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ABSTRACT This paper investigates robust set stability for the switched Boolean networks (SBNs) with
arbitrary switching signal affected by one-bit function perturbation (OBFP). Firstly, the dynamics of these
networks are converted into algebraic forms utilizing semi-tensor product (STP) method. Secondly, OBFP
impact on the set stability of SBNs is divided into four cases. Then, by constructing a state set and defining
an index vector, several necessary and sufficient conditions are provided to detect whether an SBN with
arbitrary switching signal is still stable to the given set after OBFP. Finally, a biological example is proposed
to demonstrate the effectiveness of the obtained theoretical results.

INDEX TERMS Switched Boolean networks, semi-tensor product of matrices, set stability, one-bit function
perturbation, arbitrary switching signal.

I. INTRODUCTION
A Boolean network (BN) is a typical binary-valued discrete-
time system, which was initially proposed by Kauffman to
predict and approximate gene regulatory networks [1]. In a
BN, each node has a value of 1 or 0, representing active or
inactive, respectively. The evolution of each node is related
to a Boolean function which is assigned by its neighboring
nodes, itself and some basic logical operators. Now BNs
have attracted extensive attention and have become an
effective model of many other complex networks, including
wireless sensor networks, neural networks and networked
evolutionary games, ect [2], [3], [4].
With the development of practical research problems, BNs

have been generalized in many aspects [5], [6]. In order
to describe the main features of switching phenomena in
biological networks, BNs whose dynamics are governed
by distinct switching models are named switched Boolean
networks (SBNs). In terms of theoretical development
viewpoints, SBNs are the natural extension of BNs, that is,
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BNs can be regarded as the special form of SBNs. From
the perspective of practical applications, SBNs can better
model and analyse the interaction and evolution of genes. For
instance, the genes of bacteriophage λ contain two different
models: lysis and lysogeny [7]. Therefore, when modeling
this network as a BN, the dynamics becomes an SBN. In the
last several decades, thanks to the appearance of semi-tensor
product (STP) of matrices introduced by Cheng et al. [8],
the logical form of an SBN can be converted to an
equivalent algebraic representation. Up to now, a multitude
of fundamental and important problems on SBNs have
been explored by STP approach, such as controllability and
observability [9], [10], stability and stabilization [11], [12],
optimal control [13], etc..

The set stability issue of system is a basic and meaningful
issue of classical control theory [14]. Set stability of SBNs
means that all the initial states can eventually converge to an
attractor subset of given set under arbitrary switching signal.
In recent years, numerous landmark results about set stability
of SBNs have been derived [15], [16]. Using the STPmethod,
Guo et al. first discussed the set stability of an SBN with
arbitrary switching signal, and gave an efficient criterion for
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set stability based on invariant subsets [17]. Then, Li and Tang
generalized the results to switched Boolean control networks,
and developed an algorithm to design state-feedback controls
which make system set stabilizable [18]. Actually, many
analysis problems are highly relevant to the set stability of
SBNs such as synchronization [19], partial stability [20] and
output tracking [21] for SBNs.
It is noted that the logical values of BNs may be changed

by reason of gene mutation, which can be viewed as
function perturbation [22]. Recently, the effect of function
perturbation on the dynamics of logical networks has become
a hot research topic. Li et al. studied function perturbations
impact on stability of BNs, and some criteria which can keep
BNs stability were obtained [23]. Reference [5] discussed
the influence of OBFP on the finite-time stability of
probabilistic BNs. The other fundamental problems of logical
networks, such as optimal control [24], observability [25],
detectability [26], have been investigated. It should be pointed
out that function perturbation may change the attractors of
the original SBNs. In fact, the set stability problem of SBNs
is closely related to the attractors of SBNs, which may
also be influenced due to function perturbation. A question
that comes up naturally, how will the function perturbation
affect the set stability of SBNs? Note that Wu et al.
considered stability of SBNswith function perturbation, and a
criterion under which the global stability of SBNsmaintained
unchangedwas established [27]. Since the given set is a single
point, we do not need to consider whether the affected state
is an equilibrium point. This also forms the main difficulty in
studying the function perturbation impact on set stability of
SBNs. To our best knowledge, there exist few results about
the set stability for SBNs subject to function perturbation at
present.

In this paper, we intend to give some methods to verify
the robust set stability for SBNs under OBFP. The main
contributions are as follows. (i) OBFP impact on the set
stability of SBNs with arbitrary switching signal is studied
for the first time. Based on the possible relationship among
the affected state, perturbed state, and the largest invariant
set, the robustness analysis of set stability is divided into four
cases. On the basis of these four cases, several necessary and
sufficient conditions are derived for the robust set stability of
SBNs under OBFP. Compared with [28] which assumed that
the perturbed state was not included in the invariant set, the
above classification is more reasonable since the location of
genetic mutation is arbitrary in practical biological networks.
(ii) Our results can be seen as an extension of [27]. When the
given set becomes a single point, our results will degenerate
into the results of robust stability of SBNs. However, the
methods proposed in this article are easier to understand and
detect than previous techniques.

The rest of this paper is arranged as follows. Section II
shows some notations and definitions about STP. Section III
gives the SBNmodel and problem formulation. In Section IV,
the main results are presented. Section V gives a biological

example to describe the validity of the proposed method, and
Section VI is a brief conclusion.

II. PRELIMINARIES
This section gives some necessary symbols and definitions,
which will be used throughout the article.

• R and Z+ denote the set of real numbers and positive
integers, respectively.

• Rn×s is the set of n× s real matrices.
• [a, b] := {a, a+ 1, · · · , b}.
• Set D = {0, 1} and Dn

= D ×D × . . . ×D︸ ︷︷ ︸
n

.

• Coli(A) is the ith column of matrix A. The set of columns
of A is denoted by Col(A).

• 1n :=
{
δin | i ∈ [1, n]

}
, where δin = Coli(In). For

compactness, 1 := 12.
• If Col(A) ⊆ 1n, thenA ∈ Rn×s is called a logical matrix.
Denote the set of all n× s logical matrices by Ln×s.

• If A ∈ Ln×s, denote A briefly by A = δn[i1 i2 · · · is].
• [A]i,j is the element on the (i, j) entry of matrix A.
• 0n: =[0, 0, . . . , 0︸ ︷︷ ︸

n

]T , 1n: = [1, 1, . . . , 1︸ ︷︷ ︸
n

]T .

• A matrix A ∈ Rn×s is called a Boolean matrix, if all its
entries are either 0 or 1. Denote the set of n× s Boolean
matrices by Bm×n.

• Assume A = (aij),B = (bij) ∈ Bm×n, then A +B B =

(aij ∨ bij), where ‘‘∨’’ represents the logical operator
‘‘or’’. (B)

∑n
i=1 Li := L1 +B L2 +B · · · +B Ln.

• Assume A ∈ Bm×n and B ∈ Bn×p, then A ×B
B := C = (cij)m×p, where cij = (B)

∑n
k=1 aik ∧

bkj, and ‘‘∧’’ represents the logical operator ‘‘and’’.
A(k) = A(k−1)

×B A, where k is a positive integer.
Definition 1 [8]: The STP of two matrices A ∈ Rm×n and

B ∈ Rs×t is defined as

A⋉ B = (A⊗ I λ
n
)(B⊗ I λ

s
),

where λ denotes the least common multiple of n and s, and⊗

denotes the Kronecker product.
STP is a generalization of ordinary matrix product, and

it retains almost all the basic properties of ordinary matrix
product. Throughout this article, we omit the symbol ‘‘⋉′′.
Definition 2 [8]: let M ∈ Rm×s and N ∈ Rn×s.

Define the Khatri-Rao product of M and N, denoted by
M ∗ N, as M ∗ N = [Col1(M ) ⋉ Col1(N ) Col2(M ) ⋉
Col2(N ) · · · Cols(M ) ⋉ Cols(N )] ∈ Rmn×s.

For a logical variable x ∈ D, we define its vector form as
(x, 1− x)T , then there is an equivalence relationship between
D and 1. It is easy to see that if xi is the vector form of
logical variable Xi, then there is a one-to-one correspondence
between X = (X1,X2, · · · ,Xn)T ∈ Dn and x = ⋉n

i=1
xi ∈ 12n . We call x the vector form of X .
Lemma 1 [8]: Consider a logical mapping f : Dn

→ D.
There exists a unique matrix Mf ∈ L2×2n , called the structure
matrix of f such that

f (X1,X2, · · · ,Xn) ∼ Mf ⋉n
i=1 xi,
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where xi ∈ 1 is the vector form of Xi ∈ D, i = 1, 2, · · · , n,
and ‘‘ ∼

′′ stands for the equivalence relation.

III. PROBLEM FORMULATION
An SBNwith n nodes and ω subnetworks can be described as

X1(t + 1) = f σ (t)
1 (X1(t), . . . ,Xn(t)),

X2(t + 1) = f σ (t)
2 (X1(t), . . . ,Xn(t)),

...

Xn(t + 1) = f σ (t)
n (X1(t), . . . ,Xn(t)).

(1)

where Xi ∈ D, i ∈ [1, n] are Boolean variables, σ (t) denotes
the switching signal taking values from a finite set [1, ω].
f σ
i (t) : Dn

→ D, i ∈ [1, n] are Boolean functions.
Denote the vector form of Xi by xi, that is, xi = (Xi, 1 −

Xi)T . In the light of Lemma 1, SBN (1) can be expressed as
x1(t + 1) = Mσ (t)

1 x(t),

x2(t + 1) = Mσ (t)
2 x(t),

...

xn(t + 1) = Mσ (t)
n x(t),

(2)

where x(t) = ⋉n
i=1xi(t), and M

σ (t)
i represents the structure

matrix of f σ (t)
i , i ∈ [1, n].

Multiplying the n equations in (2) together yields

x(t + 1) = Lσ (t)x(t), (3)

where Lσ (t) = Mσ (t)
1 ∗Mσ (t)

2 ∗ · · · ∗Mσ (t)
n ∈ L2n×2n , and ∗ is

the Khatri-Rao product of matrices. System (3) is called the
algebraic form of SBN (1).
Identify the k-th switching signal by δkω, k ∈ [1, ω],

the algebraic representation of SBN (3) can be equivalently
rewritten as

x(t + 1) = Lσ (t)x(t), (4)

where σ (t) ∈ 1ω. The matrix L := [L1 L2 . . . Lω] ∈

L2n×ω2n is called the state transitionmatrix of SBN (4), where
Lk := δ2n [αk1 αk2 · · · αk2n ] ∈ L2n×2n , k ∈ [1, ω].
For initial state x(0) ∈ 12n , under switching signal

sequence σ := {σ (t), t ∈ [0, τ ]}, the state of SBN (4) at
time τ + 1 is indicated as x(τ + 1; x(0), σ ). According to
the algebraic representation (4), the concept ofM-stable for
SBNs is reviewed below [17].
Definition 3 [17]: Given a subsetM ⊆ 12n . SBN (4) is

said to beM-stable, if for any initial state x(0) ∈ 12n , there
exists τ ∈ Z+ such that x(t; x(0), σ ) ∈ M for any t ⩾ τ and
arbitrary switching signal sequence σ .
As is well known, the largest invariant subset of a given set

plays an important role in set stability. The following criterion
is reviewed for the set stability analysis of SBNs.
Lemma 2 [17]: SBN (4) isM-stable if and only if SBN (4)

can be stable to its largest invariant subset.
There are many methods to calculate the largest invariant

subset, thuswewill not elaborate on them further. For detailed
details, please refer to [14] and [17]. This paper assumes that
the largest invariant subset ofM is Is(M).

When using SBNs to model gene regulatory networks,
gene mutation is considered as function perturbation. Specif-
ically, some truth value in the logical function f of SBN (1) is
flipped. Correspondingly, some column in the state transition
matrix L of (4) is changed.
In order to study theM-stable problem of SBNs subject to

OBFP, we give a natural assumption and definition as below.
Assumption 1: Before OBFP occurs, SBN (4) isM-stable

under arbitrary switching signal.
Definition 4: SBN (4) is robustly stable to set M under

arbitrary switching signal, if SBN (4) is stillM-stable after
OBFP.

IV. MAIN RESULTS
In this section, we will give some necessary and sufficient
conditions to detect robust set stability of SBNs after OBFP.

We first propose the following assumption.
Assumption 2: Given l ∈ {1, · · · , ω2n}. After OBFP

occurs, Coll(L) is altered from δ
γ

2n to δ
γ ∗

2n , where γ ̸= γ ∗.
In fact, OBFP only changes the l-th column of L, and there

are no changes in the other columns of L. Obviously, the state
transition matrix L of SBN (4) is changed into a new matrix
L̂ ∈ L2n×ω2n , where

Coli(L̂) =

{
δ
γ ∗

2n , if i = l;
Coli(L), otherwise.

(5)

Hence, SBN (4) under OBFP becomes the following form:

x(t + 1) = L̂σ (t)x(t). (6)

Lemma 3: ( [8]) For any integer 1 ≤ i ≤ ω2n, there exist
unique positive integers i1 ∈ [1, ω] and i2 ∈ [1, 2n] such that

δiω2n = δi1ω ⋉ δ
i2
2n , (7)

where i = (i1 − 1)2n + i2.
Set l = (k∗

− 1)2n + ϕ∗. By Assumption 2, we know that
OBFP only affects state δ

ϕ∗

2n in the k∗-th subnetwork, named
the affected state. Therefore, for any x = δ

ϕ
2n and any σ = δkω,

if ϕ ̸= ϕ∗, it follows that

Lσx = δ
αkϕ
2n = L̂σx. (8)

If ϕ = ϕ∗ and k = k∗, one has

Lσx = δ
γ

2n ̸= δ
γ ∗

2n = L̂σx. (9)

According to the possible relationship among the affected
state δ

ϕ∗

2n , perturbed state δ
γ ∗

2n , and the largest invariant set
Is(M), the robustness analysis of set stability is divided into
four cases as blew.

Case 1: δϕ∗

2n /∈ Is(M) and δ
γ ∗

2n /∈ Is(M);
Case 2: δϕ∗

2n ∈ Is(M) and δ
γ ∗

2n /∈ Is(M);
Case 3: δϕ∗

2n /∈ Is(M) and δ
γ ∗

2n ∈ Is(M);
Case 4: δϕ∗

2n ∈ Is(M) and δ
γ ∗

2n ∈ Is(M).
Next, we analyse how OBFP affects the set stability of

SBN (4). We first construct A = L ⋉B 1ω and Â =

L̂ ⋉B 1ω. Then, set 0 := (B)
∑2n

i=1 A
i. It follows from
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Proposition 3.1 in [29] that [0]ϕ,θ > 0 means that there must
exist one path from δθ

2n to δ
ϕ
2n for SBN (4) before OBFP.

Denote the index vector of a given setM as JM, where

(JM)i =

{
1, if δi2n /∈ M,

0, if δi2n ∈ M,

and (JM)i is the i-th element of column vector JM.
In the light of the set 0 and index vector JM, we provide

several criteria to detect whether an SBN with arbitrary
switching signal is still stable to the setM after OBFP.
Theorem 1: Under Assumption 1, when OBFP in Assump-

tion 2 is Case 1, SBN (4) is robustly stable to the setM under
arbitrary switching signal, if and only if one of the following
two conditions holds

(i) [0]ϕ∗,γ ∗ = 0,
(ii) [0]ϕ∗,γ ∗ > 0, JTMColϕ∗ (Â2

n
) = 0.

Proof: (Necessary) We prove the necessary by contra-
diction. Suppose that [0]ϕ∗,γ ∗ > 0 and JTMColϕ∗ (Â2

n
) ̸= 0.

By Assumpution 1, it derives that δ
γ ∗

2n can reach set Is(M)
under arbitrary switching signal sequence before OBFP,
which together with [0]ϕ∗,γ ∗ > 0 shows that there must
exist at least one path from δ

γ ∗

2n to Is(M) including δ
ϕ∗

2n before
OBFP. Without loss of generality, we suppose that δγ ∗

2n can be
steered to δ

ϕ∗

2n at the s1th step and δ
γ ∗

2n can be steered to Is(M)
at the sth step, where s1 < s. Then, the path from δ

γ ∗

2n to Is(M)
can be described as

δ
γ ∗

2n
σ (0)
−−→ · · ·

σ (s1−1)
−−−−→ δ

ϕ∗

2n → · · ·
σ (s−1)
−−−−→ Is(M), (10)

where the corresponding switching signal sequence is
{δk0ω , · · · , δ

ks1−1
ω , · · · , δ

ks−1
ω }.

According to Eq. (9), one has δ
γ ∗

2n = L̂δk
∗

ω δ
ϕ∗

2n , that is,
δ
ϕ∗

2n can reach δ
γ ∗

2n in one step under switching signal σ = δk
∗

ω

after OBFP. By selecting switching signal sequence σ1 =:

{δk
∗

ω , δ
k0
ω , · · · , δ

ks1−1
ω }, we can obtain the following path

δ
ϕ∗

2n → δ
γ ∗

2n → · · · → δ
ϕ∗

2n . (11)

There forms a new cycle (11) for SBN (4) after OBFP.
Since JTMColϕ∗ (Â2

n
) ̸= 0, then there exists at least one

state x(2n; δ
ϕ∗

2n , σ ) = δν
2n /∈ M in the above cycle (11).

Thereby state δ
ϕ∗

2n cannot stay in set M forever under
arbitrary switching signal sequence after OBFP, which is a
contradiction to the fact that SBN (4) is robustly stable to
setM.
(Sufficiency) First, we suppose condition (i) holds. From

Assumpution 1, SBN (4) isM-stable under arbitrary switch-
ing signal before OBFP. Hence, for any state δθ

2n ∈ 12n , the
paths from δθ

2n to set Is(M) have the following two situations.
• Case 1: [0]ϕ∗,θ = 0, which implies that δθ

2n can reach
set Is(M), and there exists no path from δθ

2n to set Is(M)
containing δ

ϕ∗

2n , simultaneously.
• Case 2: [0]ϕ∗,θ > 0, which implies that δθ

2n can reach
set Is(M), and there exists at least one path from δθ

2n to
set Is(M) containing δ

ϕ∗

2n , simultaneously.

For Case 1, one path from δθ
2n to set Is(M) is arbitrarily

selected and supposed as

δθ
2n → · · · → x(t) → · · · → Is(M), (12)

where σ := {σ (t) = δ
kt
ω , t ∈ [0, τ − 1]} ⊆ 1ω, τ denotes the

number of steps from δθ
2n to Is(M), and {x(1), · · · , x(τ − 1)}

is a sequence of states in the path from δθ
2n to Is(M). Clearly,

x(t) ̸= δ
ϕ∗

2n , t ∈ [1, τ − 1].
After OBFP, it follows from (8) that

x(τ ; δθ
2n , σ ) = L̂σ (τ − 1)x(τ − 1)

= L̂σ (τ − 1)L̂σ (τ − 2)x(τ − 2)

= · · ·

= ⋉0
t=τ−1(L̂σ (t))δθ

2n

= Lσ (τ − 1)x(τ − 1)

= Lσ (τ − 1)Lσ (τ − 2)x(τ − 2)

= · · ·

= ⋉0
t=τ−1(Lσ (t))δθ

2n

∈ Is(M).

Thus, OBFP has no effect on the path (12), which together
with Assumption 1 means that Is(M) is reachable from every
state δθ

2n ∈ 12n under arbitrary switching signal.
For Case 2, we select an arbitrary path from δθ

2n to Is(M) as

δθ
2n → · · · → x(t1) → · · · → δ

ϕ∗

2n δ
η
2n →

→ · · · → x(t2) → · · · → Is(M), (13)

where the corresponding switching signal sequence is σ :=

{σ (t) = δ
kt
ω : t ∈ [0, τ1 + τ2 − 1]} ⊆ 1ω, τ1 + τ2 denotes

the number of time steps from δθ
2n to Is(M), and {x(t1) : t1 ∈

[1, τ1−1]} is the states in the path from δθ
2n to δ

η
2n , {x(t2) : t2 ∈

[τ1+1, τ1+τ2−1]} represents the states in the path from δ
η
2n to

Is(M). We can easily obtain that x(τ1−1) = δ
ϕ∗

2n , x(τ1) = δ
η
2n

and x(t) ̸= δ
ϕ∗

2n , t ∈ {1, . . . , τ1 + τ2 − 1}\{τ1 − 1}.
Two situations of the relationship between the state δ

η
2n and

perturbed state δ
γ ∗

2n may appear in path (13): (i) δ
η
2n ̸= δ

γ ∗

2n ;
(ii) δ

η
2n = δ

γ ∗

2n . For δ
η
2n ̸= δ

γ ∗

2n , similar to the analysis of
path (12), OBFP has no effect on the path (13), and every state
δθ
2n ∈ 12n can still reach to Is(M) under arbitrary switching
signal sequence after OBFP. For δ

η
2n = δ

γ ∗

2n , after OBFP
occurs, it follows that

x(τ1 − 1; δθ
2n , σ ) = ⋉0

t=τ1−2(L̂δktω )δθ
2n

= ⋉0
t=τ1−2(Lδktω )δθ

2n = δ
ϕ∗

2n ,

x(1; δ
ϕ∗

2n , σ ) = L̂δk
∗

ω δ
ϕ∗

2n = δ
γ ∗

2n .

(14)

Considering [0]ϕ∗,γ ∗ = 0, one has

x(τ3 − 1; δ
γ ∗

2n , σ ) = ⋉0
t=τ3−1(L̂δjtω)δ

γ ∗

2n

= ⋉0
t=τ3−1(Lδjtω)δ

γ ∗

2n

∈ Is(M), (15)

where σ := {σ (t) = δ
jt
ω : t ∈ [0, τ3 − 1]} ⊆ 1ω

and τ3 denotes the number of time steps from δ
γ ∗

2n to Is(M).
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Combining (14) with (15), one has

x(τ1 + τ3; δθ
2n , σ )

= ⋉0
t=τ3−1(L̂δjtω)L̂δk

∗

ω ⋉0
t=τ1−2 (L̂δitω)δ

θ
2n

= ⋉0
t=τ1+τ3−1(L̂σ (t))δθ

2n

∈ Is(M),

which shows that path (13) changes to

δθ
2n → · · · → x(t1) → · · ·

→ δ
ϕ∗

2n →\ δ
γ

2n → · · · → x(t2) → · · · → Is(M)

↓

δ
γ ∗

2n → · · · → x(t3) → · · · → Is(M), (16)

where the corresponding switching signal sequence is σ :=

{σ (t) = δ
it
ω : t ∈ [0, τ1 − 2]} ∪ {σ (t) = δk

∗

ω : t = τ1 − 1} ∪

{σ (t) = δ
jt−τ1
ω : t ∈ [τ1, τ1 + τ3 − 1]}, τ1 + τ3 denotes the

number of time steps from δθ
2n to set Is(M), and {x(t3) : t3 ∈

[τ1 + 1, τ1 + τ3 − 1]} is a sequence of states in the path from
δ
γ ∗

2n to set Is(M). We obtain that δθ
2n can reach to Is(M) if

δ
η
2n = δ

γ ∗

2n . On the basis of above analysis, for case 2, it holds
that set Is(M) is still reachable from every state δθ

2n ∈ 12n

under arbitrary switching signal sequence after OBFP occurs.
To sum up, we have proved that SBN (4) is robustly stable

to the set Is(M) when condition (i) holds.
Next, we suppose that condition (ii) holds. For any state

δθ
2n ∈ 12n , we just discuss the situation: [0]ϕ∗,θ > 0 and

δ
η
2n = δ

γ ∗

2n . The analysis of other situations is similar to the
proof in condition (i). If [0]ϕ∗,θ > 0 and δ

η
2n = δ

γ ∗

2n , without
loss of generality, the path from δθ

2n to δ
γ ∗

2n can be described as

δθ
2n → · · · → x(t1) → · · · δ

ϕ∗

2n → δ
γ ∗

2n , (17)

where the corresponding switching signal sequence is σ :=

{σ (t) = δ
it
ω : t ∈ [0, τ1 − 2]} ∪ {σ (t) = δk

∗

ω : t = τ1 − 1},
τ1 denotes the number of time steps from δθ

2n to δ
γ ∗

2n . This
together with [0]ϕ∗,γ ∗ > 0 shows that a new cycle as (11)
is formed for SBN (4) after OBFP. Denote the cycle (11) by
� = {δ

ϕ∗

2n , δ
γ ∗

2n , δ
γ ∗

1
2n · · · δ

γ ∗
l

2n }.
Since JTMColϕ∗ (Â2

n
) = 0, one has � ⊆ M, which means

every state δθ
2n ∈ 12n can reach to set M under arbitrary

switching signal after OBFP occurs. ByDefinition 4, SBN (4)
is robustly stable to set M under arbitrary switching
signal. ■

On the basis of Theorem 1, the following corollary can be
derived immediately, so the proof is omitted.
Corollary 1: Under Assumption 1, when OBFP in

Assumption 2 is Case 2, SBN (4) is robustly stable to the set
M under arbitrary switching signal, if and only if one of the
following two conditions holds

(i) [0]ϕ∗,γ ∗ = 0,
(ii) [0]ϕ∗,γ ∗ > 0, JTMColϕ∗ (Â2

n
) = 0.

Below we discuss the case 3 of Assumption 2. The
following theorem can be drawn.

Theorem 2: Under Assumption 1, when OBFP in Assump-
tion 2 is Case 3, SBN (4) is robustly stable to the setM under
arbitrary switching signal.

Proof:There are two cases between the affected state δ
ϕ∗

2n

and perturbed state δ
γ ∗

2n , that is [0]ϕ∗,γ ∗ = 0 and [0]ϕ∗,γ ∗ >

0. Next, we prove that the above two situations have no impact
on the set stability of SBN (4) after OBFP occurs.
From the proof of the sufficiency of Theorem 1, we can

obtain that if [0]ϕ∗,γ ∗ = 0, the path from δθ
2n to set Is(M)

can be described as (12). Moreover, OBFP as Assumption 2
does not affect the path (12). By Assumption 1, we know that
every δθ

2n ∈ 12n can still evolve into set M under arbitrary
switching signal sequence.

If [0]ϕ∗,γ ∗ > 0, the path from δθ
2n to set Is(M) can be

described as (13). When σ (τ1 − 1) ̸= δk
∗

ω , the path (13) is
not affected by OBFP. When σ (τ1 − 1) = δk

∗

ω , after OBFP
occurs, the path (13) changes to be

δθ
2n → · · · → x(t1) → · · · δ

ϕ∗

2n → δ
γ ∗

2n . (18)

It follows from Case 3 that δ
γ ∗

2n ∈ Is(M). Based on the
property of the largest invariant set, we know that δθ

2n can
evolve into set Is(M) and stay in set Is(M) forever under
arbitrary switching signal after OBFP occurs.

According to the above discussion, one has that SBN (4)
with arbitrary switching signal is robustly stable to the setM
under Assumption 1 and Case 3 of Assumption 2. ■

Similarly, from Theorem 2, we can derive the following
corollary.
Corollary 2: Under Assumption 1 and Case 4 of Assump-

tion 2, SBN (4) is robustly stable to the setM under arbitrary
switching signal.

V. ILLUSTRATIVE EXAMPLE
We use the following example to verify the effectiveness of
the results obtained.
Example 1: The following SBN originates from a

biological example: a reduced E. coli lactose operon
network [18]. The five genes, termed lac mRNA, the high-
concentration lactose, medium-concentration lactose, the
high exolactose, and the medium exolactose are denoted
by state X1, state X2, state X3, input variable U1 and input
variable U2, respectively. If we suppose that the values of
input variables U1 and U2 are consistent with the values
of state X3, then this network model can be described as
follows. 

X1(t + 1) = f σ (t)
1 (X1(t),X2(t),X3(t)),

X2(t + 1) = f σ (t)
2 (X1(t),X2(t),X3(t)),

X3(t + 1) = f σ (t)
3 (X1(t),X2(t),X3(t)),

(19)

where f 11 = f 21 = X2(t) ∨ X3(t), f 12 = f 22 = X3(t) ∨ X1(t),
f 13 = X3(t) ∨ (X3(t) ∧ X1(t)), f 23 = X3(t).

Identify σ (t) = k ∼ δk2 , k ∈ {1, 2}, we can convert (19)
into the algebraic form as

x(t + 1) = Lσ (t)x(t), (20)
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FIGURE 1. The state trajectory of SBN (20) before function perturbation .

where x(t), σ (t) are the vector forms of (X1(t),X2(t),X3(t)),
σ (t) respectively. The state transition matrix of SBN (20) is
L = δ8[1, 4, 1, 8, 3, 4, 3, 8, 1, 4, 2, 8, 3, 3, 4, 8].
Given a setM = {δ18, δ88}. A direct calculation shows that

the largest invariant subset of setM for SBN (20) is Is(M) =

{δ18, δ88}. The state trajectory graph of SBN (20) before OBFP
is shown in Fig. 1.

Then we calculate

A = L ⋉B 12 =



1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 1 1 0
0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1


,

0 = (B)
8∑
i=1

Ai =



1 0 1 0 1 1 1 0
0 0 1 0 1 1 1 0
0 0 0 0 1 1 1 0
0 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1


.

(1) After OBFP, Col11(L) undergoes perturbation, which is
changed from δ28 to δ48 . By Lemma 3, we obtain k∗

= 2 and
ϕ∗

= 3, that is, the affected state and perturbed state are
δ38 and δ48 , respectively. Hence, SBN (20) becomes

x(t + 1) = L̂σ (t)x(t). (21)

Here L̂ = δ8[1, 4, 1, 8, 3, 4, 3, 8, 1, 4, 4, 8, 3, 3, 4, 8].
Since δ38 /∈ Is(M), δ48 /∈ Is(M) and [0]3,4 = 0, it

follows from Theorem 1 that SBN (20) is robustly stable to
setM after OBFP. The corresponding state trajectory graph
of dynamics can be described by Fig. 2.

(2) After OBFP, Col1(L) is changed from δ18 to δ58 .
By Lemma 3, we obtain k∗

= 1 and ϕ∗
= 1, that is, the

affected state and perturbed state are δ18 and δ58 , respectively.
The state transition matrix of SBN (20) is changed to be

L̂ = δ8[5, 4, 1, 8, 3, 4, 3, 8, 1, 4, 2, 8, 3, 3, 4, 8].

Since δ18 ∈ Is(M), δ58 /∈ Is(M), we know that OBFP is
Case 2. A sequence of calculations yield that [0]1,5 > 0,

FIGURE 2. State trajectory graph of dynamics after function perturbation
in Case 1 .

FIGURE 3. Dynamics of initial state x(0) = δ1
8 under switching sequence

σ := {σ (0) = δ1
2, σ (1) = δ2

2, σ (2) = δ1
2 } .

JTMCol1(Â2
n
) ̸= 0. Therefore, we can know from Corollary 1

that SBN (20) is not robustly stable to setM under arbitrary
switching sequence after OBFP. For example, if we select
switching sequence σ = {σ (0) = δ12, σ (1) = δ22, σ (2) = δ12},
the trajectory of SBN (20) with initial state x(0) = δ18 can be
expressed as x(1) = δ58 , x(2) = δ38 , and x(3) = δ18 . There
forms a new cycle (see Fig. 3), which is not contained in
setM.

VI. CONCLUSION
We have investigated robust set stability about SBNs affected
by OBFP. Based on the algebraic representation of an SBN,
we have provided several necessary and sufficient conditions
to detect whether an SBN with arbitrary switching signal is
still stable to the given set after OBFP. Robust set stability can
be applied to many other problems of logical networks, such
as robust synchronization of SBNs and robust optimization
of games etc., which remain for further study. Furthermore,
gene mutations often occur in a stochastic manner in practical
GRNs. Hence, future work can study stochastic function
perturbations impact on the behavior of SBNs.
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