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ABSTRACT Pediatric thoracic diseases present significant health risks to children. While chest X-rays
are commonly used for diagnosing thoracic diseases, interpreting pediatric images comes with unique
challenges such as anatomical variations, developmental differences, and potential artifacts. Deep learning
offers promise in addressing these challenges, yet its effectiveness is hindered by the limited availability
of pediatric chest X-ray data. To overcome this limitation, we introduce the dual-masked autoencoders
(dual-MAE) algorithm, consisting of online and target networks with encoder and decoder modules. These
networks are optimized by minimizing three losses: between the reconstructed image of the online network
and the target network, between the input image and the reconstructed image of the online network, and
between the input image and the reconstructed image of the target network. To learn efficiently from pediatric
chest X-rays, we employ a two-step training strategy: pretraining the dual-MAE model on adult chest
X-rays, then fine-tuning it on pediatric X-rays for diagnosing multi-labeled pediatric thoracic diseases. The
proposed model exhibited superior performance with the highest mean AUC score (0.752), surpassing the
ResNet-34 (0.669) and ViT-S (0.645) trained from scratch. Additionally, the dual-MAEmodel outperformed
the ResNet-34 (0.697) and ViT-S (0.638), both pretrained on the ImageNet dataset and then fine-tuned on
pediatric chest X-rays. Despite being pretrained on a significantly smaller number of X-rays compared
to the ImageNet dataset, our model demonstrated better performance. Furthermore, it outperformed the
ResNet-34 (0.712), ViT-S (0.673), and vanilla MAEmethod (0.735), all pretrained on adult chest X-rays and
fine-tuned on pediatric chest X-rays. Even with only 50% of labeled pediatric chest X-ray images, dual-MAE
demonstrated comparable performance to that of the vanilla MAE method and outperformed ResNet-34 and
ViT-S fine-tuned with 100% labeled pediatric chest X-ray images.

INDEX TERMS Adult chest X-rays, dual-masked autoencoders, masked autoencoders, pediatric chest X-
rays, pediatric thoracic diseases.

I. INTRODUCTION
Pediatric thoracic diseases present substantial risks to chil-
dren’s health, affecting various aspects of their welfare. These
conditions, ranging from respiratory issues such as pneumo-
nia and bronchitis to congenital heart defects, can lead to
compromised lung and cardiovascular function [1]. Children
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with thoracic diseases may face a higher susceptibility to
infections, with an increasing potential for complications.
Thoracic diseases during this critical developmental period
may consequently have adverse effects on lung structure
and function, increasing the risk of subsequent chronic lung
disease [2]. Addressing these risks necessitates early diag-
nosis, comprehensive medical management, and a holistic
approach to care to enhance the overall health and quality
of life for affected children. Among diverse diagnosis meth-
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ods, chest X-rays are commonly used to diagnose pediatric
thoracic diseases by providing detailed images of the lungs.
They are effective in visualizing abnormalities in lung struc-
tures, aiding in the identification of infections and congenital
anomalies [3]. The non-invasive and rapid characteristics of
X-rays render them suitable for pediatric patients, while their
cost-effectiveness and widespread availability contribute to
their frequent use in initial screenings.

However, interpreting pediatric chest X-rays presents
unique challenges compared to adult chest X-rays due
to various factors [4]. First, the smaller size of pedi-
atric anatomy requires higher resolution imaging to discern
intricate details, making abnormalities potentially harder
to detect. Second, developing skeletal structures in chil-
dren may introduce variations that could be mistaken for
abnormalities. Additionally, children are more prone to res-
piratory motion artifacts during imaging, impacting image
clarity. The dynamic characteristics of pediatric diseases,
coupled with rapid changes in lung tissue, further com-
plicates differentiation between normal and pathological
findings. Furthermore, limited cooperation from pediatric
patients may result in suboptimal positioning during imag-
ing, further complicating interpretation. The combination
of anatomical differences, developmental variations, respi-
ratory motion artifacts, and the dynamic characteristics of
pediatric diseases contributes to the increased complexity
of interpreting pediatric chest X-rays compared to those of
adults.

Deep learning has significantly contributed to the field
of medical imaging [5], [6], [7], [8]. With the ability to
process large amounts of medical imaging data, deep learn-
ing models demonstrate proficiency in recognizing intricate
patterns and abnormalities in chest X-rays associated with
thoracic diseases [6], [7], [8]. Therefore, employing deep
learning algorithms for the interpretation of pediatric chest
X-rays in diagnosing thoracic diseases could be a promis-
ing approach. However, the limited availability of pediatric
chest X-ray data presents a significant obstacle to achieving
optimal results. The scarcity of diverse and comprehensive
datasets hampers the ability of deep learning models to
generalize effectively across various pediatric cases. This
limitation can lead to suboptimal performance and hinder
the algorithm’s capacity to accurately identify and differen-
tiate between normal and pathological findings in pediatric
chest X-rays.

This study proposes a novel solution to address chal-
lenges associated with limited pediatric chest X-ray data:
the dual-masked autoencoders (dual-MAE) algorithm. The
dual-MAE aims to enhance the performance of deep learning
models in pediatric chest X-rays by addressing the constraints
of limited datasets. By leveraging the proposed algorithm,
it seeks to offer a more robust and accurate tool for interpret-
ing pediatric chest X-rays, contributing to the improvement of
generalization capabilities in the pediatric thoracic imaging
domain. We summarize the contributions of this study as
follows:

• This study introduces a novel dual-MAE architecture,
which consists of online and target networks with
encoder and decoder modules. The architecture aims
to enhance feature learning, image reconstruction, and
overall network optimization.

• To address the limited availability of pediatric chest
X-ray images, this study proposes a two-step train-
ing strategy: initially pretraining the network with a
large number of adult chest X-ray images, followed by
fine-tuning on pediatric chest X-ray images.
• Through experiments, this study shows that the
online network is effective at extracting global fea-
tures. Furthermore, by increasing the proportion of
labeled data used for fine-tuning, it demonstrates
that the target network can efficiently learn fea-
tures even with a limited amount of labeled data.

• The experimental results demonstrate the superior per-
formance of dual-MAE in multi-label classification of
pediatric thoracic diseases. The dual-MAE achieves the
highest mean AUC values compared to other methods,
emphasizing its effectiveness in pediatric thoracic dis-
ease classification.

II. RELATED WORKS
A. CLASSIFICATION OF MULTI-LABELED THORACIC
DISEASES FROM CHEST X-RAYS
Identifying thoracic diseases in chest X-rays is challeng-
ing task due to the intricate and overlapping visual patterns
associated with various conditions. This becomes even more
difficult because of the multi-label characteristic, where a
single X-ray may exhibit multiple diseases simultaneously.
To address these difficulties, deep learning techniques are
employed for the classification of thoracic diseases from
chest X-rays [8], [9], [10], [11]. Wang et al. demonstrated the
detection and localization of common thoracic diseases using
a unified weakly-supervised multi-label image classifica-
tion and disease localization framework on the ChestX-ray8
dataset. They achieved higher accuracy in detecting larger
abnormalities compared to smaller ones, with an average
AUC of 80.30% [8]. Rajpurkar et al. introduced CheXNet,
a modified DenseNet model with 121 convolutional lay-
ers, designed for the detection of 14 chest abnormalities.
CheXNet, trained and evaluated on the ChestX-ray14 dataset,
exhibited impressive performance using binary relevance
classification for the 14 diseases in the dataset. It out-
performed radiologists’ performance with an average AUC
of 84.11% and an F1-score of 43.50% on a test set com-
prising 420 images [9]. Bhusal and Panday introduced a
multi-label disease diagnosis model for chest X-rays using
DenseNet, incorporating model interpretability with Grad-
CAM. The model achieved the highest AUC of 0.896 for
Cardiomegaly and an accuracy of 0.826, while the lowest
AUC was for Nodule at 0.655 with an accuracy of 0.660.
Heatmaps and confidence intervals were used for model
interpretability and uncertainty estimation, demonstrating
high performance in multi-label disease diagnosis tasks [10].
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FIGURE 1. Architecture of dual-MAE used in the pretraining and fine-tuning stages: (a) Pretext task stage for backbone model
pretraining with large amount of unlabeled data (b) Downstream task stage for fine-tuning the pretrained backbone model with
labeled data. (EMA stands for exponential moving average).

Hasanah et al. introduced a fusion architecture, combining
CheXNet and Feature Pyramid Network (FPN). This archi-
tecture employs a pyramid of feature maps with varying
spatial resolutions to capture both low-level and high-level
semantic information, enhancing the model’s capability to
detect diverse features. The evaluation on the ChestX-ray14
dataset demonstrated superior performance, with an average
AUCof 0.846 and an accuracy of 0.914. Furthermore, the pro-
posed model exhibited faster diagnostic inference (0.013s)
compared to recent approaches [11].

B. MASKED AUTOENCODERS IN MEDICAL
IMAGE ANALYSIS
To address the challenges of employing deep learning algo-
rithms with a limited set of labeled medical images, transfer

learning is commonly utilized. However, this approach may
introduce domain discrepancy issues between medical and
natural images since most of the transferring models are
pretrained using natural images, such as the ImageNet
dataset [12]. A promising alternative solution is the applica-
tion of masked autoencoders (MAE) as a self-supervised pre-
training technique, enhancing neural network representation
learning without the need for labeled data [13]. Zhou et al.
introduced a self-pretraining paradigm using MAE on the
target data to overcome the absence of an ImageNet-scale
medical image dataset. Their study demonstrated substan-
tial improvements in diverse medical image tasks, including
chest X-ray disease classification, abdominal CT multi-
organ segmentation, andMRI brain tumor segmentation [14].
Xing et al. employed MAE for COVID-19 diagnosis from
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chest X-ray images, comparing it with two other ViT
models. The first ViT model was trained from scratch
using COVID-19 data, while the second ViT model was
pretrained on the ImageNet dataset and then fine-tuned
with COVID-19 data. The MAE model demonstrated supe-
rior performance with an accuracy of 0.985 and an AUC
of 0.996. The study emphasizes the efficiency of MAE on
labeled data for fine-tuning, achieving comparable results
with only 30% of the labeled training dataset, highlighting
its potential for enhanced disease diagnosis in scenarios with
limited imaging information [15]. Yoon and Kang applied
the MAE to improve pneumonia diagnosis in the context
of limited labeled pediatric chest X-rays. They pretrained
the MAE model on adult chest X-ray images and then
fine-tuned it on a pediatric pneumonia dataset, demonstrat-
ing competitive diagnostic performance with an AUC of
0.996 and 95.89% accuracy in distinguishing normal and
pneumonia. Furthermore, the approach attained high AUC
values (normal: 0.997, bacterial pneumonia: 0.983, viral
pneumonia: 0.956) and 93.86% accuracy in classifying nor-
mal, bacterial pneumonia, and viral pneumonia [16].

III. MODEL
A. ARCHITECTURE
In this study, we introduce a novel architecture called
dual-MAE, comprising an online network and a target net-
work, each with encoder and decoder modules. As outlined
in Fig. 1 (a), the input image is divided into non-overlapping
16 × 16 patches and each patch is then transformed into a
token through linear projection with an additional positional
embedding. Subsequently, a subset of tokens is randomly
sampled based on a masking ratio ranging from 65% to 95%,
and this selected subset is then masked. The visible and
unmasked tokens employed as input for the online network
are denoted as x1, while those for the target network are
denoted as x2. Dual-MAE achieves efficient pretraining with
reduced computational demands, as its encoders process only
visible and unmasked tokens, similar to vanilla MAE. These
encoders are designed to extract a global representation from
partial observations, with their output tokens facilitating the
reconstruction of learnable masked tokens in the decoders.
The decoders process the full set of tokens by combining
encoded visible tokens with learnable mask tokens, utiliz-
ing positional embeddings in all input tokens. As a result,
the decoders reconstruct patches at specific masked posi-
tions, reshaping the output into a reconstructed image. The
online network decoder reconstructs a full image, denoted
as y1, using the randomly selected unmasked tokens x1 and
learnable mask tokens, while the target network decoder
simultaneously reconstructs another full image, denoted y2,
using the randomly selected unmasked tokens x2 and another
learnable mask tokens. The decoders, intentionally smaller
than the encoder, are exclusively employed in pretraining to
improve efficiency. In medical imaging tasks, we emphasize
the vital role of contextual information in reconstructing
masked image patches, considering the intrinsic dependence

and connection between the region of interest (ROI) and its
physiological environment and surroundings.

The loss function, denoted as L1, quantifies the mean
squared errors between the reconstructed images of online
network y1 and those of target network y2 in pixel space.
Additionally, in alignment with the vanilla MAE approach,
the mean squared errors between the original images (x) and
reconstructed images of online / target networks (y1 and y2) in
pixel spaces are computed, respectively. Specifically, the L2
loss term quantifies the mean squared errors between x and y1
while L3 loss termmeasures the mean squared errors between
x and y2 in pixel space. The total loss, expressed as Ltotal ,
serves as a key optimization metric during training and is
computed at each training step using following equation:

Ltotal = λ1L1 + λ2L2 + λ3L3. (1)

In this study, the values of λ1, λ2 and λ3 are set to 1.
The proposed dual-MAE algorithm includes a stochastic
optimization step during each training iteration, aiming to
minimize the total loss, Ltotal . The online network is defined
by a specific set of weights denoted as θ , while the target
network employs a distinct set of weights denoted as ξ .
Notably, the target network actively contributes to training
the online network by providing reconstructed images, y2,
and its parameters ξ are updated using an exponential moving
average (EMA) of the online parameters θ . This update,
governed by a target decay rate τ∈ [0, 1], ensures continu-
ous improvement in the performance of the target network
by involving a weighted combination of the current target
parameters and the historical online parameters, as expressed
in the following equation [17]:

ξ ← τξ + (1− τ) θ. (2)

The target decay rate τ is set to 0.99 in this study. This
sophisticated dual-MAE approach is designed to improve
feature learning, image reconstruction, and network opti-
mization, providing a comprehensive framework for effective
image representation and reconstruction tasks.

B. PRETRAINING DUAL-MAE MODEL
AND FINE-TUNING VIT MODEL
The objective of this study is to categorize multi-labeled
pediatric thoracic diseases. However, due to the limited num-
ber of pediatric chest X-rays, it is impractical to pretrain
a dual-MAE network using only pediatric chest X-rays.
To overcome this limitation, we aim to pretrain the dual-MAE
network using adult chest X-rays, which share substantial
similarities with pediatric chest X-rays in structural and tex-
tural aspects and exhibit minimal domain discrepancy. The
adult chest X-rays in this context are obtained from the
CheXpert and ChestX-ray14 datasets [7], [8].
The adult chest X-rays were resized to 256 × 256 pixels

and standardized using mean and standard deviation of Ima-
geNet dataset. We then performed random resizing cropping
(scale range: 0.5∼1.0) to 224 × 224 pixels and applied hor-
izontal flipping for dataset augmentation. However, to avoid
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FIGURE 2. Multi-labeled pediatric chest X-ray sample images. (Each
image can belong to multiple disease categories): a) No finding category,
b) Bronchitis & Pneumonia categories, c) Broncho-Pneumonia &
Bronchiolitis categories, d) Bronchiolitis & Pneumonia categories,
e) Pneumonia & Other disease categories, f) Other disease category.

potential risks such as cropping or introducing bias to
informative lesions or organs, we refrained from using addi-
tional augmentation methods. The dual-MAE was optimized
using the AdamW optimizer with parameters (β1 = 0.9,
β2 = 0.95) and a weight decay of 0.05. The ViT trans-
former blocks in the dual-MAE were initialized using Xavier
uniform initialization. The initial learning rate and batch
size were set to 1.5e-4 and 256, respectively. The learning
rate was warmed up for the initial 20 epochs and adjusted
using a cosine annealing schedule. The pretraining process
of dual-MAE ran for 800 epochs.

Fine-tuning was performed using an end-to-end approach
on pediatric chest X-ray images as shown in Fig. 1 (b).
During fine-tuning, we utilized the pretrained ViT encoder
from the online network of dual-MAE. Following [18],
a linear classifier is added after the class token output from
the ViT encoder. In this study, the task of predicting pedi-
atric thoracic diseases from chest X-rays was treated as a
multi-label classification problem, where each input example
may be associated with multiple disease labels as shown
in Fig. 2. To address this multi-label classification problem,
we replaced the final fully connected layer in ViT network
with a fully connected layer that generates a 6-dimensional
output. Subsequently, we applied an elementwise sigmoid
nonlinearity. The resulting output represents the predicted
probability of each thoracic disease. Next, we modified
the loss function to optimize the mean of binary cross-
entropy (BCE) losses and fine-tuned the ViT model with
the BCE loss [9], [19]. The ViT model was optimized using
the AdamW optimizer, incorporating parameters (β1 = 0.9,
β2 = 0.95) and a weight decay of 0.05. The initial learning
rate and batch size were set to 2.5e-3 and 128, respec-
tively, following a cosine annealing schedule. Adhering to
the recommendations in [20], layer-wise LR decay of 0.55,
RandAug magnitude of 6, and a DropPath rate of 0.2 were
implemented. The fine-tuning process ran for 75 epochs,
including a warm-up period of 5 epochs. Each set of

TABLE 1. Details on datasets used in this study.

TABLE 2. Mean AUC comparison of MAE(X-ray) and dual-MAE(X-ray)
across various masking ratio (Highest values are in bold).

experiments was repeated three times, applying different ran-
dom seeds for weight initialization.

After fine-tuning, the fine-tuned model was used to evalu-
ate test images.

IV. EXPERIMENTS
A. PRETRAINING AND FINE-TUNING DATASETS
Weutilized two datasets, CheXpert and ChestX-ray14, to pre-
train the proposed dual-MAE model. The CheXpert dataset
contains 224,316 chest X-rays with both frontal and lateral
views. It is annotated for 14 observations (12 patholo-
gies, support devices, and observations with no findings).
We employed only frontal view images from the CheXpert
dataset, amounting to 191,229 images [7]. The ChestX-ray14
dataset consists of 112,120 frontal view chest X-ray images,
with 51,708 exhibiting one or more pathologies across
14 classes, and the remaining 60,412 images indicating no
signs of disease [8]. Although both datasets have labels,
we do not use the label information during pretraining. The
total number of images for dual-MAE pretraining is the sum
of both datasets, reaching 303,349 images. The pediatric
chest X-ray images for this study was obtained from the
PediCXR dataset [21]. This dataset comprises 9,125 pedi-
atric chest X-ray images, officially categorized into training
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TABLE 3. AUC comparison of different methods across different diseases. (Highest values are in bold and values in parenthesis stands for standard
deviation).

and test datasets. The training set contains 7,728 images,
while the test set consists of the remaining 1,397 images.
In the training set, every chest X-ray image is annotated for
15 diseases, while the official test set comprises 11 diseases.
To ensure a fair and robust assessment, rare diseases (with
positive samples fewer than 5 in test set) were aggregated
into a category labeled ‘‘other diseases’’ [22]. As a result, the
PediCXR dataset includes 6 classes: no finding, bronchitis,
broncho-pneumonia, bronchiolitis, pneumonia, and other dis-
ease as shown in Table 1 and Fig. 2. Table 1 provides detailed
information on pretraining and fine-tuning data. Eighty per-
cent of the PediCXR training data was used for fine-tuning
the pretrained networks or training networks from scratch for
comparison. The remaining twenty percent of the PediCXR
training data was served as validation data.

The data used in this study is publicly available. The
ChestX-ray14 dataset can be accessed from [23], the
CheXpert dataset from [24], and the PediCXR data from [25].
Ethical review and approval were waived for this study as it
involved the analysis of anonymous clinical open data.

B. COMPARATIVE METHODS
In this study, we conducted a comparative analysis to demon-
strate the effectiveness of pretraining the dual-MAE model
on adult chest X-ray images for the diagnosis of pediatric
thoracic diseases. The vanilla MAE and dual-MAE mod-
els, pretrained on adult chest X-rays, will be denoted as
MAE(X-ray) and dual-MAE(X-ray), respectively. The first
comparative approach involves training pediatric thoracic
disease data from scratch, utilizing ResNet-34 and ViT-S
models as backbone models, denoted as ResNet-34(random)
and ViT-S(random), respectively [18], [26]. ViT-S was

chosen as the backbone model due to the architecture of
dual-MAE being based on ViT-S model. The reason for
choosing ResNet-34 is that the ResNet model is a represen-
tative algorithm in convolutional neural networks (CNNs),
and the selection of the ResNet-34 model is based on
its parameter size, which is similar to ViT-S, both having
22 million parameters. The second comparative approach
involves ResNet-34(IN) and ViT-S(IN), pretrained on the
ImageNet dataset, which are then fine-tuned using pedi-
atric thoracic disease data. The third comparative approach
involves using ResNet-34(X-ray) and ViT-S(X-ray) models,
pretrained on adult chest X-rays, which are then fine-tuned
with pediatric chest X-rays. The forth comparative approach
entails fine-tuning MAE(X-ray) with pediatric thoracic dis-
ease data. These methods are compared with the proposed
dual-MAE(X-ray) in this study.

C. EXPERIMENTAL RESULTS
The performance of MAE(X-ray) and dual-MAE(X-ray)
models varies with the masking ratio (the proportion of
masked patches during pretraining). Optimizing the masking
ratio involves addressing information redundancy in the data.
Notably, BERT used a 15% masking ratio for language tasks,
while vanilla MAE opted for a 75% masking ratio in natural
image-related tasks [13], [27]. Due to the substantial similar-
ity in chest anatomy, chest X-rays inherently exhibit higher
information redundancy than natural images. Consequently,
vanilla MAE has favored a 90% masking ratio specifically
for chest X-rays [19]. In this study, experiments were con-
ducted by incrementally increasing the masking ratio from
65% to 95% in 5% increments to determine the optimal mask-
ing ratio for MAE(X-ray) and dual-MAE(X-ray) models.
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FIGURE 3. Performance metrics comparison of different methods for multi-labeled pediatric thoracic disease classification.

Table 2 presents the mean AUC values of the MAE(X-ray)
and dual-MAE(X-ray) models across various masking ratios.
These AUC values reflect the models’ ability to clas-
sify pediatric thoracic diseases from X-rays, with higher
scores indicating better performance. Remarkably, the dual-
MAE(X-ray) consistently demonstrates competitive perfor-
mance compared to MAE(X-ray) across different masking
ratios, emphasizing its robustness in multi-label classifica-
tion tasks. Specifically, for MAE(X-ray), the mean AUC
peaked at 0.735 with a masking ratio of 85%, while dual-
MAE(X-ray) achieved its highest macro AUC of 0.752 at
masking ratios of 75%. In subsequent experiments, the mask-
ing ratio was fixed at 85% forMAE(X-ray) and 75% for dual-
MAE(X-ray). Compared to other researches in [13] and [20],
our study similarly demonstrated an optimal masking ratio
of 75% for dual-MAE(X-ray) and 85% for MAE(X-ray).
Those masking ratios imply a significant reduction in the
computational and memory demands of the model, indicating
the potential for efficient pretraining.

Table 3 presents the AUC values for various pediatric
thoracic disease categories across different deep learning
methods. The dual-MAE(X-ray) consistently achieves high

AUC scores across all categories, emphasizing its robust
disease classification performance. Specifically, the dual-
MAE(X-ray) model demonstrates superior performance in
classifying broncho-pneumonia class and pneumonia class,
yielding AUC values of 0.828 and 0.833, respectively. How-
ever, for other diseases class, although the dual-MAE(X-ray)
model outperforms other methods, its AUC value of 0.665 is
relatively lower compared to the rest of the disease categories.
Other diseases class comprises images of ten different minor-
ity diseases grouped together, indicating challenges in their
classification.

Fig. 3 and Table 4 illustrate the performance metrics
such as AUC, sensitivity, precision, and F1-score of dif-
ferent methods for classifying multi-labeled pediatric tho-
racic diseases. Both the dual-MAE(X-ray) and MAE(X-ray)
models exhibited superior performance across all perfor-
mance metrics compared to other models. Specifically, dual-
MAE(X-ray) andMAE(X-ray) models exhibited higher AUC
values (0.735 and 0.752, respectively) than ResNet-34 and
ViT-S models, demonstrating the efficacy of the MAE-based
pretraining approach for classifying pediatric thoracic dis-
eases from X-ray images. In terms of sensitivity, the
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TABLE 4. Performance metrics comparison of different methods for
multi-labeled pediatric thoracic disease classification. (Highest values are
in bold and values in parenthesis represent standard deviation).

ResNet-34(X-ray) model achieved the highest value (0.746),
followed by the MAE(X-ray) model (0.740), indicating
their effectiveness in identifying positive cases. Moreover,
focusing on precision, the dual-MAE(X-ray) model outper-
formed other models with a value of 0.563, followed by
the MAE(X-ray) model with 0.550, highlighting their ability
to minimize false positives. The F1-score emphasizes the
ability to balance false positives and false negatives. How-
ever, the F1-score of dual-MAE(X-ray) at 0.593 is slightly
lower than that of the MAE(X-ray) and ResNet-34(X-ray)
models, which stand at 0.602 and 0.599, respectively. Overall,
the dual-MAE(X-ray) model exhibited the highest perfor-
mance in terms of AUC and precision. Meanwhile, the
MAE(X-ray) model demonstrated the best performance in
F1-score, and the ResNet-34(X-ray) model showcased the
highest sensitivity. One notable observation is that, except for
the ViT-S(X-ray) model, the models pretrained on adult chest
X-rays and fine-tuned on pediatric chest X-rays outperformed
the performance of other models. From a transfer learn-
ing perspective, this suggests that the similarity in domain
between the data used for pretraining and fine-tuning makes
transfer learning more effective. On the other hand, fine-
tuning with models pretrained on ImageNet and pediatric
chest X-rays faces challenges due to the domain discrepancy
between the two datasets, indicating potential issues with
effective fine-tuning. For the ViT-S(X-ray) model, it seems to
exhibit an inductive bias issue because the adult chest X-rays
used for pretraining are relatively limited compared to the
ImageNet data.

Table 5 represents the performance of the dual-
MAE(X-ray) model based on the percentage of labeled
data used for fine-tuning. As the percentage of labeled

TABLE 5. Performance of dual-MAE(X-ray) model based on labeled data
percentage for fine-tuning. (Highest values are in bold and values in
parenthesis represent standard deviation).

data increases, there is a noticeable improvement in AUC
values. For instance, with only 1% of labeled data, the
AUC is 0.573, indicating relatively lower performance.
However, as the percentage of labeled data increases to
10%, 50%, and finally 100%, the AUC values improve to
0.620, 0.733, and 0.752, respectively. Similarly, precision
exhibits an upward trend with increasing labeled data per-
centages, reaching performance levels of 0.475, 0.479, 0.554,
and 0.563. However, sensitivity and F1-score show an ascend-
ing trendwith labeled data proportions until they peak at 50%,
after which they slightly decrease at 100%. An interesting
observation is the similarity in performance between the dual-
MAE(X-ray) model fine-tuned with 50% labeled data and
the MAE(X-ray) model fine-tuned with 100% labeled data.
For instance, the dual-MAE(X-ray) model achieves an AUC
of 0.733, sensitivity of 0.730, precision of 0.554, and F1-
score of 0.599, while the MAE(X-ray) model exhibits an
AUC of 0.735, sensitivity of 0.740, precision of 0.550, and
F1-score of 0.601.

Table 6 compares the AUC of each model at different ratios
of labeled training data. As the proportion of labeled data
increases from 10% to 100%, there is a consistent improve-
ment in performance metrics. When the training data is lim-
ited to 10%, all methods except for ViT-S(IN), MAE(X-ray),
and dual-MAE(X-ray) achieve an AUC below 0.6. At 50%
of the training data, dual-MAE(X-ray) significantly outper-
forms other methods with an AUC of 0.733, demonstrating
its effectiveness, followed by MAE at 0.686. With 100%
of the training data, dual-MAE achieves the highest AUC
of 0.752, while MAE achieves 0.732. Overall, the proposed
dual-MAE consistently outperforms other methods across all
data proportions, particularly excelling with limited data.

From these results, the roles of the online network and the
target network in dual-MAE become apparent. MAE consists
solely of the online network, whereas dual-MAE comprises
both the online network and the target network. Thus, the
performance difference between the two can be attributed to
the presence of the target network. As shown in Table 6, when
fine-tuning with only 10% of the labeled data, MAE achieves
an AUC of 0.636, slightly higher than dual-MAE’s AUC
of 0.620. However, with 50% of the labeled data, the AIC pf
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TABLE 6. AUC comparison of methods at different labeled training data
Ratios. (Highest values are in bold and values in parenthesis represent
standard deviation).

MAE increases from 0.636 to 0.686, a 0.050 improvement,
whereas the AUC of dual-MAE rises from 0.620 to 0.733,
an impressive 0.113 increase. These results suggest that
the target network in dual-MAE significantly enhances fea-
ture learning, particularly when only limited labeled data
is available. This underscores the effectiveness of utilizing
dual-MAE for feature extraction and fine-tuning in scenarios
with limited labeled data availability. MAE, composed solely
of an online network, demonstrates robust performance since
it is designed to extract global representations from partial
observations.

V. CONCLUSION
In this study, we introduced the dual-MAE, a novel architec-
ture designed for the effective classification of multi-labeled
pediatric thoracic diseases. The dual-MAE consists of both
an online network and a target network, each incorporating
encoder and decoder modules. The model was optimized by
minimizing mean squared errors for reconstructed images.
Due to the limited availability of pediatric chest X-ray data,
we employed a two-step approach: initially pretraining the
dual-MAE network using adult chest X-ray images, followed
by fine-tuning on pediatric chest X-ray data.

The experimental results demonstrated that dual-MAE
(X-ray) achieved the highest mean AUC of 0.752 when the
masking ratio was set to 75%, outperforming other meth-
ods. Additionally, this study emphasized the consistent high
AUC scores of dual-MAE(X-ray) across various thoracic
disease categories. Further analysis illustrated that the dual-
MAE(X-ray) outperformed the MAE(X-ray) in terms of
AUC across various masking ratios, demonstrating its effec-
tiveness in improving the multi-label classification perfor-
mance for pediatric thoracic diseases. The dual-MAE(X-ray)

and MAE(X-ray) models outperformed the ResNet-34 and
ViT-S models across various performance metrics. Notably,
ResNet-34(IN) and ViT-S(IN) benefited from pretraining on
a larger ImageNet dataset of 1.28 million images, compared
to the 303,349 adult chest X-ray images used for pretraining
MAE(X-ray) and dual-MAE(X-ray), indicating a 4.2-fold
increase in image quantity. Nevertheless, dual-MAE(X-ray)
and MAE(X-ray) demonstrated superior performance. When
comparing the performance between dual-MAE(X-ray) and
MAE(X-ray), the proposed dual-MAE(X-ray) exhibited bet-
ter performance in terms of AUC and precision but not in
sensitivity and F1-score. However, interestingly, overall per-
formance when fine-tuning dual-MAE(X-ray) with a 50%
labeled data ratiowas comparable to that ofMAE(X-ray)with
100% labeled data.

By varying the proportion of labeled training data to 10%,
50%, and 100%, we explained the roles of the online net-
work and target network in dual-MAE. The online network,
which follows the vanilla MAE architecture, extracts global
representations from partial observations. The target network,
on the other hand, aids the model in efficiently learning fea-
tures even in scenarios with limited labeled data availability.

Although dual-MAE(X-ray) exhibited better performance
compared to ResNet-34, ViT-S, and MAE(X-ray) models,
there are limitations to consider. Firstly, dual-MAE(X-ray)
represents one approach of self-supervised learning, and its
superiority needs to be validated by comparison with other
self-supervised learning methods such as SimCLR, MOCO,
and BYOL [17], [28], [29]. Secondly, it is crucial to establish
the generality of the proposed method through experiments
with diverse datasets. Future research will aim to address
these limitations.
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