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ABSTRACT Currently, island grids are being rapidly constructed in various regions, and the stochastic
nature of renewable energy generation output provides a great challenge for the economic dispatch of island
grids. In terms of demand-side management, the models used in existing studies in considering time-of-use
pricing as well as interruptible loads are still relatively simple, which makes it difficult to fully utilize their
potentials in scenarios where the number and types of controllable loads in the distribution network are
increasing. For this reason, this paper firstly analyzes the time response characteristics of users participating
in interruptible load protocols. Moreover, this paper proposes corresponding time-domain compensation
means, and establishes a multi-type active load model based on time-of-use pricing. Secondly, the time-of-
use pricing setting and the optimal scheduling of the active distribution network are integrated into a unified
optimization problem in order to strengthen the guiding effect of the time-of-use pricing mechanism on the
users and to achieve the overall economic optimization. Finally, a mixed integer nonlinear programming
model for day-ahead and intraday integrated scheduling is developed to consider the source-storage-load
characteristics within the distribution grid. Compared with the constant tariff model and the traditional TOU
model, the co-optimization method of time-of-use pricing formulation and active distribution grid dispatch
are improved in terms of economic efficiency of the island grid.

INDEX TERMS Island distribution networks, renewable energy generation, time-of-use pricing, ILs, grid
scheduling.

I. INTRODUCTION
The development of a low-carbon, green and ecologically
friendly island energy resource security system has become
a common demand for global energy system change [1],
and it is of great significance for increasing the proportion
of renewable energy, promoting the clean and efficient use
of energy, and enhancing the efficiency of comprehensive
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energy utilization. However, the coupling and coexistence
of multiple energy chains, the diversification of energy-use
scenarios, the large differences in resource endowments,
and the cooperation and competition among energy trading
entities have made the optimization of energy supply and
operation of islands face great challenges [2]. On the one
hand, this enriches the control means and operation mode of
the power grid, but at the same time, it also makes the opera-
tion and control of the distribution networkmore complex [3],
and the control strategy and operation mode of the traditional

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 89647

https://orcid.org/0009-0009-8582-5039
https://orcid.org/0009-0005-0195-2489
https://orcid.org/0009-0009-1000-8552
https://orcid.org/0000-0003-4889-6355
https://orcid.org/0000-0002-4281-0664
https://orcid.org/0000-0001-9490-6484


W. He et al.: Co-Optimization Strategy of Island Distribution Grid and Time-of-Use Pricing

distribution network need to be expanded. Therefore, it is
necessary to propose operation and control strategies that
can coordinate distributed generation, controllable loads and
energy storage.

At present, the research on the modeling and application
problems of distributed generation and energy storage in
distribution networks has been relatively mature [4]. Dis-
tribution grid scheduling and operation based on demand
side response (DSR) has also become more and more a
hot research topic in academia [5]. However, in terms of
demand side management (DSM), the existing research
mainly focuses on time-of-use pricing (TOU) [6] and tradi-
tional interruptible loads (IL). But the models used are still
relatively sketchy and one-sided [7], which makes it difficult
to fully utilize its potential.

In terms of real-time electricity prices, since electricity
providers and users are not a unified whole, in order to
balance the interests of all parties, scholars have begun
to study the real-time electricity price problem from the
perspective of the game. The study [8] proposed a new
pricing structure, named as a real-time variable peak pricing
scheme with a self-inbuilt feature to capture the benefit of
both the existing pricing scheme. Although the privacy and
comfort of users are taken care of in the system model-
ing, benefits to electricity suppliers are not included in the
game model. At present, in order to reduce the volatility
of renewable energy access, today’s scholars have begun
to improve the real-time electricity price model. In [9], the
incentive mechanisms were designed to increase the flexibil-
ity of distributed energy systems, and it proposed a virtual
real-time tariff optimization model based on credit mecha-
nisms, which lacked consideration of overall economics. The
study in [10] proposed an inter-provincial two-tier market
clearing decision model, where the upper tier optimizes the
provincial market through a unilateral bidding model, and the
lower tier optimizes power purchases by minimizing the cost
of acquiring inter-provincial renewable energy. Despite the
improved operational economics of the distribution network
under this strategy, the impact of demand-side response was
still ignored. In [11], a fair pricing scheme based on power
demand forecasting was proposed to reduce extra bills of low
energy consumers. In addition, the program did effectively
incentivize low energy consumers, but the utility did not
reap the benefits of the strategy. With the development of
artificial intelligence algorithms, neural networks have also
been widely used in electricity price prediction. The research
in [12] proved that convolutional neural network with long
and short-termmemory network better handles the sinusoidal
characteristics and volatility of electricity price compared to
multiple linear regression model and predicts the daily volt-
ages in Iranian energy market well. And in [13], an advanced
deep neural network with long and short term memory
combined with feature selection algorithm was applied for
electricity price prediction. The results from the proposed
model in an empirical study of the Nordic market were pre-
cise. However, each of the above strategies focuses on the

price mechanism itself, and the pricing optimization is cut
off from the economic dispatch of the distribution network,
which prevents the optimal solution from being obtained.

Moreover, current IL protocols are mainly deterministic,
and they can only be used by specific types of industrial
users [14] and do not fully utilize the regulatory potential
of different types of users. As a matter of fact, IL resources
are becoming more and more available in island distribu-
tion networks with the wide distribution of energy storage
and the increased controllability of electricity consumption
by users. The study in [15] pointed out that the extensive
contracting of IL with multiple types of users is effective
in reducing peak loads and operating prices in future smart
cities. To better manage IL, studies in both [16] and [17] have
developed smart energy management system and user behav-
ior models for DSM, respectively. A source-load-storage
multiple standby capacity system was constructed in [18]
for IL-containing gas and electricity systems, which could
realize the coordinated operation of multiple resources and
adequately cope with load-side and source-side output fluctu-
ations. The downside is that the study lacked the construction
of specific response model of IL. The study in [19] estab-
lished a bi-level capacity optimization model that considered
load demand management. By controlling the interruptible
and shiftable loads, the model could optimize load character-
istics, reduce operation costs, and increase system stability.
But it ignored the impact of TOU on loads. In summary, these
models only considered detailed user response models to the
excitation, and rarely took into account the response time
characteristics of the users.

Therefore, in order to improve the operational economic
efficiency of the island distribution network after renewable
energy generation access, this study establishes a synergistic
optimization model of TOU and distribution network opera-
tion with the participation of multiple types of controllable
loads, and mainly carries out the following work:

First, we analyze response time characteristics of the users
participating in the IL protocol, propose the corresponding
time-domain compensation means, and establish a multi-type
active load model based on the TOU;

Second, TOU setting and optimal scheduling of the island
distribution network are integrated into a unified optimization
problem in order to enhance the guiding effect of the TOU
mechanism on the users and to achieve the overall economic
optimality;

Third, we develop a mixed-integer nonlinear model con-
sidering the source-storage-load characteristics within the
active island distribution network for day-ahead and intraday
integrated scheduling, whichmaximizes the overall economic
benefits of the user side and the grid side.

II. ISLAND SOURCE-STORAGE-LOAD MODEL
In order to maintain the stability of power supply, renewable
energy generation units, energy storage, micro fuel engine
and active loads are used as the main control objects for the
operation of the island distribution network, and the basic
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FIGURE 1. Island distribution network structure.

model of the island distribution network is shown in Figure 1.
Its cost and operation model is an important part of the
distribution network source-storage-load coordinated control
strategy, which is briefly described below respectively.

A. ACTIVE LOAD MODEL
1) MODELING OF CUSTOMER RESPONSE TO REAL-TIME
ELECTRICITY PRICES
For all users as a whole, their electricity price response behav-
ior is modeled based on the price elasticity coefficient. Load
users respond to the current period’s tariff change and actively
cut down when the tariff is higher, which is manifested as
the self-elasticity coefficient, while the leveling load users
will choose the optimal time to use electricity based on the
comparison of tariffs in multiple time periods, i.e., the load in
the current period will also be affected by the tariffs of other
time periods, which is manifested as the mutual elasticity
coefficient, which is shown in equation (1) and equation (2):

εii =
1di/di
1pi/pi

(1)

εij =
1di/di
1pj/pj

(2)

where, εii is the auto-elasticity coefficient of time period i, εij
is the mutual elasticity coefficient of time period i to time
period j, 1di denotes the change in quantity demanded in
time period I, di denotes the initial quantity demanded in time
period i, 1pi and 1pj denotes the change in price in time
period i and time period j, respectively, pi and pj denotes the
initial price in time period i and time period j, respectively.

Based on the above definition of self-elasticity coefficient
and mutual elasticity coefficient, the change of load quantity
and the change of price for n periods in a day should be
satisfied:

1d = E1p (3)

1d = [1d1/d1, 1d2/d2, . . . ,1dn/dn]T (4)

1p = [1p1/p1, 1p2/p2, . . . ,1pn/pn]T (5)

E =


ε11 ε12 · · · ε1n
ε21 ε22 · · · ε2n
...

...
. . .

...

εn1 εn2 · · · εnn

 (6)

FIGURE 2. IL time response characteristics.

where 1d is the vector of demand changes, 1p is the vector
of price changes, andE is the matrix of elasticity coefficients.

Based on equations (3)∼(6), the load access situation of
each load node under TOU can be calculated based on the
load forecast information of each load node. At present,
the island power grid load nodes are few, the load capac-
ity is small, the power grid can obtain real-time access to
power users’ electricity consumption, providing the neces-
sary data base for the power grid to analyze the user’s
electricity consumption habits, and load forecasting based on
the node as a unit is feasible in the island distribution network
scheduling.

2) TIME RESPONSE CHARACTERISTICS OF IL
Large users, such as factories, and small users, such as com-
mercial and residential clusters, can sign an agreement with
the grid to curtail some of their loads when power supply is
tight, and gain more revenue by supporting the safe operation
of the grid. Traditionally, IL agreements are signed between
the grid and large industrial or commercial users, but in island
grids, the ease of measurement enables small users (e.g.,
residential users) to participate in demand-side response [20].
However, due to the diversity of cluster users, interruptible
is usually in a different state when a command is issued,
making it difficult to cut off all loads immediately. There-
fore, response time modeling of interruptible loads is needed.
This chapter assumes that the IL response characteristics are
shown in Figure 2. After the grid issues an IL disconnection
command at the time, the IL is disconnected instantly, and
the remaining loads will be disconnected one after another
during the time period due to the different states they are in,
and will be completely disconnected at the time. In practice,
the sensitivity of different user equipment to compensation
is different. In order to reasonably consider the time response
characteristics of IL, linear (curve 1), convex parabolic (curve
2) and concave parabolic (curve 3) models are constructed
respectively.

As shown in Figure 2, immediate response α is defined as
the ratio of the actual response Ps to the specified response Pi
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at the moment of command, and response time ti is defined
as the time from the moment ts of command to the moment
te of full response:

α = Ps/Pi (7)

ti = te − ts (8)

There are differences in the time response characteristics
of different types of ILs, and describing them with all three
models mentioned above will import some errors. However,
in the control within the scheduling optimization step (15 min
for intraday scheduling and 1 h for day-ahead scheduling),
considering the need for IL convergence, the response is
basically complete within one step and there is no need to
model the process in a refined way.

In order to encourage users to disconnect loads in a timely
manner at a given moment, the compensation cost of IL takes
into account the amount and duration of interruptions, as well
as the instantaneous responsiveness and response time. Based
on the above considerations, the compensation factor for IL
can be referred to equation (9):

λ = f (α, ti) = α · λ0 + (1 − α) · (1 − ti
/
ti,0) · λ0 (9)

where, ti,0 and λ0 is the reference value of response time
and compensation coefficient. Compensation coefficient is
composed of two parts, instant response load is compen-
sated according to the reference compensation coefficient,
and delayed response load is compensated according to the
length of response time, the longer the response time, the
lower the compensation coefficient.

B. MICRO FUEL ENGINE COST AND OPERATION MODEL
Conventional micro fuel units are less efficient in generating
electricity, and usually use combined cooling, heating and
power (CCHP), taking into account the benefits of cooling
and heating in their costs F tMT , which consist of start-up
and shutdown losses, fuel consumption, pollutant emission
control, and the benefits of CCHP:

F tMT = (motMG,on · dMG,on + motMG,off · dMG,off )

+ utMG · fMG(PtMG · 1T ) + utMG · gMG(PtMG · 1T )

− utMG · bMG(PtMG · 1T ) (10)

where, 1T is the control step, motMG,on and motMG,off are
the micro fuel engine start-stop state transition variables.
motMG,on = 1 and motMG,off = 1 denote the start-up opera-
tion and the shutdown operation. dMG,on and dMG,off are the
start-stop costs. utMG denotes the micro fuel engine turbine
start-stop state variable, with 1 denoting the start-up state
and 0 denoting the shutdown state. PtMG denotes the output
value of the time period of t, fMG denotes the output cost of
micro fuel engine, gMG denotes the cost function of pollution
control, bMG denotes the benefit of heating and cooling. The
operation constraints of themicro fuel enginemainly includes
unit output limit constraints, unit creep rate constraints, unit
minimum start/stop time constraints, and start/stop logic
constraints.

Upper and lower limits of micro fuel output constraints:
Subject to micro fuel performance constraints, there are

upper and lower limits on real-time unit output, as shown in
equation (11):

0 ≤ PtMG ≤ Pmax
MG (11)

where Pmax
MG indicates the upper output limit of the micro fuel

engine.
Micro fuel engine climb rate constraint:
The upward or downward creep rate limit for micro fuel

engine power is shown in equation (12):

−Rd · Pmax
MG ≤ PtMG − Pt−1

MG ≤ Rr · Pmax
MG (12)

wherePmax
MG denotes the output value in time period t-1;Rr and

Rd are the upward and downward creep rates of the micro-
fired unit, respectively.

Minimum start-up and shutdown time for micro fuel
engines:

Due to the requirements of the technical conditions of the
micro fuel engine itself, the micro fuel engine start, must run
for a period of time and can’t be immediately shut down.
Similarly, the micro fuel engine shutdown, must also be shut
down for a period of time before running. Therefore, the
minimum start-stop time constraint should be satisfied when
developing the thermal unit generation plan, as shown in
equation (13):{

(ut−1
MG − utMG)(Tt−1 − T on) ≥ 0

(utMG − ut−1
MG )(−Tt−1 − T off ) ≥ 0

(13)

where, Tt−1 is the time of startup/shutdown operation in time
period t-1. If the micro fuel is on in time period t-1, it is
positive, and vice versa is negative. If the micro fuel is on at
time t-1, it is positive, and vice versa. T on is the minimum
running time of the micro fuel, and T off is the minimum
downtime of the micro fuel.

C. RENEWABLE ENERGY GENERATION COST AND
OPERATION MODEL
The power of renewable energy generation is intermittent
and fluctuating, such as wind power and photovoltaic power
generation, which is related to the wind speed, the intensity
of solar irradiation [21], and the characteristics of the gen-
erator. Therefore, the prediction of renewable energy power
has been the basis for its effective utilization. For example,
a number of models and algorithms have been used to pre-
dict wind power output on different time scales. Relevant
commercial software can achieve high prediction accuracy in
short-term and ultrashort-term wind power forecasting, e.g.,
short-term forecasting accuracy can reach 80% (root-mean-
square error), and ultrashort-term forecasting accuracy can
reach 90% [22].

Wind power is the fastest growing renewable energy gen-
eration method. Nowadays, there are large-scale wind power
grid-connected operation, wind turbine generates electricity
from wind energy conversion. The blades of the wind turbine
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capture energy from the wind and convert it into rotational
kinetic energy, and then through the mechanical drive system
to transmit the mechanical energy to the generator, through
the generator will be converted into the energy of the mag-
netic field, and ultimately converted into electrical energy.
From the knowledge of aerodynamics of the wind turbine it
can be concluded that the output power of the wind turbine
is:

PWT =
1
2
ρ · πR2WT · v3 · CP (14)

where PWT is wind turbine output power, ρ is the air density,
RWT is the radius of the wind turbine blades, πR2WT is the
swept area of the blades, v is the wind speed, CP and is the
wind energy utilization factor.

Photovoltaic power generation is a device that utilizes the
photovoltaic effect unique to semiconductor p-n junctions
and thus converts the energy of solar radiation into electrical
energy. The characteristic of the output of a photovoltaic cell
is:

Ipv = Iph − ID0

(
e
q(Upv+IpvRs)

AKT − 1
)

−
Upv + IpvRs

Rsh
(15)

where, Ipv for the output current of the photovoltaic cell; Iph
for the current of the photogenerated current source; ID0 for
the saturation current of the photovoltaic cell when there is
no light; q is the electronic charge; Rs, Rsh respectively, for
the series resistance of the photovoltaic cell and the side-
drain resistance; K is Boltzmann’s constant; A is the diode
characteristic factor. The output power of the photovoltaic
cell is related to the light intensity and voltage.

In order to maximize the use of renewable energy, in the
analysis of this study we only consider the natural fluctuation
of new energy output, which is regarded as a negative load
and completely consumed, without considering its output
regulation.

D. ENERGY STORAGE COST AND OPERATION MODEL
The lifetime of an energy storage system is related to
its charging and discharging frequency, charging and dis-
charging depth, and other factors. The energy storage cost
modeling for global economic operation of the grid can be
simplified appropriately. If the lifetime loss of the energy
storage system is equalized to the charging and discharging
loss per unit of electricity, the operating cost of the energy
storage equipment FES can be expressed as follows:

FES =

∑
t

ces(Ptes,c + Ptes,d )1T (16)

where, ces is the loss cost corresponding to the unit charging
quantity. Ptes,c, P

t
es,d is the charging and discharging power

of the energy storage device in time period t, respectively.
1T is the time step, 1h for day-ahead scheduling and 15min
for intra-day scheduling. The energy storage device mainly
contains the upper and lower charging and discharging power
constraints, SOC constraints, and charging and discharging
logic constraints.

Charging and discharging power upper and lower limit
constraints:

When the energy storage is in charging or discharging
state, the charging or discharging power shall not exceed
the maximum power allowed by the system as shown in
equation (17): {

0 ≤ Ptes,c ≤ Pmax
es,cu

t
es,c

0 ≤ Ptes,d ≤ Pmax
es,du

t
es,d

(17)

where, Pmax
es,c is the maximum charging power; Pmax

es,d is the
maximum discharging power; utes,c is the energy storage
charging state quantity, utes,d is the energy storage discharging
state quantity, the value is 0 or 1.

SOC constraint:
The real-time SOC of the energy storage is related to the

charging and discharging power, efficiency, and the SOC of
the previous time period, and the SOC can’t exceed the upper
and lower limits, as shown in equation (18): SOCt = SOCt−1 + (

Ptes,cηc
E

−
Ptes,d
Eηd

)1T

SOCmin ≤ SOCt ≤ SOCmax

(18)

where, ηc is the charging efficiency, ηd is the discharging
efficiency, E is the rated capacity of the energy storage, SOCt
is the SOC of the energy storage at time t, SOCmin is the lower
limit of SOC, SOCmax is the upper limit of SOC.

Charging and discharging logic constraints:
Assuming that the energy storage is only in the charging

or discharging state during a time period through scheduling
operations, the charging and discharging logic constraint is
shown in equation (19):

utes,c + utes,d ≤ 1 (19)

III. CO-OPTIMIZATION MODEL FOR ISLAND
DISTRIBUTION NETWORK SCHEDULING AND TOU
The cooperative optimization model of distribution network
dispatching and tariff setting on the island takes micro fuel
engines, energy storage, and active loads as control objects.
In the day-ahead phase with 24h as the time scale, based on
the short-term forecast results of Photovoltaic or wind power
generation output and load and TOU-load phase response
model, the economic operation of the distribution network
is co-optimized with tariff-setting to determine the tariff and
the basic operation mode of the distribution network for the
next day. In the intra-day phase, the model predictive control
algorithm is used to adjust the power of the control object in
real time based on the photovoltaic or wind power generation
and ultra-short-term load forecasting (USTLF) results and
the IL corresponding model, using 4h as the time scale.
For the USTLF, this paper draws on the methodology of [23].
The developed method is based on the integration of convo-
lutional neural network (CNN) and long short-term memory
(LSTM) network. The CNN module is used to capture the
local trend of the load data pattern. It also flattened down
the samples into a single one-dimensional vector, which is
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FIGURE 3. General architecture of co-optimization model for Island
distribution network scheduling and TOU setting.

used as a single input time step to the LSTM layer. And
study shows the strategy has higher precision and accuracy.
The overall architecture of the active distribution network
scheduling and tariff setting cooperative optimization model
is shown in Figure 3:

Both the day-ahead and intraday scheduling phases, the
distribution network scheduling mathematical model can be
expressed as equation (20):

max f (P, p,mo, u)

s.t

{
h(P, p,mo, u) = 0
g ≤ g(P, p,mo, u) ≤ g

P, p ∈ R;mo, u ∈ {0, 1}

(20)

f (P, p,mo, u) are the objective functions. h(P, p,mo, u)
and g(P, p,mo, u) are the equation constraints and inequal-
ity constraints of the system, respectively. P, p,mo, u are
the power, tariff, state transitions, and state variables,
respectively.

A. A SYNERGISTIC OPTIMIZATION MODEL OF ECONOMIC
OPERATION AND TOU FOR ISLAND DISTRIBUTION
NETWORKS IN THE PAST FEW DAYS
The objective function of the synergistic optimization model
of distribution network economic operation and tariff setting
a few days ago is to maximize the total benefits for users and
the grid:

f (P, p,mo, u) = f1(P, p,mo, u) + f2(p,L) (21)

f1(P, p,mo, u) = p · L − C(P, p,mo, u) (22)

f2(p,L) = U (p,L) − p · L (23)

where, f1(P, p,mo, u) is the grid benefit, composed of tariff
revenue p · L and power supply cost C(P, p,mo, u). f2(p,L)
is the user benefit, composed of user utilityU (p,L) and tariff
revenue p · L . p is the tariff and L is the load. The overall
benefit depends on the user utility and grid operation cost,
and is not directly related to the tariff p-L, but the change of

tariff and load will indirectly affect the user utility and grid
operation cost, and then affect the overall benefit.

In the case of electricity users, the measurement of user
utility in existing TOUmodels usually uses a utility function.
According to economic theory, the response behavior of elec-
tricity users usually takes the form of a quadratic function as
follows [24]:

U (p, l) =

 ωl −
θ

2
l2, 0 ≤ l ≤

ω

θ
ω

θ
, l >

ω

θ

(24)

where, θ is a constant characterizing the sensitivity of the
user’s response to the tariff, usually taken as 0.5. l is the user’s
load demand. ω denotes the user’s willingness to purchase
electricity parameter, which has different values for different
users at different times of the day. The value of user utility
function can be obtained through market survey.

As far as the power system is concerned, the cost of power
supply is mainly composed of generation cost Ft and distri-
bution cost Fd , as shown in equation (25). Among them, the
generation cost is the cost of purchasing electricity from the
transmission grid, and in order to characterize the differences
in generation cost under different operating powers, the gen-
eration cost adopts the typical synchronous unit generation
cost function shown in equation (26). The main variable
costs of power distribution depend on the operation mode
of the distribution network, mainly including the operation
cost of distributed micro fuel engine FMG, the operation cost
of energy storage FES , and the IL compensation cost FL ,
as shown in equation (27):

C(P, p, sw, u) = Ft + Fd (25)

Ft = a · P2t + b · Pt + c (26)

Fd = FMG + FES + FL (27)

In the day-ahead optimization, the power balance con-
straints are mainly considered without taking into account
network losses, etc., as shown in equation (28):

PtMG,i + PtES,i + PtNE,i +
∑
l

Ptl,i = PtL,i (28)

where, PtMG,i is the micro fuel engine power at node i at time
t, PtES,i is the energy storage power at node i at time t, PtNE,i is
the Photovoltaic or wind power generation power at node i at
time t, and Ptl,i represents the power transmitted by the node
line connected to node i at time t (with positive power flow to
the node).

B. INTRADAY PHASE DISTRIBUTION NETWORK
ECONOMIC OPERATION OPTIMIZATION MODEL
As the synergistic optimization of distribution network eco-
nomic operation and tariff setting in the previous day’s stage
has initially determined the next day’s tariff and the basic
operation mode of the grid, the focus of intra-day eco-
nomic operation is on real-time adjustment of power variables
according to the ultra-short-term load forecasts and real-time
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operation status of the grid, with the objective function of the
lowest distribution network operation cost:

minCd = Ft + FMG + FES + FL (29)

Since the model predictive control is used during the day
with a time scale of 4h, the SOC state of the energy storage
cannot take into account the whole day operation state and
economy, so it is necessary to consider the storage SOC state
in the constraints:

0.8 · SbES(t) ≤ S iES(t) ≤ 1.2 · SbES(t) (30)

where S iES(t) and SbES(t) are the intraday and day-ahead
energy storage SOC states, respectively.

In addition, since only power balance constraints are con-
sidered before the day, voltage and current overrun problems
may occur during the intraday optimization process, so the
necessary upper and lower current and voltage constraints
need to be considered during the day. The real-time power
balance of the grid will include the network loss power, which
is modeled as follows:

V 2
m,t − V 2

n,t = 2(Pmn,trmn + Qmn,txmn)

+ (r2mn + x2mn)
P2mn,t + Q2

mn,t

V 2
m,t

(31)

Vmin
i,t ≤ Vi,t ≤ Vmax

i,t (32)

where m and n are the two ends of one line of the network.
Vm,t ,Vn,t are the node voltage, Pmn,t ,Qmn,t are the active and
reactive power transmitted by the line. rmn, xmn and are the
line resistance and reactance.

IV. MODEL SIMULATION
The integrated optimizationmodel of TOU and grid operation
developed in this paper is a mixed integer nonlinear program-
ming problem (MINLP), so the open source software SCIP is
used to solve it.

A. PARAMETERS OF THE ALGORITHMIC SYSTEM
In order to simulate the actual characteristics of the island
power system, the IEEE 14-node distribution system is used
as the basis for simulation analysis and relatedmodel settings.
Node 2 is connected to a micro fuel engine with a power
limit of 0.1 MW. Node 8 is connected to wind power and
energy storage with a storage capacity of 1MWh and a power
limit of 0.3 MW. IL exists at node 14 with a capacity of
0.1 MW, ti,0 = 2h, λ0 = 1.6, and a linear model is used
for the time response characteristics of IL. The instantaneous
response degree of IL of 0.5, and the response time is 1h.
The baseline price of electricity is 0.6yuan/kWh. In order
to characterize the changes in the cost of power generation
in different time periods, the parameters of power purchase
cost at the grid point b = 0, c = 0, and a takes the values of
400, 300, and 100 in the peak, flat, and valley time periods,
respectively. Peak hours are 07:00-11:00 and 17:00-21:00,
flat hours are 12:00-16:00 and 22:00-23:00, and valley hours

TABLE 1. IEEE 14-node test system feeder parameters.

TABLE 2. Modified IEEE 14-node test system load rating parameters.

TABLE 3. Basic parameters of micro fuel engines.

are 00:00-6:00. Other detailed parameters of the distribution
network, micro fuel engine and energy storage system are
shown in Table 1 to 4. The number of users in each node
is 10, and the example selects the typical TOU related data
for simulation and analysis, and the parameters of the users’
willingness to purchase electricity are shown in Table 5, and
the price elasticity coefficients are shown in Table 6. The
basic structure is shown in Figure 4. The model is in line with
the characteristics of island distribution network such as user
dispersion and few nodes, and has practical value.

B. SIMULATION STRATEGY
This paper proposes three strategies for comparative analysis
to verify the effectiveness of the strategies proposed in this
study:
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TABLE 4. Basic parameters of energy storage.

TABLE 5. Parameters of users’ willingness to purchase electricity ω.

TABLE 6. Price elasticity coefficient.

FIGURE 4. IEEE 14-node distribution system.

Strategy 1: Active load island distribution network
scheduling based on TOU guidance proposed in this
paper, with integrated optimization of TOU and economic
operation;

Strategy 2: Island distribution network scheduling with
constant tariff of 0.6 Yuan/kWh;

Strategy 3: Optimized scheduling of island distribution
network without considering the mutual elasticity coefficient
of loads, using the marginal cost method to determine TOU,
and then the TOU as a known quantity.

Strategy 4: Based on the model proposed in this paper, the
IL time-response characteristics are not considered, i.e., the
IL is considered to be instantly removed as per the predeter-
mined instruction during the optimization process.

C. STRATEGY 1 PRE-DAY AND INTRA-DAY DISPATCH
RESULTS ANALYSIS
By solving the strategy 1 model, the TOU for each hour of the
previous day can be obtained, as well as the load response
curve under the action of this TOU, as shown in Figure 5.

FIGURE 5. Day-ahead TOU and load changes.

FIGURE 6. Power curve of each unit in the first day stage.

It can be seen that under the effect of TOU, the peak-to-valley
difference of load is obviously reduced, which reduces the
regulation pressure of the grid. The TOU strategy proposed
in Strategy 1 basically presents the feature that the higher the
load, the higher the tariff, and its pricing is not only related
to the load level at this time, but also affected by the tariffs
of other times of the day in the distribution network. Strategy
1 achieves the synergistic optimization of market tariff and
grid economic operation.

Figure 6 and 7 show the power curves of each unit of the
active distribution network and the storage operation status
in the optimization phase a few days ago. From the figures,
it can be seen that when the load is high, without reducing
the operating cost, the micro fuel burner will be put into
operation and IL removed. When the load is low, the micro
fuel engine does not run or runs at low power, while the IL
is put into operation. Energy storage shaves peaks and fills
valleys by charging and discharging to improve the economy
of the whole network operation.
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FIGURE 7. Day-ahead energy storage operation status.

FIGURE 8. Power curves of the units in the intraday phase.

FIGURE 9. Intraday phase energy storage system power and SOC states.

Based on the above results of the day-ahead optimization
and control, the example data are kept unchanged, and the
simulation analysis of the intra-day rolling optimization is
carried out. The results of the all-day rolling optimization
are shown in Figure 8. The storage charging and discharging
power and SOC states are shown in Figure 9, where the
SOC reference value is the result of the day-ahead stage
optimization.

FIGURE 10. Power curves of each unit in the day-ahead stage when
strategy 2 is adopted.

As can be seen in Figure 8, in general, the overall trend of
the intraday rolling optimization results is similar to that of
the day-ahead optimization results, but the intraday optimiza-
tion results are more fine-grained and reflect the real-time
load fluctuations. In addition, the intraday stage optimization
model introduces the energy storage system SOC constraint
equation (22) based on the day-ahead optimization results.
From Figure 9, it can be seen that the intraday storage charg-
ing and discharging depth is smaller than that of the previous
day, which is due to the smaller load peak-valley difference in
the intraday optimization time scale (4h), and the energy stor-
age tends not to be charged or discharged. Taking 0:00-4:00
as an example, the load peak-valley difference is very small,
and if the intraday SOC optimization is not considered, the
energy storage will not be charged, resulting in the failure to
provide sufficient power during the 18:00-20:00 time period.
In contrast, by introducing the coordination of SOC con-
straints based on the day-ahead scheduling results, the energy
storage has to be charged to increase the SOC to 0.65, giving
it more sufficient power to meet the peak-load demand during
18:00-20:00.

D. COMPARATIVE ANALYSIS OF STRATEGY 1 AND
STRATEGY 2 (TOU VS. CONSTANT TARIFF)
The results of the day-ahead stage optimization when strat-
egy 2 is used are shown in Figure 10. The storage charg-
ing and discharging power and SOC states are shown in
Figure 11. A comparison of the cost and benefit results for
each part of the distribution network in Strategy 1 and Strat-
egy 2 is shown in Table 7.
In strategy 1, the utility function of the user is relatively

low, but after considering the daily electricity cost, the user
benefit is increased by 2,629 yuan compared with strategy 2.
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FIGURE 11. Day-ahead stage energy storage operation state when
strategy 2 is adopted.

TABLE 7. Comparison of costs and benefits between strategy 1 and
strategy 2.

Meanwhile, for the grid, since Strategy 1 can guide the user’s
electricity consumption through TOUs to adapt to scheduling,
the grid operation cost is lower, but under the influence of the
market, the grid tariff benefit is reduced, and the accounted
grid benefit is reduced by 2,590 yuan. However, synthesizing
the interests of both users and the grid, the reduction of user
utility is lower than the reduction of grid costs. At the same
time, for the grid, but after the adoption of strategy 1, while
shaving peaks and filling valleys of loads, it will produce
positive externalities, reduce system expansion costs, reduce
system standby costs, and further reduce the cost of the grid
and so on. Therefore, from the final overall comprehensive
benefits, strategy 1 is higher than strategy 2.

E. COMPARATIVE ANALYSIS OF THE RESULTS OF
STRATEGY 1 AND STRATEGY 3 (TOU AND DISTRIBUTION
NETWORK OPERATION INTEGRATION OPTIMIZATION)
To further illustrate the superiority of the integrated optimiza-
tion of TOUs and economic operation, a comparison strategy
(Strategy 3) is designed, i.e., TOU and grid operation are
optimized in steps:

1. Pricing stage: the mutual elasticity coefficient of load is
not considered, i.e., the price of electricity in each time period
only depends on the cost (generation cost, network loss, etc.)
and revenue (combined revenue of the grid and the customer)
in that time cross-section, and does not take into account the
scheduling of energy storage and IL.

2. operation phase: the TOU determined in the pricing
phase is used as a known quantity, and the model in this
chapter is used to optimize the dispatch of the distribution
network.

FIGURE 12. TOU and load changes in the day-ahead phase when strategy
3 is adopted.

The difference between Strategy 1 and Strategy 3 is that;
Strategy 1 uses the coordinated optimization of real-time
prices and grid economic dispatch; while Strategy 3 only
considers the self-elasticity coefficients of the loads in each
time period, and optimizes the distribution network based on
the results of market prices optimization.

After adopting strategy 3, the TOU obtained from the
optimization in the previous day stage are shown in Figure 12
with the corresponding load changes, and the distribution
network operating power curve is shown in Figure 13.
Comparison of costs and benefits of each part of the dis-
tribution network in Strategy 1 and Strategy 3 is shown in
Table 8.
For strategy 3, in the pricing stage, the cost of grid oper-

ation only considers the cost of generation, i.e., the cost of
purchasing electricity at the grid connection point as well
as the cost of running the micro fuel engine, and the opti-
mization process will minimize the two costs and increase
the user’s utility, which is shown in Table 8, where the cost
of purchasing electricity at the grid connection point and the
cost of running the micro fuel engine have been reduced by
103 yuan and 148 yuan, respectively, and the user’s utility
has been increased by 92 yuan. Compared with Strategy 1,
Strategy 3 increases the benefit by a total of 343 yuan in
the above three indicators. Therefore, if only TOU pricing
is considered, since Strategy 3 does not take into account
the constraints of scheduling, its TOU setting has more opti-
mization space, making the results of Strategy 3 better than
the strategies in this chapter. However, when carrying out
the distribution network economic operation optimization,
since the tariffs formulated using Strategy 3 do not take into
account its impact on the distribution network operation, the
load profiles obtained from its guidance cannot be optimally
matched with the operation scheduling. As can be seen from
Figure 13, its storage charging and discharging amplitude is
larger and the IL call time is longer, resulting in higher costs
of 3 yuan and 360 yuan, respectively. Taking into account
the aforementioned increase in dispatch costs, the reduced
costs and increased benefits of Strategy 3 in the pricing
stage are completely offset, which ultimately makes the over-
all benefits of Strategy 3 lower than those of Strategy 1
instead.
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FIGURE 13. Power curves of each unit in the day-ahead stage when
strategy 3 is adopted.

TABLE 8. Comparison of costs and benefits between strategy 1 and
strategy 3.

F. COMPARATIVE ANALYSIS OF THE RESULTS OF
STRATEGY 1 VERSUS STRATEGY 4 (WITH OR WITHOUT
CONSIDERATION OF IL TIME RESPONSE
CHARACTERISTICS)
The strategy in this paper considers the IL time response char-
acteristics in the optimization process, i.e., when the actual
load is delayed to be removed, the optimization strategy is
adjusted for the delayed case to obtain the most economical
operation in the delayed case. To illustrate the superiority
of this consideration, strategy 4 is set up for comparison.
Combining the day-ahead optimization results of Strategy 1,
the grid removes 0.1 MW of IL at 18:00, and since the
instantaneous response amount is 0.5 and the response time
is 1 h, the IL is actually removed by 0.05 MW at 18:00 and
the remaining 0.05 MW at 19:00, but Strategy 4 is optimized
on the basis that the IL is removed in full at 18:00.

Considering that the intraday optimization time scale is 4h,
we only focus on the simulation near the 18:00-20:00 time

FIGURE 14. Power curves of the units in the intraday phase when
strategy 1 is adopted.

FIGURE 15. Power curves of the units in the intraday phase when
strategy 4 is adopted.

FIGURE 16. Intraday phase energy storage power and SOC curve when
strategy 1 is adopted.

period, and set the initial SOC state of the energy storage to
0.8. The optimization calculations are carried out by using
strategy 1 and strategy 4, respectively, and the simulation
results are as follows:

For strategy 4, since the actual load value (current load
value minus IL removal) during 18:00-19:00 is 0.05 MW
higher than the load identified by the optimization process,
this excess power can only be passively provided by the
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FIGURE 17. Intraday phase energy storage power and SOC curve when
strategy 4 is adopted.

TABLE 9. Comparison of costs and benefits between strategy 1 and
strategy 4.

grid-connected point, resulting in an increase in the cost of
power purchased by the grid-connected point. For strategy 1,
because 0.05MW less IL is removed at 18:00, the actual load
value from 18:00 to 19:00 is 0.05MW higher than that from
19:00 to 20:00, and the energy storage is concentrated to be
discharged in the period of 18:00 to 19:00, and the magnitude
of discharge is larger than in strategy 4, and the cost of storage
operation is higher than that in strategy 4. However, the mag-
nitude of the increase is significantly smaller than the increase
in cost of grid-connected points in strategy 4 relative to strat-
egy 1, which indicates that the cost of power purchased by
the grid-connected points in strategy 1 is increased. However,
the increase in storage operating costs is significantly smaller
than the increase in grid connection point costs for Strategy 4
relative to Strategy 1, indicating that strategy 1 can achieve
economic optimization by reasonably adjusting the charging
and discharging behavior of energy storage. In summary, the
strategy in this paper achieves more refined control, and the
optimization results are better than strategy 4.

V. CONCLUSION
We have developed a coordinated optimization model for
island distribution network scheduling and TOU setting by
synergizing TOU with grid economic operation optimization
and taking into account the time response characteristics of
IL. Considering the characteristics of the island distribution
network, the following conclusions are obtained based on the
theoretical analysis and the results of the arithmetic test using
the IEEE14 node system as an example:

(1) Compared with the existing constant tariff mechanism,
the TOUmechanism improves the utility of the customer side
by 2,629 yuan and reduces the grid revenue by 2,590 yuan,
and the reduced grid revenue is smaller than the increased
customer utility, so the TOU mechanism is able to improve
the overall revenue of the supply and demand sides.

(2) By comparing the two strategies of TOU with or
without considering grid dispatch, it is concluded that the
strategy that only considers the TOU mechanism has a total
economic benefit of 343 yuan on the side of user utility and
generation cost, but the cost of energy storage and the cost
of IL call is increased by a total of 363 yuan. Therefore, the
co-optimization of TOU pricing with grid dispatch operation
can obtain better economic benefits.

(3) By comparing whether the time response of IL is
considered in the co-optimization strategy, it is concluded
that when the time response of IL is considered, the cost
of energy storage operation increases but the cost of power
purchase at the grid connection point decreases. It also proves
the necessity of considering the IL time response by achieving
a more fine-grained control.

In summary, the synergistic optimization of TOU and grid
scheduling considering IL time characteristics improves the
economic efficiency of island distribution network operation.

However, the load price elasticity coefficient method and
the user utility function model used in this paper are simple,
and the established user response model is only based on the-
oretical analysis, which will differ from the actual situation.
Therefore, how to properly consider the adverse effects of
prediction errors on scheduling models and overcome them
will be the focus of future research.
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