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ABSTRACT With the evolution of the sixth generation (6G) mobile communication technology, the
terahertz (THz) spectrum has attracted much attention in wireless communication applications due to its high
bandwidth and low signal transmission delay. However, the introduction of the THz spectrum leads to higher
path transmission losses and complex signal attenuation. This makes user sensing and localization in THz
massive multiple-input multiple-output (MIMO) systems more challenging. In this paper, we investigate the
user sensing and localization problem in THz massive MIMO systems with the assistance of reconfigurable
intelligent surfaces (RIS). Firstly, the received signal is modeled as a tensor, and a parallel factor (PARAFAC)
method is proposed. The minimum description length (MDL) is then utilized to detect the number of
scattering paths in the channel. On this basis, the alternating least squares (ALS) algorithm is employed to
estimate the factor matrices, followed by the utilization of a straightforward correlation-based approach to
obtain channel parameter information. Finally, the positions of users and scattering points are estimated based
on the geometric relationship between channel parameters and location coordinates. The simulation results
have verified the effectiveness of the proposed scheme compared to the existing competitive algorithms,
and indicate that the proposed scheme exhibits superior parameter estimation performance and can achieve
localization accuracy at the decimeter level.

INDEX TERMS Teraherz, massive MIMO, sensing and localization, RIS, tensor.

I. INTRODUCTION
The development of the sixth generation (6G) mobile
communication technology has emerged as a focal point
in wireless communication technology [1]. Its faster data
transmission rate, larger capacity, low communication delay,
and support for real-time interaction promote Internet of
Things (IoT) connectivity and intelligent applications [2].
The launch of 6Gwill bring innovations in various application
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scenarios and has enormous potential in the positioning
field. Its high-precision positioning capability will drive the
development of fields such as smart cities [3], healthcare [4],
smart homes [5], and IoT connectivity [6]. For 6G services,
the terahertz (THz) spectrum has garnered significant interest
owing to its high bandwidth and low signal transmission
delay, bringing new possibilities for high-speed data trans-
mission and user perception tracking [7].

However, the emergence of the THz spectrum has
also brought a series of new challenges, such as higher
path transmission loss, complex signal attenuation, and
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difficulties in beamforming [8]. Despite the wide spectrum
resources, environmental factors have a significant impact
on it, and it is necessary to overcome problems such as
signal attenuation. To tackle this concern, reconfigurable
intelligent surface (RIS), as a new type of radio spectrum
modulation technology, is considered a potential solution to
overcome the congestion problem of the THz positioning
systems [9]. The RIS adjusts the propagation path and phase
of electromagnetic waves by controlling intelligent units
on the surface. This method can effectively improve signal
quality, reduce transmission losses, and potentially achieve
beamforming and interference suppression. Demonstrating
the vast potential of creating an intelligent radio environment,
the RIS can contribute to the efficient concentration of power
at the target receiver by precisely manipulating the phase shift
of the reflective elements. Therefore, it is used to enhance the
performance of synchronous wireless information and power
transmission (SWIPT) systems [10] and multicellular net-
works [11]. Especially in positioning systems, RIS assistance
can improve positioning accuracy [12], [13]. Compared to
passive RIS, active RIS has power amplification capability,
which can effectively bypass the phenomenon of ‘‘dual path
loss’’ and fully tap into the potential of RIS [14]. It should
be noted that active RIS is different from traditional relays
because it does not require a radio frequency (RF) link.

User sensing and localization play a crucial role in wireless
communication. Sensing involves understanding the environ-
ment and network conditions of the user equipment (UE),
while localization determines the precise location. The main
idea of these two is to obtain positional geometric information
from channel state information (CSI) measurement, and their
accuracy directly influences the performance and service
quality of wireless communication systems [15]. Leveraging
the sparsity in the angular domain of large-scale multiple-
input multiple-output (MIMO) systems, UE localization
using the angle of arrival (AOA) has emerged as a focal point
of research interest. The work in [16] uses matched filtering
and compressed sensing (CS) methods to estimate time of
arrival (TOA) and AOA, and utilizes multiple base stations
(BS) to perceive the position of the UE. However, this work is
not applicable to situations involving a single BS. The authors
of [17] give a two-stage algorithm for estimating the CSI.
Firstly, the distributed CS synchronous orthogonal matching
pursuit (OMP) algorithm is adopted for rough estimation.
Then, the expectation maximization algorithm is employed
for refinement to perceive the position of indoor terminals.
However, the work in [17] requires locating the scatterer to
calculate the position of the UE, and is not applicable to the
case of a single antenna terminal.

In addition, the utilization of the RIS-assisted UE local-
ization has been widely studied [18], [19], [20], [21], [22].
The work in [18] proposes a near-field target localiza-
tion algorithm for RIS-assisted positioning systems, which
determines the target position by extracting information
from RIS-reflected signals. The authors of [19] propose a

superimposed symbol scheme that overlays sensing pilots
onto data symbols on the same time-frequency resource.
They develop a structure-aware sparse Bayesian learning
framework that improves sensing performance and increases
spectral efficiency by decoding data symbols as auxiliary
information. In [20], the authors introduce an innovative
self-sensing RIS architecture, outline the RIS stages, and
employ a customized multiple signal classification (MUSIC)
algorithm to detect the direction of its nearby target. However,
the work in [20] only estimates the angle and cannot obtain
the user position. The work in [21] considers the observation
degrees of freedom with the assistance of multiple RISs
and employs random beamforming and maximum likelihood
estimation methods to estimate the angle of departure (AOD)
and perceive the UE position. However, this work needs
UE to know the location of the RIS, which is difficult to
implement in practice. The authors of [22] explores the
use of a RIS-assisted millimeter wave (mmWave) MIMO
system to estimate the position and rotation angle of a
mobile station (MS) in the presence of real scatterers.
A two-step localization scheme is proposed that first obtains
the channel parameters and then estimates the position-
dependent parameters. Simulation results show the superior
performance of the proposed localization algorithm.

In wireless communication systems, the CSI obtained
through channel estimation is not only the foundation of
communication. This information also contains a large
amount of sensing information about the transmitter, receiver,
and scatterer, such as AOA, AOD, the gain of paths,
Doppler frequency shift, displacement, and movement speed.
Therefore, a direct connection between communication and
sensing can be established naturally. For modern wireless
systems functioning at high carrier frequencies such as the
mmWave and THz [23], [24], the signal parameter space is
essentially multidimensional and may exhibit a multilinear
algebraic structure. The tensor dimension can be associated
with various signal dimensions, including frequency, time,
and space [25], [26]. Tensor decomposition is considered
a promising technique for processing large amounts of
multidimensional data and has been employed to various
communication and sensing systems [27], [28], [29], [30],
[31], [32], [33], such as symbol detection, channel estimation,
parameter recovery, localization, and mapping. In [29],
a third-order parallel factor (PARAFAC) [34] was employed
to model the mmWave MIMO orthogonal frequency divi-
sion multiplexing (OFDM) system. Then two specialized
algorithms were developed to estimate the channel with
negligible and significant dual broadband effects [35],
respectively. The study presented in [30] introduces an
optimized nested PARAFAC tensor decomposition method
for the simultaneous estimation of sensing parameters and
detection of information symbols in time-varying mmWave
MIMO systems. This scheme achieves high joint estima-
tion performance without transmitting training sequences,
and reduces computational complexity. The work in [31]
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describes a tensor decomposition-based approach for time-
varying channel estimation in mmWave MIMO-OFDM sys-
tems. A fourth-order tensor construction method for low-rank
CANDECOMP/PARAFAC (CP) models is proposed and
the computational complexity is reduced by optimizing the
iteration steps. The study also demonstrates the effectiveness
of the proposed method in practical scenarios. The authors
of [32] give a joint AOA and flight time estimation scheme for
WIFI systems using tensor modeling, and simulation results
showed its superiority compared to the existing algorithms.
In [33], a tensor-based sensing parameters estimation method
is first proposed. These parameters are then utilized to
design a search-free localization and mapping method.
However, the technique described in [33] is tailored for
mmWave systems employing a fully digital beamforming
architecture, resulting in an unavoidable increase in power
consumption. In addition, the above methods did not consider
RIS-assisted scenarios, which enhances communication and
sensing performance.

In this paper, we present a user sensing and localization
scheme for RIS-assisted THz massive MIMO systems. This
scheme is based on the sparsity of THz channels and
designs a PARAFAC tensor model for the RIS-assisted THz
massive MIMO channel. Subsequently, we utilize minimum
description length (MDL) to detect the number of scattering
paths in the channel and introduce an alternating least
squares (ALS) algorithm for CSI estimation. Specifically,
by employing the low-rank property of the received signal
tensor and the uniqueness of parallel factorization, the
received signal tensor is first decomposed into three factor
matrices. Subsequently, a straightforward correlation-based
scheme is employed to estimate the channel parameters from
the factor matrices. Theoretical research and analysis have
been conducted on the uniqueness problem of the constructed
tensor model. The proposed algorithm can uniquely esti-
mate channel parameters under more relaxed conditions.
Ultimately, leveraging the geometric relationship between
the estimated channel parameters and the coordinates of the
UE position, the positions of both the UE and scattering
points (SP) are determined. The effectiveness of the proposed
user sensing and localization scheme is substantiated through
simulation results. In comparison to the existing competitive
algorithms, the proposed algorithm attains superior channel
estimation accuracy with lower complexity.

The subsequent sections of the paper are organized
as follows: In Section II, the derivation of the channel
model under the RIS-assisted THz massive MIMO system
is outlined, representing the received signal as a tensor.
Section III proposes a CP decomposition algorithm for the
tensor and employs a correlation-based scheme to estimate
the channel parameters. The sensing and estimation of the UE
and SPs position are realized. Simulation results in Section IV
show the effect of system parameters and signal-to-noise ratio
(SNR). Section V summarizes the concluding remarks.
Notation: Italic lowercase letters e.g., b and boldface

lowercase letters e.g., b represent scalars and vectors,

FIGURE 1. Illustration of the considered system model, where the direct
channel between the BS and the UE is blocked and communication is
carried out through the RIS reflection signals.

respectively. Boldface uppercase letters e.g., B indicate
matrices, while boldface Euler script letters e.g., B denote
tensors. Commonly B ∈ RD1×···×DN denotes a N -order
tensor. The transpose, Hermitian (conjugate transpose),
inverse, pseudo-inverse, and Frobenius norm of a matrix B
are represented as BT , BH , B−1, B† and ∥B∥F , respectively.
The Kronecker product, denoted by ⊗, and the Khatri-Rao
product (column-wise Kronecker product), represented by⊙,
are two distinct mathematical operations. The identity matrix
of sizeN and a column vector with all zeros can be denoted by
IN and 0N , respectively. The notation diag (b) is a diagonal
matrix, where the main diagonal consists of the entries of b.

II. SYSTEM MODEL
Fig. 1 shows the considered THz massive MIMO-OFDM
system, which utilizes RIS to assist communication and
sensing between the BS and UE. Since the independence of
signals between multiple users in downlink communication,
sensing and localization issues in single user scenarios
are considered to simplify system design and optimization.
The positions of the BS and RIS, denoted as pBS and pR
respectively, are predetermined, whereas the position of the
UE, represented as pUE, remains uncertain. To facilitate hard-
ware implementation, an analog-digital hybrid beamforming
approach is utilized at both the BS and the UE. Both the
transmitter and the receiver adopt a Uniform Linear Array
(ULA) configuration. The BS utilizes NB antennas, while the
UE is equipped with NU antennas. The RF links at the BS and
UE areMBS andMUE = 1, respectively, satisfyingMBS < NB
and MUE < NU. RIS consists of NR units of the same small
size, each made of metamaterials that can adjust its reflection
coefficient. Assuming the total number of OFDM carriers is
K , for simplification, we select K subcarriers for training.

For the downlink channel, we have considered a single
UE. Each subcarrier witnesses the BS employing T distinct
beamforming vectors over T consecutive time frames.
Within each time frame, the UE utilizes M consecutive RF
combination vectors cm to detect the transmitted signal, and
these vectors are uniform across all subcarriers. Initially,
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the received signal is combined within each subframe in
the RF domain. Subsequently, after applying the Discrete
Fourier Transform (DFT), the cyclic prefix is eliminated,
and the symbols undergo conversion back into the frequency
domain. The processed received signal associated with the
k-th subcarrier (k = 1, · · ·K ) in the m-th subframe
(m = 1, · · ·M ) can be represented as

ykm (t) = cTmH
kqk (t)+ nkm (t) , (1)

where cm ∈ CNU is the binding vector at the m-th subframe,
Hk

∈ CNU×NB is the cascaded channel matrix of the
k-th subcarrier, nkm (t) is additive Gaussian noise. At the
t-th time frame (t = 1, · · · T ), qk (t) ∈ CNB represents
the beamforming vector of the k-th subcarrier, satisfying
qk (t) = FRF (t)Fk (t) sk (t), where FRF (t), Fk (t), and sk (t)
represent the RF precoding matrix of all carriers, the digital
precoding matrix of the k-th subcarrier, and the pilot symbol
vector, respectively.

Collecting signals from M subframes, (1) can be
re-represented as

yk (t) = CTHkqk (t)+ nk (t) , (2)

where yk (t) =
[
yk1 (t) , . . . , y

k
M (t)

]T
, nk (t) =

[
nk1 (t) , . . .

, nkM (t)
]T
, and C 1

= [c1, . . . , cM ] ∈ CNU×M .
Assuming that for any k = 1, · · ·K , there are Fk (t) =

F (t) and sk (t) = s (t). Let S 1
= [s (1) , . . . , s (T )], then the

signal received by the UE is represented as

Yk
= CTHkQ + Nk , (3)

where Yk
=

[
yk (1) , . . . yk (T )

]
∈ CM×T , Nk

=[
nk (1) , . . .nk (T )

]
, and Q = [q (1) , . . .q (T )] ∈ CNB×T .

In order to focus on studying the impact of RIS on
signal propagation and maintain computational efficiency,
we choose a two-dimension channel model [36], which
can also be extended to three-dimension models. The
representation of the cascaded channel matrix for the k-th
subcarrier is as follows [37], [38]:

Hk
= Hk

RU�HBR, (4)

where � = diag
(
ejω1 , · · · , ejωNR

)
∈ CNR×NR is the phase

control matrix of the RIS, ωi ∈ [0, 2π ] is the phase shift
coefficient associated with the i-th passive reflecting element.
The channel from the BS to the RIS satisfies

HBR =

Lb∑
lb=1

ξlbaR
(
ϕlb

)
aTB
(
ϕ̃lb

)
. (5)

where ξlb represents the complex channel gain of the lb-th
path, aR

(
ϕlb

)
and aB

(
ϕ̃lb
)
are the steering array vectors of

RIS and BS, respectively, and Lb represents the total number
of paths between the RIS-BS channel.

Since the fixed positions of the BS and RIS, the channel
between the BS and RIS will not undergo significant
changes over a period of time, so estimating HBR is only
required once within a brief time period. In addition,

FIGURE 2. Illustration of channel parameters and position coordinates.

based on the assumption of near-static channel and system
synchronization, the path delay in (5) can be ignored to
simplify the model and focus on the effects of amplitude and
phase. Considering the limited scattering of THz waves, the
channel Hk

RU ∈ CNU×NR between the RIS and UE can be
obtained by the superposition of one line-of-sight (LOS) path
and L − 1 non-LoS (NLOS) path [39], as

Hk
RU =

L∑
l=1

βl exp
(
−j2πτl fsk/K

)
aM

(
θl
)
aTR
(
φl
)
, (6)

where L represents the number of paths, βl and τl are the
complex path gain and time delay of the l-th path (l =

1, · · · ,L), fs is the sampling rate, θl and φl denote the AOA in
the UE and the AOD in the RIS on the l-th path, respectively.
We calculate the phase shift based on the sampling frequency
fs and normalized frequency k

/
K to maintain consistency in

digital signal processing and simplify model analysis.
1) Path Loss: The path loss in the THz channel consists

of molecular absorption loss and diffusion loss [40], i.e.
βl = |0l |

(
c

4π fcr

)
e−

1
2 kabs(fc)r . Where c represents the speed

of light, r is the LOS path length, fc denotes the carrier
frequency, and kabs (fc) represents the frequency-dependent
absorption coefficient of the medium [41].

Due to its high reflection loss, THz channels have a
limited number of NLOS paths and are sparser than mmWave
channels. In the THz channel, the gain difference between the
LOS path and the NLOS path (averaging over 15 dB [42]) is
more prominent than in the mmWave channel. This indicates
that THz channels are mainly affected by LOS paths and are
more sensitive to obstacles than mmWave channels.
2) Array Response Vector: aM

(
θl

)
and aTB

(
φl

)
respectively

represent the antenna array steering vectors for the UE and
RIS, both of which satisfy:

a (ψ) =

[
1, e−j

d
λ 2π sin(ψ), · · · , e−j

d
λ 2π(N−1) sin(ψ)

]T
, (7)

where d represents the antenna spacing, λ denotes wave-
length, and a (ψ) ∈ CN×1.

An illustration of the channel parameter concerning the
position coordinates is given in Fig. 2, where dl = cτl ,
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dl,1 = ∥pl − pR∥ and dl,2 = ∥pUE − pl∥ [43]. The geometric
correspondence between channel parameter {τl, θl, φl} and
position coordinates can be expressed as, with pUE =

[xUE, yUE]T and pR = [xR, yR]T

Time delay: τl = ∥pl − pR∥
/
c+ ∥pl − pUE∥

/
c, (8)

AOA: θl = π − arccos
(
(xUE − xl)

/
∥pUE − pl∥

)
,

(9)

AOD: φl = arccos
(
(xl − xR)

/
∥pl − pR∥

)
, (10)

where pl = [xl, yl]T is the position of the SP associated with
the l-th path. Substituting (4) into (3), there are

Yk
= CTHk

RU�HBRQ + Nk

= CTHk
RUE + Nk , (11)

where E = �HBRQ ∈ CNR×T , ãM
(
θl

) 1
= CT aM

(
θl

)
, and

ãR
(
φl

) 1
= ET aR

(
φl

)
. Combining channels (5) and (6), the

received signal Yk can be re-represented as:

Yk
=

L∑
l=1

βl exp
(
−j2πτl fsk/K

)
CT aM

(
θl
)
aTR
(
φl
)
E+Nk

=

L∑
l=1

βl exp
(
−j2πτl fsk/K

)
ãM

(
θl
)
ãTR
(
φl
)
+ Nk .

(12)

Note that the k-th slice Yk of tensor Y ∈ CM×T×K

is a weighted sum of a common rank-one outer product.
Therefore, the tensor Y facilitates the CP decomposition,
which breaks down a tensor into a weighted sum of rank-1
tensors. In other words,

Y =

L∑
l=1

ãM (θl) ◦ ãR (φl) ◦ (βlt (τl))+ N , (13)

where

t (τl)
1
=
[
exp

(
−j2πτl fs

(
1
/
K
))
,

· · · , exp
(
−j2πτl fs

(
K
/
K
))]T

. (14)

Since the sparse scattering characteristic of the THz channel,
the path number L is typically much smaller compared to
the tensor dimension. Therefore, the tensor Y inherently
possesses a low-rank structure. This low-rank characteristic
guarantees the uniqueness of the CP decomposition of Y in
terms of scaling and arrangement ambiguity. Consequently,
through the CP decomposition of the received signal Y ,
the estimated values of parameters {θl, φl, τl, βl} can be
obtained. As a result, an estimate of the UE position is
acquired. Define

U 1
= [̃aM (θ1) , · · · , ãM (θL)] , (15)

V 1
= [̃aR (φ1) , · · · , ãR (φL)] , (16)

W 1
= [β1t (τ1) , · · · , βLt (τL)] , (17)

where matrices [U,V,W] are factor matrices associated with
a noiseless version of Y .

III. THE PROPOSED ALGORITHM
In this section, we derive the PARAFAC decomposition of
the tensor form of the received signal. Firstly, we utilize
the ALS algorithm to solve the factor matrices of the
tensor Y . Then the channel parameter {θl, φl, τl, βl} can
be estimated through a straightforward correlation-based
scheme. And a uniqueness analysis of tensor decom-
position is provided. Finally, user sensing and localiza-
tion are performed based on the estimated parameter
information.

A. PARAMETER ESTIMATION
Note that the number of scattering paths L between RIS and
UE is typically unknown and requires estimation beforehand.
Specifically, the rank of the received signal tensor Y
corresponds to the number of scattering paths L. Therefore,
we utilize MDL [44] to detect the rank of tensors. For
simplicity, we let [O]j = [Y]Tj (j = 1, 2, 3) represents the
transpose of the mode-j unfolding of tensor Y ; I1 = M ,
I2 = T , I3 = K , and IT = MTK . When we perform
eigenvalue decomposition on the sample covariance matrix
Ij
IT
[O]j [O]Hj , we obtain a set of eigenvalues in descending

order
{
λ1,j, · · · ,λIj,j

}
. In the j-th sequential procedure,

we utilize the following global eigenvalues for the MDL
criterion in detection

λ
(G)
i,j = λi,1 + · · · + λi,j, (18)

where i = 1, · · · , Ij. Therefore, the estimated value of L is
L̂ = min

{
L̂j
}3
j=1, and we have

L̂j = argmin
lj

MDL
(
lj
)
, (19)

MDL
(
lj
)

=
lj
2

(
2Ij − lj

)
log

IT
Ij

+ pl
(
[O]j, ρ̂l

)
, (20)

where ρ̂l represents the maximum likelihood estimate of
the parameter vector for the l-th model. Additionally,
pl
(
[O]j, ρ̂l

)
denotes the corresponding log-likelihood func-

tion, which follows the form [45]

pl
(
[O]j, ρ̂l

)
=
IT
Ij

(
Ij − lj

)
log

1
Ij−lj

Ij∑
i=lj+1

λ
(G)
i,j

∏Ij
i=lj+1 λ

(G) 1
Ij−lj

i,j

. (21)

Thus, the CP decomposition of the tensor Y involves
solving the following expression:

min
Û,V̂,Ŵ

∥∥∥∥∥∥Y −

L̂∑
l=1

ûl ◦ v̂l ◦ ŵl

∥∥∥∥∥∥
2

F

. (22)

Let Û =
[̂
ul, · · · , ûL̂

]
, V̂ =

[̂
vl, · · · , v̂L̂

]
, and Ŵ =[

ŵl, · · · , ŵL̂
]
. The optimization presented above can be

effectively addressed using the ALS algorithm, which can
minimize the data fitting error of one factor matrix while
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maintaining the other two factor matrices fixed [46].

Û(t+1)
= argmin

Û

∥∥∥YT
(1) −

(
Ŵ(t)

⊙ V̂(t)
)
ÛT
∥∥∥2
F
, (23)

V̂(t+1)
= argmin

V̂

∥∥∥YT
(1) −

(
Ŵ(t)

⊙ Û(t+1)
)
V̂T
∥∥∥2
F
, (24)

Ŵ(t+1)
= argmin

Ŵ

∥∥∥YT
(1) −

(
V̂(t+1)

⊙ Û(t+1)
)
ŴT

∥∥∥2
F
.

(25)

Note that equations (23) to (25) represent least squares
problems, and their solutions can be easily obtained:

Û(t+1)
= Y(1)

[(
Ŵ(t)

⊙ V̂(t)
)T]†

, (26)

V̂(t+1)
= Y(2)

[(
Ŵ(t)

⊙ Û
(t+1)

)T]†
, (27)

Ŵ(t+1)
= Y(3)

[(
V̂(t+1)

⊙ Û
(t+1)

)T]†
. (28)

Subject to mild conditions, the CP decomposition exhibits
uniqueness concerning scaling and arrangement ambiguity.
To be more precise, the connection between the estimated
factor matrices and the true factor matrices can be expressed
as follows:

Û(∞)
= U315 + R1, (29)

V̂(∞)
= V325 + R2, (30)

Ŵ(∞)
= W335 + R3, (31)

where {31,32,33} is an unknown non-singular diagonal
matrix that satisfies 313233 = I; 5 is an unknown
permutation matrix; the estimation errors related to the three
estimated factor matrices are represented by R1, R2, and R3,
respectively. Ignoring the permutation matrix 5 is possible
since it is consistent across all three factor matrices. Note
that each column of U has a related AOA θl . Therefore,
an AOA estimation θl can be achieved using a straightforward
correlation-based approach:

θ̂l = argmax
θl

∣∣̂uHl ãM (θl)∣∣
∥̂ul∥2∥̃aM (θl)∥2

, (32)

where ûl represents the l-th column of Û. Given a circularly
symmetric Gaussian distribution for the entries in the esti-
mation error matrix R1, equation (32) serves as a maximum
likelihood (ML) estimator. Similarly, the estimated value of
the AOD φl is:

φ̂l = argmax
ϕl

∣∣̂vHl ãB (φl)∣∣
∥̂vl∥2∥̃aB (φl)∥2

, (33)

where v̂l represents the l-th column of V̂. When estimating
the time delay τl from the factor matrix Ŵ, it is important
to observe that the l-th column of W is constructed

TABLE 1. The proposed algorithm.

using βlt (τl). Therefore, the expression for estimating the
time delay τl can be formulated as follows:

τ̂l = argmax
τl

∣∣ŵH
l t (τl)

∣∣
∥ŵl∥2∥t (τl)∥2

, (34)

where ŵl represents the l-th column of Ŵ. Maximizing
problems (32) - (34) involve one-dimensional search, starting
with a coarse grid and subsequently refining the search in
proximity to potential grid points. Substituting the estimated
θ̂l and φ̂l back into (32) and (33) yields the estimated values
of the non-singular diagonal matrices 31 and 32. Then,
the estimated value of 33 can be obtained through equation
313233 = I. Ultimately, the estimation of the path gain βl
can be achieved using equation (31). Note that the proposed
parameter extraction method can also be extended to multi-
user three-dimensional scenarios.
The flow of the proposed tensor decomposition and

channel parameter estimation algorithm is summarized in
Table 1, where Ŷ(i+1) represents the corresponding expan-
sion pattern formed by the estimated three factor matrices{
Û(i+1), V̂(i+1), Ŵ(i+1)

}
in the i + 1-th iteration. ε is the

lower limit of error, usually taken as ε = 10−5. Note that the
channel between the BS and RIS does not undergo significant
changes over a period of time, so we assume that the channel
estimated in a short period of time is represented as ĤBR.

B. UNIQUENESS ANALYSIS
Within this subsection, the discussion centers around the
uniqueness of the CP decomposition. The Kruskal condi-
tion [47] ensures the fundamental uniqueness of the CP
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TABLE 2. The proposed algorithm.

decomposition. The matrix O possesses a k-rank, denoted
as kO, defined as the maximum value ensuring the linear
independence of each subset with kO columns of matrix O.
There are the following theorems:
Theorem 1: Let {O,P,T} be a CP solution, which decom-

poses a third-order tensor Z ∈ CS×G×J into R rank-1 arrays,
where O ∈ CS×R, P ∈ CG×R, and T ∈ CJ×R. Assuming the
following Kruskal condition hold:

kO + kP + kT ≥ 2R+ 2. (35)

Additionally, an alternative CP solution denoted as{
O,P,T

}
exists, which also decomposes the tensor Z into

R rank-1 arrays. Then we have:

O = O53a, (36)

P = P53b, (37)

T = T53c, (38)

where 5 denotes a transformation matrix, diagonal matrices
3a, 3b, and 3c satisfy 3a3b3c = I.
Proof: A strict proof of this can be obtained in [48].
It is crucial to note that the Kruskal condition cannot

be realized when R = 1. Nevertheless, uniqueness in this
scenario has been established by Harshman [49]. For R = 2
and R = 3, the Kruskal sufficient condition is both necessary
and sufficient, but for R > 3, it is only sufficient, as indicated
by [48].

According to this, we can see that if:

kU + kV + kW ≥ 2L + 2, (39)

then the CP decomposition of the tensor Y is fundamentally
unique. The initial step involves examining the k-rank of U,
taking note that:

U = CT [aM (θ1) , · · · , aM (θL)]
1
= CTUM, (40)

where UM ∈ CNM×L a Vandermonde matrix when using a
ULA. By generatingC randomly, with its elements uniformly

selected from the unit circle, we can determine the k-rank
of U:

kU = min (NM,L) . (41)

For the k-rank of V, we have:

V = ET [aR (ϕ1) , · · · , aR (ϕL)]
1
= ETUR, (42)

where the value of matrix E immediately falls within the
identity circle. The k-rank of V can be derived:

kV = min (NR,L) . (43)

Since the matrixW satisfies

W = [t (τ1) , · · · , t (τL)]Dβ , (44)

where Dβ
1
= diag (β1, · · · , βL), it can be shown that

the matrix W is a Vandermonde matrix with cylindrical
proportions. Thus, we can obtain the k-rank ofW as follows:

kW = min (K ,L) . (45)

C. USER SENSING AND LOCALIZATION
Let rR,l =

[
cos

(
φ̂l
)
, sin

(
φ̂l
)]T and rUE,l =[

cos
(
θ̂l
)
, sin

(
θ̂l
)]T , represent the transmission direction

vector and reception direction vector of the l-th path,
respectively. The problem of localization and mapping can
be formulated as a maximum likelihood problem:[̂

pUE, [̂pl]Ll=1

]
=arg max

pUE,[pl ]Ll=1

p
([̂
τl, θ̂l, φ̂l

]L
l=1

∣∣∣pUE, [pl]Ll=1 ,pR
)
. (46)

To circumvent challenges associatedwith high-dimensional
optimization and hidden parameter inference, we introduce a
non-search method rooted in [50]. This approach eliminates
the dependence on prior knowledge of path existence. For
each cluster l, there are:

pUE = pR + cτ̂lξlrR,l + cτ̂l (1 − ξl)
(
−rUE,l

)
, (47)

where the unknown parameter ξl ∈ [0, 1] represents the
proportion of the path delay from RIS to the SP of the
l-th path. It is essential to emphasize that the value of ξl is
arbitrary for the LOS path, if it exists. Rearrange (46) that the
line equations for each l are:

pR = δl + ξlυ l, (48)

where δl and υ l satisfy δl = pR − cτ̂lrUE,l and
υ l = cτ̂l

(
rR,l + rUE,l

)
, respectively. The intersection points

of these line segments determine the estimated value of
pUE. Specifically, the cost function is represented as the
summation of the distances between pUE and each path:

C (pUE) =

L∑
l=1

ζl

∥∥∥pUE −

(
δl + υTl (pUE − δl)υ l

)∥∥∥2,
(49)
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FIGURE 3. PoD versus SNR for different L.

where the weight of the l-th path ζl ≥ 0 depends on SNR or
path diffusion and υ l = υ l

/
∥υ l∥. The least squares solution

has become [33]

p̂UE = argmin
pUE

C (pUE)

=

(
L∑
l=1

ζl

(
I − υ lυ

T
l

))−1 L∑
l=1

ζl

(
I − υ lυ

T
l

)
δl . (50)

Given p̂UE, the position pl of the SP can be solved as the
intersection of the linear equations pR+ρRrR,l (ρR ∈ R) and
pUE + ρUErUE,l (ρUE ∈ R). The least squares solution is as
follows:

p̂l =
(
BR,l + BUE,l

)−1 (BR,lpR + BUE,l p̂UE
)
, (51)

where BR,l = I − rR,lrTR,l and BUE,l = I − rUE,lrTUE,l . The
flow of the proposed user sensing and localization algorithm
is outlined in Table 2.

IV. SIMULATION RESULTS
In this section, we evaluate the channel parameter estimation
and user sensing performance of the proposed algorithm.
The effectiveness of the proposed algorithm is showcased
through the results of the Monte Carlo simulation. Define
the average probability of detection (PoD) across all
Monte Carlo implementations, i.e., Pr

(
L̂ = L

)
, to evaluate

the estimation performance of the number of scattering
paths L. The evaluation of the e1stimation performance of
channel parameters, the UE position, and the SPs positions
employs the Root Mean Square Error (RMSE), which is
defined as:

RMSE (z) =

√√√√ 1
N

(
N∑
n=1

∥̂zn − zn∥22

)
, (52)

where N = 500 denotes the number of Monte Carlo runs,
and n signifies the n-th independent Monte Carlo run. The

variable z can refer to the channel parameters {β, θ ,φ, τ },
the UE position pUE, and the SP position pl (l = 1, · · · ,L).
The performance of channel HRU ∈

NU×NR×K estimation is
assessed by introducing theMean Square Error (MSE), which
is represented as:

MSE (HRU) =
1
N

(
N∑
n=1

∥∥ĤRU,n − HRU,n

∥∥2
F

)
. (53)

We define the SNR as [51]:

SNR = 10 lg
∥Y − N ∥

2
F

∥N ∥
2
F

. (54)

Taking the following system settings as an example,
the channel parameter estimation and user localization
performance of the proposed algorithm are demonstrated.
In simulation, the communication system should have a
carrier frequency of fc = 100GHz, a signal bandwidth of
fs = 500MHz, and a total number of carriers ofK = 128. The
BS is equippedwith 64 antennas, denoted asNB = 64, the UE
is equipped with 16 antennas, denoted as NU = 16, and the
RIS consists of 32 units, denoted as NR = 32 [52]. Due to
the short wavelength of high-frequency signals, such RIS can
still effectively adjust the phase of reflected signals, thereby
improving signal propagation and enhancing the quality of
received signals. It is suitable for specific scenarios such as
indoor edge coverage enhancement. There are LBS - RIS = 3
scattering paths between the BS and RIS. The separation
between two adjacent antennas is set to half of the signal
wavelength.

In the first example, we evaluate the estimation per-
formance of the number L of channel scattering paths
for different measurements. The relationship between PoDs
curves with different reasonable L values and SNR is shown
in Fig. 3. The remaining system parameters are configured
with M = T = K = 6. From Fig. 3, it can be seen that PoD
increases monotonically with SNR, and for all reasonable
numbers of scattering paths L, it reaches 1 at sufficiently
high SNR.

In the second example, the assessment of the performance
of the proposed algorithm in channel parameter estimation
and user localization is conducted by varying the number of
scattering paths L between the RIS and UE. The remaining
system parameters are configured with M = T = K = 6.
Fig. 4 reveals the RMSE curves of the proposed algorithm
for estimating channel parameters, the UE position, and the
SPs positions at L = 2 and L = 3. As illustrated in Fig. 4, the
RMSE curve exhibits a decreasing trend with the rise in SNR.
By decreasing the number of paths L between the RIS and
UE, there is an enhancement in the estimation performance
of the proposed algorithm. The reason is that when the
number of paths is small, the multipath effect weakens and
the signal becomes more concentrated, thereby reducing
the complexity and uncertainty of estimation. The low-rank
estimation performance of the proposed algorithm is superior.
However, the proposed algorithm exhibits commendable
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FIGURE 4. RMSE vs. SNR for the different number of the path.

FIGURE 5. MSE vs. SNR compared with the existing algorithms.

channel parameter estimation performance even when
L = 3. Additionally, the proposed algorithm can implement
decimeter-level positioning accuracy. Fig. 5 displays theMSE
curves of the estimated channel ĤRU for different number of
paths and compares them using the OMP algorithm in [53]
and the CS-based OMP (CS-OMP) algorithm in [38]. From
Fig. 5, it can be seen that when L = 3 and SNR ∈ [0, 5] dB,
the estimation performance of the proposed algorithm is
inferior to that of OMP. This is because the increase in the
number of paths affects the uniqueness of tensor low-rank
decomposition, and achieving low convergence accuracy
at low SNR. However, even in the presence of multiple
paths, the proposed algorithm still has channel estimation
performance advantages at medium to high SNR, and
exhibits higher accuracy in channel estimation. The above
results confirm the effectiveness of the tensor based scheme
proposed, as well as the advantages of user localization

FIGURE 6. RMSE vs. SNR for different K .

and channel estimation in RIS-assisted THz massive MIMO
systems.

In the third example, the evaluation of the performance
of the proposed algorithm in implementation parameter
estimation and user localization is conducted by varying
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FIGURE 7. RMSE of the UE and SPs positions vs. SNR for different K .

FIGURE 8. MSE of channel estimation vs. SNR under different number of
subcarriers.

the number of subcarriers. We consider the number of
subcarriers in three cases: K = 8, K = 12, and
K = 16. The remaining system parameters are configured
as follows: M = T = 6 and L = 2. Fig. 6 and
Fig. 7 show the RMSE of the proposed algorithm for
estimating channel parameter {β, θ ,φ, τ }, the UE position,
and the SPs positions under different number of subcarriers,
respectively. Fig. 8 illustrates the MSE of channel estimation
for different number of subcarriers. The observation from
Fig. 6 to Fig. 8 indicates that an increase in the number of
subcarriers used for training leads to an increase in frequency
domain resolution, while the total number of carriers remains
constant. The proposed algorithm can more accurately
estimate channel parameters and the positions of UE
and SPs.

In the final example, we plot a binary map of the proposed
algorithm for estimating the positions of the UE and SPs
under different SNRs. The remaining system parameters are
set as follows: M = T = 8, K = 6, and L = 2. Fig. 9 shows

FIGURE 9. Two-dimensional mapping diagrams for user sensing and
localization of the proposed algorithm. (a) SNR = 10dB; (b) SNR = 25dB.

the binary mapping under SNR = 10dB and SNR = 25dB.
From Fig. 9, it can be seen that even at low SNR, the proposed
algorithm maintains a commendable level of accuracy in user
sensing and localization.

V. CONCLUSION
In this paper, we have introduced a scheme for user
sensing and localization in RIS-assisted THz massive MIMO
systems. We model the RIS-assisted THz massive MIMO
channels as a PARAFAC tensor model. Then the ALS
algorithm is utilized for tensor decomposition and estimation
of channel parameters. The estimation of channel and user
position is finally realized. In comparison to the existing
competitive algorithms, the proposed algorithm demonstrates
superior accuracy in channel estimation. Moreover, the
simulation results illustrate that even with a limited number
of subcarriers, the proposed algorithm can still attain
localization accuracy at the decimeter level.
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