz et al.: Deep Recurrent Neural Network Based Detector for OFDM With Index Modulation

rier spacing, spectrum aggregation, and symbol period, all of
which are anticipated as requirements for the fifth-generation
(5G) wireless networks [6].

OFDM with index modulation (OFDM-IM) seems to be
an attractive candidate for next-generation wireless com-
munication to transmit information compared to traditional
communication systems because of their appealing benefits
in terms of high energy efficiency, superior bit error rate
(BER) performance, and less hardware complexity [7],
[8], [9]. It uses the corresponding communication systems’
building block indices to transmit extra information bits [10].
IM can map information bits by adjusting the ON/OFF state
of the transmission entities. OFDM-IM schemes possess the
capability to transmit information in a more energy-efficient
way by selectively deactivating specific elements of the
system compared to traditional OFDM systems [11].
Many studies related to OFDM-IM were researched in the

past few years [3], [12], [13], [14], [15], [16], [17], [18], [19].
In [3], low complex near-optimal detectors for OFDM-IM
were introduced to address the challenge posed by the
very high computational complexity of maximum likelihood
(ML) detection, primarily attributed to the presence of
index bits. For the family of OFDM subcarrier IM systems,
the authors provided a signaling technique supported by
compressed sensing (CS) in [18]. After considering the joint
ML detection, they suggested a low-complexity detection
approach for the CS-assisted index-modulated (CSIM) and
the conventional APM symbols. Despite its high complexity,
this algorithm is called the iterative residual check (IRC)-
based detector. In [13], the authors presented a greedy
detector (GD) utilizing energy detection to estimate the
performance of OFDM-IM with very low complexity. How-
ever, it has failed to achieve near-optimal performance. The
log-likelihood ratio (LLR) detector was introduced in [14].
It can achieve near-ML performance, but it comes with
the drawback that the received signal noise power spectral
density must be known.

Recently, numerous studies have been conducted utilizing
deep learning (DL) in the field of wireless communica-
tion [20], [21], [22], [23], [24], [25], [26]. DL-based detectors
have been explored in various experiments to decrease com-
plexity and attain near-optimal performance in OFDM-IM
systems [27], [28], [29], [30], [31], [32]. In [27], the author
proposed a deep learning-based detector called DeepIM for
OFDM-IM. This DeepIM consists of a fully connected neural
network (FNN). The authors used both Rectified Linear
Units (ReLU) and Hyperbolic Tangents (Tanh) as activation
functions to detect the information bits. The performance of
DeepIM is near optimal for imperfect channel state informa-
tion (CSI), and it outperforms the GD method. Although this
model provides very low complexity and a short runtime,
it has some performance gaps with ML for perfect CSI.
To minimize the performance disparity, a bi-directional long
short-term memory (Bi-LSTM)-based Y-BLSTM detector
was proposed in [28]. The Y-BLSTM architecture employs

two parallel sub-neural networks to independently learn
the constellation and information regarding active indices,
respectively. In [29], the authors introduced a detector
based on convolutional neural networks (CNN), known as
CNN-IM. The received symbols in the CNN-IM framework
are converted to polar coordinates to help the neural network
determine the indices of the subcarriers that have been acti-
vated. Both the CNN and Y-BLSTM models outperformed
the GD and Deep-IM detectors. However, they are not able
to attain a bit error rate (BER) performance that is nearly
optimal. A transformer-based detector known as TransIM
was proposed in [33]. TransIM functions with a mid-level
modulation order of 16QAM produce soft probabilities
for various transmitted symbols. Due to the structure of
the transformer, the complexity of TransIM is high, but
it demonstrates enhanced BER performance compared to
DeepIM and CNN-IM. A deep-based detector named IMNet
was proposed in [34]. The proposed IMNet model is applied
to detect the transmitted signal in an OFDM-IM for multiple
input, multiple output (MIMO) systems. The IMNet model
contains two CNNs referred to as the antenna detection (AD)
subnet and signal detection (SD) subnet, respectively. The
AD subnet consists of four layers of CNN, and they choose a
state-of-the-art denoising network commonly used in image
processing fields as their SD subnet. TheBERperformance of
IMNet is better than ML and LLR, but the model complexity
is higher than other DL models. A dual mode (DM) OFDM-
IM detector was proposed in [30] called DeepDM. Both CNN
and deep neural network (DNN) models are utilized in this
paper, where CNN is used as IndexNet to detect the index
bit and DNN is used as CarrierNet to detect the carrier bit.
The authors in [35], introduced a TSIMNet detector-based
two-stage index-modulated- universal filtered multi-carrier
(TSIM-UFMC) system aimed at improving performance and
introducing the emerging UFMC technology to underwater
acoustic (UWA) communications.

LSTM is a recurrent neural network (RNN) designed to
process sequence data with long-term dependencies [36].
Many studies have been done by utilizing LSTM in
wireless communication [37], [38], [39]. LSTM architectures
add gating mechanisms, such as the forget gate, which
enable them to regulate the information flow and gradients
throughout the network. This aids in preventing gradients
from diminishing significantly during the training process
[40]. Also, LSTMs can effectively tackle the vanishing
gradient problem generated by backpropagation [41]. Due
to the sequential nature of subcarrier activations, OFDM-IM
signals usually display temporal dependence. Modeling the
temporal dynamics found in OFDM-IM signals is a useful use
of LSTM networks because of their prowess at capturing and
analyzing data flows. A lot of subcarriers and complicated
channel circumstances can be present in OFDM-IM systems.
Systems may be efficiently modeled thanks to LSTMs, which
provide a balance between performance and complexity
[42]. LSTMs are resistant to changes in channel conditions

VOLUME 12, 2024 89539



M. A. Aziz et al.: Deep Recurrent Neural Network Based Detector for OFDM With Index Modulation

and signal characteristics because they may modify their
internal states based on the input data and prior states.
Operating in dynamic and noisy wireless environments, this
adaptability is essential for OFDM-IM systems. So, LSTMs
are well-suited for the particular difficulties presented by
OFDM-IM communication systems because of their capacity
to capture sequential dependencies, preserve long-term
memory, manage complexity, adapt to changing conditions,
and take advantage of parallel processing [43]. Motivated
by the above-mentioned advantages of DL and literature,
in this paper, we propose an LSTM-based detector for the
OFDM-IM system. The proposed LSTM-IM detector can
achieve better performance than existing manually designed
detectors. The proposed model contains only one non-linear
LSTM unit, which has a Tanh activation layer to detect the
received signal under the Rayleigh fading channel efficiently.
The key contributions of this paper can be outlined as follows:

• An LSTM-based OFDM-IM detector is proposed in
this paper, which can extract features very efficiently
by capturing information from earlier time steps and
retaining it for an extended period to process sequence
data with long-term dependencies. Furthermore, the
number of nodes in the hidden layer can be dynamically
adjusted to detect the received signal with a suitable
balance between complexity and performance.

• Before being fed to the LSTM-IM, the received
signal and channel data are pre-processed based on
the OFDM-IM domain knowledge. This mechanism
improves the detection accuracy of LSTM to identify the
indices of the activated subcarriers.

• We estimate the suggested LSTM-IM detector’s BER
performance at various signal-to-noise ratios (SNR).
The results confirm that the suggested LSTM-IM
detector can achieve better detection performance under
both perfect and imperfect channel conditions.

The remainder of the paper is structured as follows:
section II presents the systemmodeling. Section III elaborates
on the proposed model, including offline training and online
testing procedures. Section IV demonstrates the simulation
results, and Section VI presents the conclusions.

II. SYSTEM MODEL
In OFDM-IM, the information bits are not only conveyed
by the standard amplitude phase modulation (APM) symbol
but also by activated subcarrier indices [44]. We consider
that the total transmitted bandwidth is divided into the G
groups. Each group contains N subcarriers. So, the total
transmitted subcarrier isNt , andN = Nt/G. Each OFDM-IM
group’s signal processing at the transmitter is identical and
unrelated to the others. Therefore, for simplicity, we focus
on addressing only one group. According to the principle
of OFDM-IM, only the K subcarriers will be activated,
and the rest of the subcarriers (N − K ) will be zero-
padded. Particularly, total p data bits are transmitted at
every transmission of each group. Total bits are p =

p1 + p2, p1 = Klog2M bit carried by APM symbols

and p2 = ⌊log2C(N ,K )⌋ bit carried by active subcarrier
indices. M represents the size of the M − ary modulation
scheme. The mapping from p1 bits to a set of K active
indices can be implemented using combinatorial techniques.
Consequently, by allocating K non-zero data symbols, which
is the reciprocal of the K active subcarrier, the transmitted
vector x = [x1, . . . , xN ] is formed depending on the p
incoming bits. So, if subcarrier i is active, then xi is non-zero;
otherwise, xi = 0 when i = 1, . . . ,N . This bit-to-symbol
mapping is represented by the function x = fOFDM−IM (bg),
where bg represents the incoming sequence of p bits in a
single group. The OFDM-IM signal transmission system is
shown in Fig. 1. The input bits are split into several group
bits by the bit splitter and each group contains both an index
bit and a classic bit. This index bit is set to the indices of
the active subcarrier, and the classic bit is set to the active
subcarrier data symbol.

The frequency domain received signal at the receiver is
represented by

y = H ⊙ x + w, (1)

where, H = [H1, . . . ,HN ] represents Rayleigh fading
channel with Hi∼CN (0, 1), ⊙ denotes element-wise mul-
tiplication, and w is the additive white Gaussian noise
(AWGN), wherewi∼CN (0, σ ) and i = 1, . . . ,N .We assume
that the average energy of theM-ary transmitted symbol isEa.
So, the average SNR of the receiver is γ = Ea/σ 2.

III. LSTM-IM BASED DETECTION FRAMEWORK
First of all, we describe the structure of the LSTM-IM model
in this section. Then we present the proposed model of offline
training and online testing procedures with the generated
data.

A. LSTM-IM MODEL STRUCTURE
A general structure of the proposed LSTM-IM model is
shown in Fig. 2. Comparable to the existing detection
methods utilized in OFDM-IM, it is presumed that the
channel information will be known to the receiver. Therefore,
channel H and the received signal y are regarded as the
preliminary inputs to the LSTM-IMmodel. For the imperfect
CSI conditions, we study an actual system that experiences
problems due to the receiver’s imprecise CSI calculation.
By using h(α̂) to represent the estimate of h(α) is acquired
as follows:

h (α) = ĥ (α) + e (α) , (2)

where e(α) represents the channel estimation error,
e(α)∼CN (0, ϵ2). Similarly, ĥ(α)∼CN (0, 1 − ϵ2), where
ϵ2 determines the error variance of CSI estimation.
Particularly, we utilize the variable imperfect CSI model with
a minimum mean square error (MMSE) basis, as described
in [45]. In this model, the CSI error variance is dependent on
the average SNR, meaning that ϵ2 = (1 + γ )−1.
Domain knowledge describes how to use IM to efficiently

assign subcarriers based on the data to be conveyed and
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FIGURE 1. The OFDM-IM signal transmission system with its different blocks.

FIGURE 2. The proposed deep RNN-based LSTM-IM model architecture
and working flow process.

to activate or deactivate subcarriers to express additional
information. Furthermore, domain knowledge denotes an
awareness of the properties of the communication channel,
including impacts like noise, interference, and multipath
fading [46]. Before feeding as input to the LSTM-IM
model, we pre-process y and H based on the OFDM-IM
domain knowledge. Specifically, to obtain an equalized
received signal vector, the widely recognized zero-forcing
(ZF) equalizer is utilized in the first place such as y =

y⊙H−1. It is anticipated that this approach will enhance
the intuitive reconstruction of the active sub-carrier M -ary
symbols. To create the input of the LSTM-IM decoder, the
received signal energy ye is computed and combined with y.
It should be noted that ye is also employed in GD to decode
the active sub-carrier indices to enhance index detection. The
real and imaginary parts of the y are concatenated with ye to
form the 3N -dimensional input vector.
Our proposed model is constructed with an LSTM layer

and a fully connected layer (FC) with a sigmoid activation.
The pre-processed data D feeds as input to the LSTM-IM
input layer. The received data is in a 3-dimensional (3D)
shape. This 3D data is reshaped according to the LSTM layer
input shape by the following function:

D = reshape(y, [−1,N , 3]). (3)

Then this reshaped data is fed to the LSTM hidden layer.
The internal function of the LSTM layer is shown in Fig. 3.
It consists of input get, forget get, and output get [47]. Each

FIGURE 3. The internal structure of LSTM layer with different gates.

gate calculates its value utilizing a fully connected layer
assisted by a sigmoid activation function. The values of
each gate fall within the range of (0, 1) due to the sigmoid
activation function. These three gates can be expressed
mathematically as follows:

it = σs(DtWdi + ht−1Whi + bi), (4)

ft = σs(DtWdf + ht−1Whf + bf ), (5)

ot = σs(DtWdo + ht−1Who + bo), (6)

whereDt is input, σs denotes the sigmoid activation function.
At time step t, it , ot , and ft represent the input, output,
and forget gates, respectively. ht−1 is the previous time
hidden state. Whi,Whf ,Who and Wdi,Wdf ,Wdo are weight
parameters, and bi,bf ,bo are bias parameters.

Now, the model performs the memory cell and hidden state
operations by utilizing the input nodes at time step t with the
following function:

čt = tanh(DtWdc + ht−1Whc + bc), (7)

ct = ft⊙ct−1 + it⊙čt, (8)

Ht = ot⊙tanh(ct ), (9)
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FIGURE 4. Overview of the proposed LSTM-IM model training and testing
process.

where ct is the memory cell’s internal state and Ht is the
output of the hidden layer at the current state. Tanh represents
the activation function within the range (−1, 1).Wdc and
Whc are weight parameters, and bc are bias parameters.
⊙ represents the Hadamard product for the element-wise
multiplication.

The output of the LSTM hidden layer is fed as the input
to the FC layer. In this layer, Sigmoid activation function
fSigmoid (x) = 1/(1 + e−x) is deployed with a (0, 1) interval
to map the output vector element. The output vector bg of the
FC layer can be represented as follows:

bg = fSigmoid (Ws × Ht + bs), (10)

whereWs represents weight and bs represents the bias vector
of the FC layer. Finally, we get the output bit bg from the
output section.

B. OFFLINE TRAINING PROCESS
Before employing the proposed LSTM-IM detector, it is
necessary to train the model in the offline phase using sim-
ulation data. Specifically, a corresponding set of transmitting
vectors is produced to generate multiple sequences of p bits
bg. This vector is then sent through the Rayleigh fading
channel with AWGN. Depending on the statistical models,
noise and channels are also generated randomly and vary
between different bit sequences. We pre-process the channel
vectorH and received signal y to prepare the training data set
of the model whose labels correspond to the bit sequence bg
as described in the earlier section. We take a large number of
training data samples to prevent overfitting during the training
period.

The parameters used to train the proposedmodel are shown
in Table 1. In all experimental setups under consideration, the
proposed LSTM-IM model is trained with 50 epochs. Each
epoch contains 20 batches with a 5000 batch size. Since there
are a total of 5000000 data samples used to train the model for
100000 batches. We employ the adaptive moment estimation
(Adam) optimizer. This optimizer is readily implementable
on many commercial DL platforms, including Tensorflow
and Keras. LSTM-IM training requires careful selection of
the SNR level because the model’s performance is highly

TABLE 1. The simulation parameters for the proposed system.

dependent on it. More especially, it is essential to select
the optimal learning rate so that the model can perform
in different ranges of SNR. We apply different training
SNRs for different training sequences. We train our model
for different learning rates and compare them to evaluate
the best performance. As we discussed earlier, the total
subcarrier is divided into several groups. Each group contains
N = 4 subcarrier. Among the 4 subcarriers, only 1, 2,
or 3 subcarriers are activated (i.e., K = 1, 2, or 3).
The LSTM-IM model is trained with the collected data to

minimize the disparity between the true bit and predicted bit,
and the BER. In this paper, we apply the means square error
function (MSE) to calculate the training loss as follows:

L(bg, b̂g; θ ) =
1
P

||(bg − b̂g)||2, (11)

where θ represents the bias and weight of the model. The
SGD algorithm can be used to update the model parameter
θ for randomly selected batches from the data sample as
follows:

θ+
:= θ − η∇L

(
bg, b̂g; θ

)
, (12)

where η represents the learning rate and SGD step size.
The training performances of the LSTM-IM model are

shown in Fig. 5 and Fig. 6 using the MSE function.
The structure and depth of the LSTM hidden layers are
important factors in capturing temporal relationships, and
they can affect the model’s capacity to reduce the MSE loss
during training. We calculate the training loss for different
LSTM-IM hidden layers with 10 dB training SNR and
1 active subcarrier. From Fig. 5, we can see that the estimated
loss is decreased with increasing LSTM-IM hidden layers.
In Fig. 6, we compare our model loss with CNN-IM and
Deep-IM models with 3 active subcarriers. To reduce the
discrepancy between the model’s predictions and the actual
target values, as shown by the MSE loss function, the LSTM
hidden layers are adjusted by backpropagation during the
training process [42]. Optimizing the model’s performance
in minimizing this loss involves iteratively updating the
activations and weights of the hidden layers. According
to Fig. 6, at epoch 45, the DeepIM model has a loss
of around 0.06, while the CNN-IM model exhibits a loss

89542 VOLUME 12, 2024



M. A. Aziz et al.: Deep Recurrent Neural Network Based Detector for OFDM With Index Modulation

FIGURE 5. The proposed LSTM-IM training loss for different numbers of Q
with SNR= 10 dB and K = 1.

FIGURE 6. The comparison of training loss for the proposed LSTM-IM
with CNN-IM, and Deep-IM models for SNR = 10 dB and K = 3.

of approximately 0.045. In contrast, our proposed model
achieves a lower loss of nearly 0.035. The loss of the proposed
model is comparatively low, and it is stable after 40 epochs.

C. ONLINE TESTING PROCESS
After completion of offline training, employ the model for
online OFDM-IM signal detectionwith optimized parameters
θ and channel of interest. More precisely, without additional
training for θ , the suggested scheme can be applied to esti-
mate the data bits under different channel fading scenarios.
We test our model’s performance with 100, 000 data samples
under perfect and imperfect CSI conditions.

IV. SIMULATION RESULTS
The learning rate is an important hyperparameter that
determines how much the model is adjusted based on the
estimated error for each update of the model weights.
Batch size is another important hyperparameter that has a
direct impact on training efficiency. Fig. 7 (a) compares
the performance of the LSTM-IM model for different batch

sizes and Fig. 7 (b) compares the performance for different
learning rates. The LSTM-IM model performs well at a
5000 batch size. With increasing or decreasing the batch size,
performance can be decreased. In the case of Fig. 7 (b),
we estimate the model performance for 0.001, 0.01, and
0.02 learning rates. The LSTM-IM model demonstrates
good BER performance with a learning rate of 0.02 at
lower SNR levels. However, its performance significantly is
deteriorated at higher SNR levels. Specifically, the model
exhibits nearly 0.9 dB worse performance with a learning
rate of 0.001 compared to a learning rate of 0.01 at an SNR
of 25 dB. Based on the given information, it appears that
the LSTM-IM model performs well when it is trained with
a learning rate of 0.01.

We estimate the BER for different values of K and
different training SNRs, as shown in Fig. 8 (a) and Fig. 8(b)
respectively. From Fig. 8 (a), we can see that, the LSTM-IM
detectors perform very well when trained for K = 1. In this
study, K = 1 means that only one subcarrier is activated
out of 4 subcarriers. When a small number of subcarriers
is activated, transmission is completed at lower data rates.
Similarly, when the number of active subcarriers is increased,
data transmission rates also increase. Higher data rates
correspond to larger p or, equivalently, a larger number
of classes involved in LSTM-IM. Consequently, the BER
performance decreases with an increase in the value of K and
the data rate, as observed in the figure. From Fig. 8(a), it is
evident that the BER performance for K = 2 and K = 3 is
very poor compared to the performance with K = 1. Thus,
it is clear from the results that the proposed model performs
better with K = 1, i.e., at lower data transmission rates.
In the case of Fig 8 (b), the model is trained with K = 1.
From Fig. 8(b), it is evident that the model demonstrates
good performance when trained with a 10 dB SNR. However,
increasing or decreasing the value of the training SNR can
lead to a decrease in performance. Specifically, in the case
of a 5 dB training SNR, it performs better at lower SNR
levels but exhibits very poor performance at higher SNR
levels. For a training SNR of 20 dB, the LSTM-IM model
exhibits approximately 0.8 dB worse performance compared
to a training SNR of 10 dB at a point 20 dB SNR. Similarly,
for a training SNR of 25 dB, the model demonstrates nearly
2 dB worse performance than a training SNR of 10 dB. So,
it is clear that the LSTM-IMmodel shows better performance
at 10 dB training SNR and K = 1, i.e., for the (N ,K ,M ) =

(4, 1, 4) combination.
We investigate the proposed model’s BER performance

with respect to SNR for different numbers of hidden units Q,
as shown in Fig. 9. In this case, we train the model with 10 dB
SNR and a (N ,K ,M ) = (4, 1, 4) setup. From the estimated
result, it is clear that the LSTM-IM detector performs well at
a very small number of hidden layers, but it exhibits slightly
different performance under different numbers of hidden
layers. The proposedmodel demonstrates strong performance
with 16 hidden layers, exhibiting a consistent improvement as
the value of Q increases. Notably, its performance surpasses
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FIGURE 7. Comparetive result of the LSTM-IM model for different batch size in (a) and different learning rates in (b) with Q = 128 and K = 1.

FIGURE 8. Comparetive BER of the LSTM-IM detector for different K in (a) and different training SNR in (b).

all previous results when Q reaches 128. When Q is further
increased to 256, it performs better than Q= 128, particularly
at lower SNR levels. However, the performance of the
LSTM-IM model with Q = 256 shows a decline as SNR
increases. Specifically, the proposed model performs better
for Q= 256 up to 15 dB SNR. However, beyond this point, its
performance gradually diminishes, resulting in significantly
weaker performance compared to Q = 128. Consequently,
the findings depicted in Fig. 9 lead to the conclusion that the
model exhibits superior performance at Q = 128.
In Fig. 10, we compare the performance of the LSTM-IM

model with DeepIM (Relu and Tanh) [27], Y-BLSTM [28],
GD, and ML models under perfect CSI conditions with
the same parameter settings. This comparison is specifically

designed for the (N ,K ,M ) = (4, 1, 4) combination with a
training SNR of 10 dB. It’s important to note that during
the comparison of DeepIM, Y-BLSTM, GD, and ML, it is
taken into account that all parameters are set to the same
value for all models, i.e., DeepIM, Y-BLSTM, GD, and ML
are also trained with the (N ,K ,M ) = (4, 1, 4) combination.
Moreover, the comparative results for the LSTM-IM model
in Fig. 10 are obtained under the following settings: one
active subcarrier (K = 1), a batch size of 5000, a learning
rate of 0.01, and Q = 128. From the figure, it is clear that
the LSTM-IM detector outperforms the DeepIM, Y-BLSTM,
and GD detectors. Although the LSTM-IM detector performs
near the ML detector at lower SNR, it outperforms the ML at
higher SNR, as shown in Fig. 10.
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FIGURE 9. Simulation result of the proposed model for different numbers
of Q with SNR = 10 dB and K = 1.

FIGURE 10. BER comparison of the proposed detector with reference
detectors under the perfect CSI condition at K = 1.

Figure 11 compares the performance among LSTM-IM,
CNN-IM [29], DeepIM [27], and Y-BLSTM [28] detectors
for perfect CSI. In this comparison, the LSTM-IM model is
trained with (N ,K ,M ) = (4, 3, 4). Additionally, CNN-IM,
DeepIM, and Y-BLSTM detectors are trained with the same
(N ,K ,M ) = (4, 3, 4) combination. It should be noted that we
calculate the BER at 15 dB SNR. From Fig. 11, we can see
that LSTM-IM performs better than CNN-IM, Y-BLSTM,
and DeepIM models even at higher data rates.

We compare the BER of LSTM-IM with other competing
schemes in Fig. 12 under uncertain CSI. Specifically, we use
the variable imperfect CSI model based on MMSE as
described in [45]. In this model, the CSI error variance

FIGURE 11. Comparison of BER performance of the LSTM-IM model with
reference models under the perfect CSI condition at K = 3.

FIGURE 12. Evaluation of BER performance of the LSTM-IM detector with
other detectors for the imperfect channel at K = 1.

ϵ2 fluctuates based on the average SNR. In this case, we train
our model with a 10 dB SNR andQ = 128. From Fig. 12, it is
clear that the LSTM-IM detector outperforms the DeepIM,
GD, and ML detectors under both perfect and imperfect
channel conditions. Also, it is clear that the LSTM-IM
detector can easily learn and memorize the characteristics of
the true channel very effectively.

V. COMPUTATIONAL COMPLEXITY
We calculate the computational complexity of the proposed
model and compare it with othermodels, as shown in Table. 2.
Addition, multiplication, and other real number operations
are included in the total number of real floating-point
operations (flops) that are counted [48]. The first layer of our
proposed model is the LSTM layer. The LSTM layer takes
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TABLE 2. Computational complexity comparison.

2×(D×Q)×Q×2×2 i.e., 16×(D×Q)×Q flops. The second
layer is the FC layer with a sigmoid activation function, which
takes 5 × (Ht × bg) flops. It should be noted that D = 12,
Ht = 128, bg = 4, and we calculate flops for Q = 128.
The LSTM-IM model needs a total of 3.148 × 106 flops for
a single batch size, and the ML model needs 1.3× 107 flops.
It validates that the proposed model can reduce complexity.

VI. CONCLUSION
This paper outlines our effort to develop an LSTM-based
detection scheme to detect the OFDM-IM symbols in wire-
less communication systems. In order to effectively extract
features from the OFDM-IM symbols, the LSTM layer is
employed. In this paper, pre-processing is done to improve
the detection accuracy based on the structure of the OFDM-
IM symbol. The LSTM-IM detector can recover data bits very
efficiently by utilizing the pre-processed received signal and
channel vector based on domain knowledge. The simulation
results validate that the proposed detector outperforms the
CNN-IM, Y-BLSTM, DeepIM, GD, and ML detectors under
both perfect and imperfect CSI conditions. We believe that
the proposed framework will play an important role in future
wireless communication systems.
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