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ABSTRACT When garbage trucks perform garbage collection and compression operations, it is common
to keep the engine idling and even increase the engine speed during garbage compression, which can lead
to noise, air pollution, increased fuel consumption, and carbon emissions. Adopting an electric compression
system can effectively reduce these issues. The battery pack used in electric garbage trucks is the core
energy source of the vehicle, making proper battery management system crucial for the overall safety and
performance of the vehicle. This study aims to utilize NUVOTON’s Cortex-M4 chip to develop a battery
management system specifically designed for electric garbage trucks. By real-time online estimation of the
battery state, optimal performance of the battery pack can be achieved. Battery health is assessed based
on capacity cycle counting for parameter weighting evaluation of battery voltage drop. By comparing the
capacities of battery modules to track and calibrate the open-circuit voltage, the capacity error is primarily
estimated using a combination of Coulomb counting method and open-circuit voltage method to assess the
battery’s state of charge and evaluate its lifespan. The proposed method is validated by integrating the battery
state estimation technique into the microcontroller of the battery management system, and compared with
the conventional Coulomb counting method. The real-time online battery estimation method adjusts the
initial value check of SoC by tracking the variation of battery module capacity and adjusting the OCV
lookup table, thereby enhancing the accuracy of SoC estimation and reducing errors. This method can be
effectively applied to electric garbage compressors to improve battery utilization efficiency and maximize
battery lifespan.

INDEX TERMS Battery management system (BMS), Coulomb counting method (CCM), state of charge
(SoC).

NOMENCLATURE
BMS Battery management system.
SoC State of charge.
RDE Remaining Discharge Energy.
SoH State of health.
CCM Coulomb counting method.
MBM Model-based method.
DDM Data-driven method.
HM Hybrid method.
OCV Open-circuit voltage.
KF Kalman filter.
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EKF Extended Kalman filter.
UKF Unscented Kalman filter.
MCU Microcontroller Unit.
MPU Micro-processor Unit.
CPU Central Processing Unit.
BUBM bottom-up-based method.
LKF Linear Kalman Filter.
RAM Random-access memory.
BMC Battery monitoring circuit.
BCU Battery control unit.
CAN Controller area network.
ADC analog-to-digital converter.
HMI Human–machine interface.
EEPROM Electrically-Erasable Programmable

Read-Only Memory.
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RTC Real-time clock.
GPIO General-purpose input/output.
UART Universal Asynchronous

Receiver/Transmitter.
SPI Serial Peripheral Interface Bus.
EADC Enhanced Analog-to-Digital Converter.
OVP Over voltage protection.
UVP Under voltage protection.
OTP Over temperature protection.
UTP Under temperature protection.
UBL Unbalanced.
CV Constant voltage.
Voc OCV Voltage.

I. INTRODUCTION
A. BACKGROUND
Climate change and rising energy-saving and carbon reduc-
tion awareness have led to governments around the world
investing heavily in resources to actively develop and
promote various energy-saving and carbon reduction tech-
nologies. The electrification of garbage trucks is particularly
noteworthy.

Compared to Japan’s electric compression technology, the
European and American regions are moving towards full
vehicle electrification or hybrid chassis. Taiwan’s relevant
industries can support the components required for electric
compact garbage trucks. Electric garbage compactor trucks
use electric motors to replace traditional engine-driven com-
pression devices, with the same garbage collection capacity,
and can be mounted on different forms of chassis vehicles.
Themain components of these vehicles include battery packs,
electric motors, and motor control systems, as shown in
Figure 1. The development of this technology is expected to
improve collection efficiency while reducing carbon emis-
sions, in line with environmental protection trends, and is
worth further promotion.

The electric garbage compactor trucks has the following
main advantages:

➢ The compaction chamber operates at zero idle speed and
zero carbon emissions when used at a fixed location,
effectively saving fuel consumption and reducing air
pollution.

➢ Low noise during compaction operations helps reduce
urban environmental noise pollution.

➢ The motor has high energy conversion efficiency, far
exceeding that of a diesel engine.

➢ Achievable with existing industry technologies, with a
relatively low technical threshold.

The battery pack used in electric garbage compactor trucks
is the core power source for the entire vehicle. However,
the overall performance of the battery pack will degrade
over time due to repeated charging and discharging cycles.
Therefore, it is crucial to equip the system with a targeted
battery management system (BMS) to monitor, protect, bal-
ance the energy, and improve the efficiency and lifespan of

FIGURE 1. Architecture of an electric garbage compactor truck.

the batteries. The BMS is responsible for controlling battery
conditions to extend battery life and ensure safe operation,
while also providing accurate state of charge (SoC) and state
of health (SoH) estimation. Extending battery life and fault
diagnosis are the core functions of the BMS. During the
charging and discharging process, accurately tracking the
SoC is critical to prevent overcharging or over-discharging,
improving safety.

The battery cells within the pack may use different mate-
rials and operate in different environments, connected in
series to meet the power requirements. This often results in
uneven battery capacities within the pack, leading to complex
non-linear dynamic behavior. This can cause over-charging or
over-discharging of individual cells, resulting in inconsistent
battery life and aging, as well as potential risks of unexpected
power failures. Therefore, accurate estimation of battery sta-
tus is crucial when considering battery capacity differences,
with the aim of extending battery life and ensuring safe
operation.

B. PREVIOUS WORK
State of Charge (SoC) and Remaining Discharge Energy
(RDE) are two important parameters related to the energy
status of a battery. The estimation of SoC is mainly focused
on monitoring the remaining capacity of the battery in
charge-discharge cycles to avoid overcharging and over-
discharging, thus extending the battery’s effective lifespan.
On the other hand, Remaining Discharge Energy (RDE)
refers to the available energy remaining within a specific
timeframe, which helps in more accurately estimating the
battery’s SoC [1]. The SoC varies over time during the charg-
ing and discharging process, and it is a crucial factor for
further predicting the state of health (SoH). The estimation
of SoH aims to predict the remaining useful life or remaining
charge-discharge cycle count of the battery, to determine if
battery replacement is necessary [2], [3]. Due to the availabil-
ity of different algorithms for estimating the SoC of batteries,
various methods for estimating SoC have been extensively
researched in recent years. These methods have been catego-
rized based on their advantages and disadvantages [4], [5],
[6], [7], [8], [9], [10], [11], [12].
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SoC estimation methods are primarily divided into five
categories: direct measurement method, CCM, MBM, DDM,
and HM. These methods are detailed as follows.

1) DIRECT MEASUREMENT
Direct measurement method primarily involve using the bat-
tery voltage and impedance to determine the SoC. The two
main direct measurement methods are described in the fol-
lowing text.

a: METHOD BASED ON OPEN-CIRCUIT VOLTAGE
In method based on the OCV, the OCV at different SoC levels
is measured to determine the relationship between OCV and
SoC. Subsequently, this relationship is used to obtain the SoC
for different OCV values. This method is only applicable
when the battery’s internal state is stable and is thus unsuit-
able for analyzing the nonlinear characteristics of battery
systems. Moreover, the method cannot be executed online
and requires the battery to be at rest for a sufficiently long
time before SoC monitoring. To achieve internal balance, the
battery must be disconnected from any load and left to rest for
a substantial period, after which the OCV can be measured
under these conditions [13]. Various improved OCV-based
methods with enhanced accuracy and shortened processing
time have been proposed [14].

b: IMPEDANCE-BASED ESTIMATION METHOD
In methods based on the Faradaic impedance, which refers to
an electrode surface’s resistance or capacitance in an electro-
chemical system, a small sinusoidal potential wave is applied
under varying frequencies to calculate the impedance values.
These values are then used to estimate the SoC.

Impedance values are usually measured using electro-
chemical impedance spectroscopes, which are generally
designed for laboratory use and fairly expensive. Moreover,
the use of these spectroscopes is further complicated by the
difficulty of online measurements and variations in battery
types and experimental conditions [15].

2) COULOMB COUNTING METHOD
In CCM, the discharge current is measured and integrated
over time to determine the SoC. Because the CCM involves
estimating the SoC on the basis of the accumulated current,
a small initial current error can lead to large cumulative errors.
In the CCM, incorrect data on initial battery capacity can
critically affect the accuracy of the determined SoC over time.
Therefore, the Coulomb counting method is usually com-
bined with model-based or data-driven methods to improve
reliability. Combining the SoC-OCV lookup table is also a
good way to complement the shortcomings of CCM [16].
In addition, a method called Enhanced Coulomb Counting
(ECC) has been studied by applying OCV and CCM [17],
[18] as well as a numerical iteration-based method [19].
Besides combining with OCV, an enhanced Coulomb count-
ing (ECC) method for SoC estimation has also been proposed

by combining Peukert’s law for the discharge process and
Coulombic efficiency for the charging process [20].

3) MODEL-BASED METHOD
MBM involve using measurements of battery signals (volt-
age, current, and temperature), battery models, and filtering
algorithms to estimate a battery’s SoC. The Kalman filter
(KF) has been successfully used in battery state estimation.
The main characteristic of the KF is its self-correcting nature,
which enables it to produce accurate estimations even under
high current variations. However, the KF generates relatively
inaccurate estimates in nonlinear scenarios. To overcome this
limitation, various KF-based algorithms have been proposed
for SoC estimation [21], such as the extended KF (EKF)
[22], [23], unscented KF (UKF) [24], adaptive EKF [25],
and square root UKF [26] algorithms. These algorithms are
more robust and accurate relative to the KF algorithm. The
accuracy of MBMs, such as those involving the use of the
aforementioned algorithms, has been validated by comparing
them with methods based on seven nonlinear filters [27].
Although MBMs achieve high accuracy in SoC estimation,
they require precise battery models and are computation-
ally expensive. The internal parameters of a battery vary
during charging and discharging, and a sufficiently accurate
yet lightweight model that accounts for all external battery
characteristics is challenging to establish.

4) DATA-DRIVEN METHOD
Advances in computer technology have led to the rapid devel-
opment of DDM. Data-driven method are often referred to as
black-box models because they can directly map the nonlin-
ear relationship between an output (e.g., SoC) and multiple
inputs (e.g., voltage, current, and temperature) without pre-
vious relevant knowledge (e.g., battery-related data). These
algorithms can be easily transferred to a hardware platform
after offline training without the need for underlying phys-
ical or chemical representations. Data-driven algorithms are
trained using voltage, current, and temperaturemeasurements
for accurate estimates of a battery’s SoC and SoH.

Data-driven method that can be used to estimate a bat-
tery’s SoC include convolutional neural networks [28],
deep neural networks [29], fuzzy logic [30], support vector
machines [31], support vector regression [32], extreme learn-
ing machines [33], and genetic algorithms [34]. However,
these algorithms require large empirical datasets to under-
stand and accurately predict system behavior, and they are
also time-consuming and computationally expensive to train.
Therefore, data-driven algorithms must be trained offline for
them to capture nonlinear relationships.

5) HYBRID METHOD
Due to the inherent strengths and weaknesses of different
methods, multiple SoC estimation methods can be combined
to form a hybrid approach. Some studies and literature have
shown that compared to individual SoC estimation methods,
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TABLE 1. Core chip comparison.

the HM typically enhances the accuracy and robustness of
SoC estimation. This is achieved by combining two or more
SoC estimation methods to achieve optimal estimation per-
formance. Authors in the literature have proposed a battery
state estimation method that combines hybrid and adaptive
characteristics. This method integrates Coulomb counting,
Kalman Filter (KF), and Unscented Kalman Filter (UKF)
techniques for SoC estimation [35].

In another study [36], a novel real-time hybrid SoC esti-
mation algorithm for lithium-ion batteries in electric vehicles
was proposed. It combines an improved CCM, MBM, and
BUBM. The algorithm was validated through multiple actual
driving cycle tests on the 2012 Nissan Leaf model. Another
approach combines the advantages of CCM, Linear Kalman
Filter (LKF), and OCV-based SoC estimation methods for
real-time applications in lithium-ion batteries that require fast
response and accurate SoC estimation [37].
These studies demonstrate that the hybrid method balances

cost and effectiveness, making it an ideal SoC estimation
technique compared to traditional methods. While it better
serves the needs of battery management systems, the chal-
lenging task of combining two or three methods requires
high computational capabilities and may increase the com-
putational burden on chips, which should be considered as a
drawback [38].

Due to the limitations of space and circuit cost in the
battery management system (BMS) used in electric garbage
compactor trucks, the computational capability and time
required for MBM, DDM, and hybrid methods to achieve
accurate SoC and SoH estimation are relatively long. How-
ever, these techniques are not suitable for low-cost energy
storage and vehicle applications. Therefore, Table 1 compares
the current control chips, and selects low-power, low-cost
microcontroller (MCU) to be applied in the BMS of electric
garbage compactor trucks.

The battery management system (BMS) of electric garbage
compactor trucks must fulfill various functions, including
battery charging and discharging balancing, protection, and
control systems, as well as enabling communication among
multiple battery module strings and parallel connections.
As the system relies on microcontrollers for multiple func-
tions and necessitates sufficient RAM to support related
algorithms, the selection of battery state estimation methods

must strike a balance between simplicity and efficiency,
considering the system’s cost and performance requirements
[39]. Hence, the fusion of Coulomb counting and OCV is
chosen and implemented in the BMS of electric garbage
compactor trucks for the following reasons:

➢ The Coulomb counting method provides accurate
energy estimation by counting the charge and discharge
cycles, while combining it with OCV enhances the esti-
mation accuracy.

➢ Combining the linear performance of Coulomb counting
with the adaptiveness of OCV can enhance estimation
accuracy and robustness.

➢ By effectively leveraging the strengths of different meth-
ods, it is possible to save computational costs and
time, thereby achieving more accurate battery state
estimation.

➢ Provide essential information and reduce reliance on
complex circuits and expensive devices within limited
space and cost constraints.

In summary, the combination of the Coulomb count-
ing method and OCV can enhance the accuracy of SoC
estimation, while providing real-time performance, cost-
effectiveness, and stable execution.

Therefore, this paper focuses on the development of a
battery management system (BMS) for electric garbage com-
pactor trucks, using the NUVOTON Cortex-M4 chip as the
control core. This BMS uses real-time online estimates of
battery state to ensure the optimal performance of the battery
pack of electric garbage trucks. A battery’s health is mainly
evaluated according to the weighted assessment of the battery
voltage drop through capacity cycle counting. Moreover, bat-
tery module capacities are compared to track and correct the
OCV of the battery. The capacity error is primarily estimated
through the combined use of the CCM and OCV method
(OCVM) to accurately determine the battery’s remaining
capacity.

The contribution of this paper lies in the application of bat-
tery state estimation methods based on voltage and capacity
cycle counts, integrating CCM and OCV method (OCVM)
into a microcontroller. This implementation aims to achieve
high precision with minimized errors, making the proposed
method suitable for online applications. The system operates
in the battery management system of an electric garbage
compaction truck. Comparisons and validations against tra-
ditional CCM reveal that the accumulated errors of CCM
lead to inaccuracies in SoC estimation over extended system
operation periods. In contrast, the real-time online battery
estimation method adjusts the OCV lookup table by tracking
changes in battery module capacities for the initial SoC value
checking, enhancing SoC estimation accuracy and reduc-
ing errors. Experimental results verify the effectiveness and
accuracy of the proposed real-time online battery estimation
method.

The rest of this paper is structured as follows. Section II
explains the hardware architecture of the proposed BMS for
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FIGURE 2. Hardware architecture of the proposed BMS for an electric
garbage compaction truck.

FIGURE 3. Architecture of the BMC.

electric garbage compactor trucks. Section III introduces the
software and firmware architectures of the proposed BMS as
well as the algorithm used in this system for the real-time
online estimation of battery status. Section IV presents the
results of experiments performed using the proposed BMS.
Finally, Section V provides the conclusion of this study.

II. HARDWARE ARCHITECTURE
The hardware of the proposed BMS mainly comprises a
series connection of eight sets of 48-V battery modules to
achieve a voltage of 384 V for an electric garbage compaction
truck. The hardware architecture of this system is displayed
in Figure 2.

The hardware circuit of the BMS consists of two main
modules: a battery monitoring circuit (BMC) and battery
control unit (BCU). These modules are explained in detail in
the following text.

A. BATTERY MONITORING CIRCUIT
Figure 3 depicts the architecture of the BMC. This circuit
performs the following functions:

➢ It measures the voltage and temperature of each of the
12 individual battery cells used in an electric garbage
compaction truck.

➢ It transmits battery data to the BCU through internal
controller area network (CAN) communication by using
a fixed polling process.

Each part of the BMC is detailed as follows.
The BMC comprises four sections, namely sections A–D.

Section A contains the core chip of the BMC, namely an
M453microcontroller with a NuvotonARMCortex-M4 core,
and section B comprises the overall power supply. When sup-
plying power to the BMC, the power supply effectively steps

FIGURE 4. Architecture of the BCU.

down the battery module voltage from 48 to 5 V by using an
Analog Devices LT8630 step-down DC/DC converter.

Section C is the interface for measuring the voltage and
temperature of each cell. The cell voltage is primarily mea-
sured using an Analog Devices ADBMS1818 battery stack
monitor, which allows simultaneous voltage measurements
for 12 cells. The cell temperature is measured using the
MCU’s ADC combined with a multiplexer switch to read the
thermistor for measurement, mainly measuring the tempera-
ture of 12 cells.

Section D is the user interface that presents voltage and
temperature information for the 12 cells of the BMC. This
information is transmitted to the BCU through internal CAN
communication by using a fixed polling process. The trans-
mitted information is then used by the BCU to calculate the
SoC and SoH for each battery module.

B. BATTERY CONTROL UNIT
Figure 4 shows the architecture of the BCU.

The main functions of the BCU are as follows:

➢ It performs comprehensive current measurement.
➢ It communicates with eight sets of BMCs.
➢ It communicates battery-related information with a

HMI.
➢ It performs input/output timing control.
➢ It communicates with the charger.
➢ SoC/ SoH calculation.

Each part of the BCU is explained in detail in the following
text.

The BCU contains four sections, namely sections A–D.
Section A contains the core chip of this circuit, namely the
M487microcontroller with aNuvotonARMCortex-M4 core;
this microcontroller is responsible for battery pack control.
Section B comprises the overall power circuit. The total volt-
age of 384V is mainly achieved by serially connecting eight
battery modules, with this voltage being stepped down to
24V using an external Isolated Flyback circuit. In addition
to supplying power to the positive and negative terminals
and the pre-charge relay, it also provides power for DC/DC
conversion into 9V, 5V, and 3.3V. The 5V and 3.3V are used
for the circuit. As the input voltage of the comparator needs to
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FIGURE 5. Firmware architecture of the BMC.

be±15V, the 9V is further converted into±15V usingAnalog
Devices’ LTC3265 voltage regulator to supply the current for
the voltage converter. Section C can measure the total current
of the entire series-connected battery module.

Section D is the communication interface, which consists
of three main components, namely two CAN interfaces and
an RS-485 interface. One CAN interface is primarily used
for communication with the charger, whereas the other CAN
interface is used for communication with the eight sets of
BMCs. All battery voltage, total current, SoC, SoH, and
temperature values are transmitted to the HMI through the
RS-485 interface for real-time information display. When
abnormalities are detected in battery voltage, total current,
SoC, SoH, or temperature, the external relay signal is dis-
connected to issue a warning notification, thereby facilitating
battery monitoring.

Data on all events, relevant protection points, and initial
SoC and SoH values are recorded in the EEPROM, and the
system time is primarily calculated accurately by sampling
once per second through the external RTC.

III. SOFTWARE AND FIRMWARE ARCHITECTURES OF THE
PROPOSED BMS AND ALGORITHM FOR THE REAL-TIME
ONLINE ESTIMATION OF BATTERY STATUS
The SoC and SoH estimation algorithm is executed in the
BCU of the proposed BMS. This algorithm involves four
main steps: 1) initialize various system modules, 2) set the
relevant parameters, 3) implement main program control, and
4) execute the interrupt service subroutine. The following text
details the firmware architectures of the BMC and BCU and
the algorithm for the real-time online estimation of battery
status.

A. BATTERY MONITORING CIRCUIT
Figure 5 displays the firmware architecture of the BMC.
TheM453microcontroller of the BMC enables floating-point
operations and optimal peripheral output control.

During the startup of each systemmodule, peripheral mod-
ules such as the Clock, GPIO, ADC, CAN, UART, SPI,
Timer, and Watchdog modules are initialized. After the sys-
tem is powered on, it initializes each module. The system
communicates with the ADBMS1818 battery stack monitor
through the SPI interface to read the voltage information
of each cell. Moreover, the system uses the MCU’s GPIO

FIGURE 6. Firmware architecture of the BCU.

to switch the multiplexer and read the battery module’s
temperature data from the EADC interface. The system sam-
ples various important parameters of the battery module at
a sampling frequency of 800 ms through interrupt service
subroutines. After each round of sampling is completed, the
flag is changed to notify the main program. After the entire
sampling process is completed, the collected data are sorted
and packaged into a packet for transmission. For subsequent
processing, the data are then transmitted to the BCU through
CAN communication by using a fixed polling process. There-
fore, the BMC acts as a battery data collector and transmits
relevant information, such as cell voltage and cell tempera-
ture, to the BCU.

B. BATTERY CONTROL UNIT
Figure 6 depicts the firmware architecture of the BCU.

The M487 microcontroller, which is the control core of
the BCU, is an efficient, low-power microcontroller with a
DSP instruction set. This microcontroller can operate at a
frequency of up to 192 MHz, and it enables floating-point
calculations and optimal peripheral output control. Therefore,
the proposed SoC and SoH estimation methods are executed
on the aforementioned microcontroller.

After the system is started up, the control chip initializes
various system modules. Initially, the control chip updates
the system time through the RTC-based calculation and com-
municates with the EEPROM to verify whether updated
protection parameters and initial values for battery status are
available. If these values are not available, the system directly
uses the original parameter values. The system continues
to monitor whether the power button is pressed. When the
power button is pressed, the BCU polls and samples the
battery voltage and temperature information for each battery
module through the CAN bus with the eight BMCs, with
a sampling time of around 900ms. The EADC module of
the BCU will sample the total battery current every 250ms.
After all the battery voltage, temperature, and current data
have been sampled, real-time battery status estimation is
performed. Moreover, relevant information is used to detect
any abnormalities in the voltage, current, or temperature data.
If abnormalities exist, external relay signals are controlled to
perform disconnection actions, and abnormal information is
written in the EEPROM. All information is then transmitted
to the HMI via RS-485 every 5 seconds.
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FIGURE 7. Flowchart of the proposed algorithm for the real-time online
estimation of battery status.

C. REAL-TIME ONLINE ESTIMATION OF BATTERY STATUS
The battery management system designed in this paper has
its main control core and battery state estimation performed
by the BCU inside the main control cabinet. In addition to
the need for extensive data communication with the BMC
within 8 battery modules, considering low-cost and online
application requirements, the battery estimation algorithms
must be implemented within the microcontroller. The CCM
is a commonly used method for SoC estimation. Moreover,
this method can be conveniently implemented in a microcon-
troller. However, the CCM has the following drawbacks that
can cause errors in SoC estimation:

➢ Any small errors in the calculation process will be accu-
mulated, leading to a drift in the SoC estimation.

➢ As time and the number of charge-discharge cycles
increase, the battery capacity will gradually degrade.
If this capacity change is not considered, it may lead to
inaccurate SoC estimation.

➢ Estimating SoC solely based on the calculation of charge
variation cannot account for factors such as the internal
battery chemical state, which may limit the estimation
accuracy.

➢ The application of the Coulomb Counting Method is
limited to specific types of batteries. It may have
poorer adaptability for batteries with different chemical
characteristics.

Due to the reasons mentioned above, the CCM and the
Open Circuit Voltage Method (OCVM) are combined in
application to complement the shortcomings of each indi-
vidual method, thereby improving the estimation precision
and accuracy of the battery. This paper focuses primarily
on the Coulomb Counting Method, performing calculations
every 2.5 second, tracking through the comparison of battery
module capacity, and using the open-circuit voltage to cal-
ibrate the initial SoC, thereby estimating the battery’s SoC,
as shown in Figure 7.

FIGURE 8. Software architecture of the HMI.

When the system starts, it first checks whether data on
initial battery capacity are stored in the EEPROM. If such
data are available, the system directly uses the initial capacity
value obtained from the CCM for capacity calculation. If such
data are unavailable, the system uses an OCV lookup table to
find the initial capacity value on the basis of voltage readouts
and incorporates this value into the CCM for battery capacity
calculation. Moreover, the system continuously tracks the
changes in the battery module capacity. If the battery capacity
remains unchanged for a certain time (Tcount ), the system
adjusts the initial capacity value according to the OCV lookup
table. This real-time online capacity estimation method helps
to reduce capacity estimation errors.

In addition, the SoH is primarily processed through lin-
ear degradation lookup tables based on experimental results
obtained from the Coulomb counting method.

D. SOFTWARE ARCHITECTURE OF THE HMI
The Delta DOP-107BV monitoring interface is used as the
HMI of the proposed BMS. This interface communicates
with the BCU through the RS-485 interface to display system
information.

Figure 8 depicts the architecture of the HMI. The Main
Page displays the total voltage, current, SoC, SoH, and
charging/discharging status of the entire system. The Module
Information page shows the voltage and temperature informa-
tion for each cell in every battery module. The Module Status
page depicts system warning statuses, including OVP, UVP,
OTP, UTP, and UBL. Finally, the History page presents the
current recorded data.

IV. RESULTS AND DISCUSSION
This section presents the results of experiments where the
proposed BMS was evaluated. The following experiments
were conducted in this study:

1) Actual measurements are conducted on the batter-
ies used in the battery management system of the
electric garbage compaction truck, ranging from indi-
vidual cells to assembled battery modules. Through
charge/discharge equipment, cyclic charge and dis-
charge tests are carried out under various testing
conditions to confirm the capacity and aging status of
the batteries used. The test results will be compiled into
reports for offline analysis.
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TABLE 2. Specifications of the battery cells used in the proposed BMS.

TABLE 3. Conditions in the single-cell cycling tests.

FIGURE 9. Plot of cell capacity versus cycle count.

2) The relevant parameters obtained from the testing are
incorporated into real-time online battery estimation
algorithms and implemented into the microcontroller
of the BCU. The designed battery management system
is actually deployed on the electric garbage compaction
truck for real data measurements. A comparison and
validation are conducted against traditional CCM to
confirm the feasibility of the system.

Table 2 presents the specifications of the battery cells used
in the proposed BMS (Panasonic NCR18650GA lithium-ion
batteries). Cyclic charge–discharge tests were conducted on
individual battery cells to verify their capacity and aging
status.

Table 3 presents the conditions in the testing of the cycle
life of individual battery cells. The testing was conducted
at an ambient temperature of 25◦C. Two battery cells were
subjected to 600 cycles of charge/discharge testing by using
a cycling machine to determine the relationship between cell
capacity and cycle count, The measured results were then
used to perform curve fitting, as shown in Figure 9, and

FIGURE 10. Plot of static open circuit voltage correction lookup table test
results.

FIGURE 11. Plot of battery cell SoC, voltage, and cycle count.

Equation 1 represents the curve fitting equation.

SoC = 0.01V2
oc − 4.54Voc − 3143.25 (1)

According to the cell capacity, a static OCV correction
lookup table test was conducted. The main conditions for
building the table were based on the capacity corresponding
to the cycle test count, with the OCV table unit being 5%
of the capacity. When the system is at rest for 60 minutes
without any load, it will performOCV-based table correction.
The experimental environment temperature was maintained
at room temperature of 25 degrees. Figure 10 shows the test
results of the static OCV correction lookup table.

Through the lookup table test, the SoC versus voltage
and cycle count curves were obtained, and curve fitting was
performed, as shown in Figure 11.

Equation 2 represents the curve fitting equation, which can
be used to estimate the SoC of the batteries used in the electric
compressor cabinet based on the measurement data.

SoC = 5678.87 − 0.75 × Cycle − 4722.74 × Voltage

+ 0.24 × Cycle × Voltage + 1284.34Voltage2

− 0.01 × Cycle×Voltage2 − 113.29 (2)

After the static OCV correction table was created, battery
cells were assembled into a 48-V battery module, and the
variations in the SoC of this module with the discharge
voltage were investigated at a discharge current of 1 C
(Figure 12). The SoC at the beginning of the discharge phase
was obtained using the following Equation 3:

SoC = 0.136V2
oc − 1.6821Voc − 139.09 (3)
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FIGURE 12. Plot of battery module SoC versus voltage.

FIGURE 13. Integration of the proposed BMS into an electric garbage
compactor truck.

After the battery cells and modules undergo different cycle
tests using the charge and discharge equipment, the designed
battery management system is integrated into the electric
garbage compaction truck as shown in Figure 13. The com-
ponents are arranged in sequence as follows: A. eight sets of
battery modules, B. main control cabinet, C. BMC inside the
battery modules, and D. various circuits inside the main con-
trol cabinet, including the BCU, power board, Relay board,
and Relay components.

Subsequently, the parameters used for the input into the
proposed algorithm for the real-time online estimation of
battery status (implemented by the BCU in the main control
cabinet) to perform various integrated testing experiments.

Figure 14 shows the workflow of the proposed BMS in the
compression chamber of an electric garbage truck.

When the power button on the HMI is pressed, the sys-
tem verifies whether the main control cabinet is powered
by eight sets of battery modules (or a voltage of 24 V) and
then waits for the user to insert the key. Upon key insertion,

FIGURE 14. Workflow of the proposed BMS in the compression
compartment of an electric garbage truck.

FIGURE 15. Data obtained in the practical testing of the proposed BMS
(involving the compression of a full load of garbage) (a) Variation in
voltage of individual modules (b) Changes in total system voltage.

communication is initiated between the HMI and the eight
sets of battery modules, and the connection of the charging
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FIGURE 16. Results of the actual 15-Minute battery compression test. (a) Variations in the total voltage and total current. (b) The
variation of SoC with compression counts. (c) Comparison of SoC. (d) Comparison of SoC error rates.

gun is checked. Subsequently, the system proceeds in the
following two modes:

(1) Charging mode (when the charging gun is connected):
The electric compression compartment cannot be oper-
ated until the charging process is completed.

(2) Discharging mode (when the charging gun is not con-
nected): The electric compression compartment can be
operated in the discharging mode.

The related parameters of the cycle tests are introduced
into the real-time online battery estimation algorithm and
implemented into the BCU in the main control cabinet for
various integration testing experiments. The actual battery
state is measured for parameter error verification, validat-
ing the feasibility of the real-time online battery estimation.
Subsequently, actual garbage compaction tests are conducted
using the electric compression garbage truck with a full load
of garbage for practical testing. The measurements focus on
the voltages of each individual module and the total system
voltage used in this system. Figure 15 depicts the test data
showing voltage variations.

During the garbage compression test using a truckload
of garbage, the voltage of each module remains consistent
as observed from the voltage readings. The designed bat-
tery management system can stably display and record the
voltage status. Subsequent tests focus on the actual back-and-
forth compression of the electric compression chamber for
20 minutes to measure voltage, current, and to compare the
SoC. Figure 16 shows the battery measurement results of the
actual 20-minute back-and-forth compression test.

According to the data from Figure 16, the designed battery
management system was installed on an electric garbage
compactor truck for actual testing. During the compression
process, variations in voltage, current, and SoC decreas-
ing gradually with compression counts can be observed in
Figure 16 (a) and Figure 16 (b). Due to system cost and
chip memory limitations, the real-time online battery estima-
tion proposed in this paper is compared and validated with
the conventional CCM in Figure 16 (c). It was found that
when compression stops, the real-time online battery estima-
tion switches to OCV for table lookup to correct the initial
SoC value, while the Coulomb counting method continues
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calculation based on the original SoC value. In Figure 16 (d),
the switching between no load and loaded conditions causes
the SoC error of approximately 4% between the twomethods.
This experiment indicates that the cumulative error of the
Coulomb counting method over the long term leads to incor-
rect SoC estimations. On the other hand, the real-time online
battery estimation method adjusts the OCV table source by
tracking battery module capacity changes for initial SoC
verification, thereby improving SoC estimation accuracy and
reducing errors.

From the operational test results on the electric garbage
compactor truck, battery modules were composed of battery
cells. The necessary parameters for the real-time online bat-
tery estimationmethodwere calculated through cyclic tests of
cells and modules and then introduced into the system. Eight
battery modules were connected in series to meet the system
requirements of the electric garbage compactor truck. During
the actual discharge process in the compression operation,
voltage, current, and SoC could be displayed and recorded in
real-time, allowing users to clearly understand the battery’s
usage status.

V. CONCLUSION
This paper proposes a low-cost lithium-ion battery state
estimation solution suitable for microcontroller-based appli-
cations. The proposed method can be used for fast and
accurate lithium-ion battery state estimation, meeting the
requirements of real-time online applications. The designed
BMS can be applied not only to electric garbage compactor
trucks, but also has the following features:

A. FLEXIBLE ADJUSTMENT OF THE NUMBER OF BATTERY
STRINGS AND MODULES
The system achieves stacking different battery voltage ranges
through a master-slave architecture with a set of BCUs and
eight BMCs. The flexibility of the BMCs allows support
for applications with up to 18 strings per individual battery
module. This design advantage allows the system to flexibly
adjust the number of battery strings to accommodate different
requirements, and easily replace affected battery modules in
the event of a failure.

B. BATTERY TYPE COMPATIBILITY
The proposed method for battery state estimation mainly
utilizes voltage and capacity cycle counting, combined with
OCV and CCM battery state estimation methods. This
approach can quickly and accurately estimate the state of
lithium-ion batteries, making it suitable for real-time online
applications. As a result, when replacing different battery
models, the system can simply adjust the OCV and battery
protection point parameters to adapt to different models and
brands of batteries, improving the system’s adaptability.

C. CROSS-DOMAIN APPLICATION POTENTIAL AND
UNIVERSALITY
In addition to electric vehicles, the system can also be
applied in domains such as home, industrial, and medical

applications, demonstrating the wide range of application
prospects and the importance of the battery management
system.

D. FLEXIBLE HARDWARE AND SOFTWARE DESIGN
Through simple mechanical adjustments, this system can
meet the needs of various battery form factor sizes. On the
software side, the system mainly uses Delta’s HMI and
Modbus communication protocol for communication. In the
future, when applying this system to other scenarios, it is
easy to connect with different devices to enable diverse
applications.

The battery management system designed in this paper
adopts a modular architecture concept, connecting to the
target voltage through 48V battery modules. Apart from its
application in electric garbage compactor trucks, the system
can be extended to other vehicles and energy storage applica-
tions in the future. If the budget allows, the microcontroller
of the BCU can be upgraded to a high-performance CPU or
MPU. Additionally, by transmitting battery information over
the network, advanced data analysis and machine learning
algorithms can be utilized to optimize battery usage, pre-
dict maintenance needs, and enhance overall performance.
Through flexible adjustments, the designed battery manage-
ment system can achieve higher efficiency, sustainability,
and integration with the evolving electric vehicle and energy
storage domains.
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