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ABSTRACT The attention-based models are widely used for time series data. However, due to the quadratic
complexity of attention regarding input sequence length, the application of Transformers is limited by
high resource demands. Moreover, their modifications for industrial time series need to be robust to
missing or noisy values, which complicates the expansion of their application horizon. To cope with these
issues, we introduce the class of efficient Transformers named Regularized Transformers (Reguformers).
We implement the regularization technique inspired by the dropout ideas to improve robustness and reduce
computational expenses without significantly modifying the pipeline. The focus in our experiments is on
oil&gas data. For well-interval similarity task, our best Reguformer configuration reaches ROC AUC 0.97,
which is comparable to Informer (0.978) and outperforms baselines: the previous LSTM model (0.934),
the classical Transformer model (0.967), and three recent most promising modifications of the original
Transformer, namely, Performer (0.949), LRformer (0.955), and DropDim (0.777). We also conduct the
corresponding experiments on three additional datasets from different domains and obtain superior results.
The increase in the quality of the best Reguformer relative to Transformer for different datasets varies from
3.7% to 9.6%, while the increase range relative to Informer is wider: from 1.7% to 18.4%.

INDEX TERMS Deep learning, efficient transformer, robust transformer, representation learning, similarity
learning.

I. INTRODUCTION
Drilling wells is a time- and money-consuming process that
plays an essential role in the exploration of a basin and its
characteristic and prevention of drilling accidents [1]. Well
and well-interval similarity can help make decisions about
drilling reasonableness: it helps reconstruct the properties
of an oil well by comparing it to other wells with known
properties. Moreover, with a proper similarity learning
approach, we can obtain low-dimensional representations of
well-intervals that can help estimate their lithological and
physical properties by having an appropriate well-interval
representation of known wells and a new one.

The associate editor coordinating the review of this manuscript and

approving it for publication was Brian Ng .

Many methods that estimate well and well-interval
similarity exist as described in Section II, among which
approaches dealing with sequential data structures seem
the most promising. During drilling, engineers gradually
collect data along the well in a sequential manner, producing
a multivariate sequence of observations along the well’s
depth. The sequential nature of data encourages using an
architecture that exploits its structure for maximum benefit.
Recurrent Neural Networks (RNNs) have previously been
used to obtain representations of well-intervals [2]. Despite
the widespread use of RNNs, the attention mechanism has
made a significant breakthrough in the field of natural
language processing (NLP), leading to the creation of
the Transformer architecture, which avoids the common
problems of RNNs [3]. The most evident benefits are a better
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long-term memory for our model and the equal treatment of
whole sequences without focusing on the end of a sequence
inherent to RNNs [4].

However, the processing of long sequences by Trans-
formers requires significant computational time and memory
resources and is prone to errors if the quality of input data is
low [5], [6]. Moreover, the classical Transformers tend to be
overconfident in their predictions, which leads to less robust
models to noised or perturbed data. Recent approaches [7],
such as Informer [8], Performer [9], DropDim [10], and
LRformer [11] address these problems by proposing several
improvements to the basic Transformer architecture, allowing
to focus attention only on the relevant part of a sequence,
more details are provided in Section III. Nevertheless, the
robustness of all the existing time series models remains
debatable. Some papers claim that Transformers are ineffec-
tive and of low quality, e.g., the authors of [12] show that
simple linear-based models outperform Transformers in time
series forecasting. Nonetheless, the authors of [13] propose
Transformers’ modification for time series data, which
includes a patching strategy combined with a Transformer’s
backbone. This allows to outperform simple linear models
proposed in [12].

So, these articles confirm that Transformers may perform
poorly in some tasks, which also highlights the need for
robust models. In addition, in our problem statement, expert
labeling is not required as we can reformulate the task in
terms of well-interval similarity instead of well similarity,
which leads to the self-supervised nature of our method. This
confirms the applicability of our approach across domains.
Our experiments with data from three different areas support
this statement.

Given all this, we present our Transformer-based approach
to similarity learning for time series data. The main
contributions of this work are as follows:

1) We propose a new regularized variant of the Trans-
former architecture, Reguformer, working in the self-
supervised regime. Thismodel adopts the dropout ideas
to create more accurate, efficient, and robust models for
time series data processing.

2) The basic idea of these models, attention dropout,
makes the models both more efficient and more robust,
which leads to the increase of the Reguformer’s
performance on missing or noisy data.

3) One of the requirements for our model is working in the
self-supervised regime, so expert labels are not needed
during our model’s training phase. However, they can
be applied to fine-tuning. This architecture improves
existing results for time series similarity estimation and
representation learning tasks.

4) We adapt all modifications of the Reguformer for
the oil&gas data and evaluate them on the prob-
lem of similarity estimation between well-intervals.
Our models significantly improve existing results,
proving the usefulness of Reguformers for process-
ing logging data for oil&gas wells. This follows

from a better similarity estimation and overall better
representations.

5) To confirm the advantages of our Reguformers, we test
them on the three additional datasets consisting of
multivariate time series from incredibly different areas:
finance, weather, and crimes. The results of time series
similarity estimation and Reguformers’ robustness
prove their great utility.

II. RELATED WORK
To compare wells, we consider well logging information.
It is represented as sequential data of petrophysical numerical
properties recorded by lowering a variety of sensors into an
oil well [14].

The simplest way to estimate the correlation between wells
is a rule-based approach. The authors of [15] rely on prior
expert knowledge to identify logical rules for the well-to-
well correlation. In [16] and [17], the use of geometric
distances and Jaccard and Overlap similarities are proposed
for wells’ similarity calculation. The authors of [18] adopt
synchronization likelihood and visibility graph similarity for
well similarity assessment. However, most of these methods
consider oversimplified physical well properties and are
unproductive in terms of obtaining well or well-interval
representations. Moreover, they work with only two features,
which may not be enough to get a complete picture of the
wells’ lithological and physical properties. It is reasonable to
assume that using a larger number of features will reveal more
complex data dependencies, as well logs consist of many
characteristics.

The experiments presented in [14] show better perfor-
mance of classical machine learning models than rule-
based approaches. The model based on gradient boosting
shows a sufficiently high quality with PR AUC 0.943 and
ROC AUC 0.861. Although the predictions can be used for
distance calculation and clustering, representations reflecting
the geographical and physical characteristics of the wells
are impossible to obtain in this case due to the model’s
architecture.

Deep neural networks are useful for generating well-
interval representations (embeddings). The authors of [2]
obtain well-interval representations via an LSTM. In [19],
the authors implemented a transformer-based approach to
well diagnosis. In [20], autoencoder-based approaches are
considered for generating data representations applicable to
different oil&gas field problems. The authors of [21] adapt
non-contrastive approaches like BYOL and Barlow Twins
for logging data representations. In [22], the authors train
transformers to predict the wells’ productivity. This approach
is claimed to allow the model to be transferred to another
well, increasing the accuracy of the bottomhole pressure or
flow rate evolution. There are also studies devoted to the
adoption of CNN [23] and autoencoders [24] for oil flow rate
prediction.

As mentioned above, well logs can be considered sequen-
tial data, specifically, time series. The classical approaches
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to estimating the similarity without additional information
about separate time series come from unsupervised learning.
Among all the models in this area, autoencoders [25] seem
the most promising in terms of learning data representations.
RNNs such as GRU [26] and LSTM [27] are also a popular
group of methods. However, all unsupervised learning
methods suffer from inaccurate results because of the absence
of labels.

The interpretability of models in the industry is as crucial
as the quality and the usage to downstream tasks. Frequently
used RNNs such as LSTM have a bottleneck related to
the concentration of all information in a single vector that
follows the encoder in sequence to sequence models [4].
However, we can overcome the difficulties associated with
this problem by changing RNNs to the Transformer model
as the attention matrix provides deep insight into the object
and its internal relations [28]. Moreover, attention exposes
the contribution of each input to each specific output of
the model. In particular, scores of attention to input areas
or intermediate objects are interpreted as a measure of the
contribution of the visited element to the output of the
model [29].
Self-supervised models perform better than unsupervised

ones, producing a more aligned outcome with the current
task. The two main ideas of self-supervised learning are the
following:

1) Generative. The most prominent representative is
autoregression [30], which predicts the future using
representations. Autoencoders considered above can
also be used in the context of self-supervised
learning.

2) Contrastive. The key idea of these approaches is that
similar objects should have similar representations, and
dissimilar objects should have distant representations.
The most common loss functions in this class are
Siamese and Triplet.

In this paper, we focus on contrastive learning approaches
and address the following problems of the classical Trans-
former model: 1) the high computational cost of the
attention matrix; and 2) the poor performance of the classical
Transformer on middle- and short-sized sequences [31].

The main approaches to reduce attention’s computational
expenses include attention matrix sparsification, for example,
Informer [8] and BigBird [32], attention matrix low-rank rep-
resentation as presented in Performer [9] and Linformer [33],
memory downsampling as in Longformer [34], bucket
processing application, for instance, Reformer [35]. More
details are available in the recent review [7], and some
performance comparisons can be found in [36].
The papers [10] and [11] address the problem of the

Transformer’s robustness and overconfidence and solve
them via the adaptation of the dropout technique and
approximation of the attention formula in the way it satisfies
the bi-Lipschitz condition.

However, the abovementioned solutions have not been
applied yet to similarity and representation learning tasks.

In this paper, we propose the Regularized Transformer
(Reguformer) class, adopt models from this class for solving
the well-interval similarity task, and compare different
regularization techniques with the baselines, namely, the
classical Transformer and its recent efficient most promising
modifications Informer, Performer, LRformer, and DropDim.
Moreover, some papers address other problems of the vanilla
Transformer, such as overfitting and overconfidence. We also
compare Reguformers with the representatives of this class of
models, DropDim [10] and LRformer [11].

Despite the existence of the papers [31], [37] creating
the models capturing both long- and short-term patterns
in sequences, they lack the adoption of the classical
Transformer architecture for working with short- and middle-
sized sequences. We expect to fill this gap.

Upon thorough analysis, we see that these efficient
Transformers have not been developed for and applied to
time series similarity, especially well-intervals similarity,
problems due to challenges related to the length of time
series intervals and the low amount of data used. We expect
to fill this gap by proposing an efficient and interpretable
attention-based model trained in a self-supervised manner.

III. METHODS
A. DATA OVERVIEW
1) MAIN DATASET: WELL LOGS
As the main dataset, we consider an open-access dataset
provided by the New Zealand Petroleum & Minerals Online
Exploration Database [38] and the Petlab [39]. It consists
of wells from the Taranaki basin, New Zealand. We use
the data from the largest formation, Urenui, containing the
information about 28 wells.

In our work, we consider similarity not between whole
wells but between well intervals of length 100 which corre-
sponds to 33 ft. According to the experts [2], such selection
allows appropriate aggregation of the local properties of rock.

In all our experiments, we use the following four features:
porosity inferred from density log (DRHO), density log
(DENS), gamma-ray (GR), and sonic log (DTC). These
features are also approved by the experts [2].

2) ADDITIONAL DATASETS
To prove the performance quality and robustness of our
Reguformers, we use three more datasets from the different
domains:

• Crimes.1 This dataset [40], [41], [42], [43] contains
the records of crimes in 12 Boston’s districts. In our
experiments, we consider four features: codes of crimes
(OFFENSE_CODE), shooting indicator (SHOOTING),
latitude (Lat), and longitude (Long) of incidents.We for-
mulate the similarity task as determining whether two
crime sequences belong to the same district (DISTRICT
feature in the dataset) or not.

1https://www.kaggle.com/datasets/AnalyzeBoston/crimes-in-boston
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• Weather.2 We consider the climate data [44], [45], [46]
from 242 weather stations. We train our models to
identify whether the intervals of two weather station
logs belong to the same station (STATION feature)
using the following features: MXWDSP, WDSP, TEMP,
STP, SLP, PRCP, DEWP, LATITUDE, LONGITUDE,
ELEVATION.

• Stocks.3 Stock market data [47], [48] consists of
stock prices of 33 companies. We solve the problem
of determining whether two intervals of stock data
belong to the same company (Name column) using
five features: prices at the beginning (Open) and at
the end (Close) of each day, the minimum (Low) and
the maximum (High) prices during each day, and the
number of stocks sold (Volume).

We set the sequence length to 100 for all datasets during
the interval generation procedure. The detailed description of
data preprocessing is provided in Appendix A.

B. METHODOLOGY
1) SIMILARITY PROBLEM STATEMENT
In this Section, we consider in detail the oil wells similarity
problem statement. For the other datasets, we use a similar
procedure, the main difference being the number of features.

We look at intervals of wells. Each interval consists of
four features measured at 100 consecutive points (depth-
wise) during drilling. We aim to provide a model that can
report a similarity between two intervals regarding their
physical properties. As exact labeling on similarities is rarely
available, we use both direct and indirect approaches to
estimate the quality of obtained models.

To train the model, we focus on the well-linking prob-
lem [2]: we consider a pair of intervals as positive if they
belong to the same well (target value for this pair is equal
to 1) while a pair of intervals is negative if they are from two
different wells – target value, in this case, is equal to 0. So,
we do not require any labels for training for such labeling.
See the problem statement for model training in Figure 1. The
scope of application of the models trained via this approach is
wider than distinguishing intervals from different wells, as we
hope to obtain representations useful for other problems.

2) NEURAL NETWORK ARCHITECTURES
We use two loss functions in our experiments: the Siamese
and Triplet losses depicted in Figures 2 and 3, respectively.
The Siamese loss requires a pair of intervals with a label
indicating whether they belong to the same well or not,
while the Triplet loss takes as an input a triplet of intervals:
an anchor interval, a positive (an interval from the same
well as the anchor), and a negative (an interval belong to a
different).

2https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation
3https://www.kaggle.com/datasets/szrlee/stock-time-series-20050101-to-20171231

FIGURE 1. Well-linking problem statement. Interval (Int.) 1 and Int. 3 are
considered similar, so the prediction for this pair should be as close to
one as possible. Intervals 1 and 2 are from different wells, and their
similarity prediction should equal zero.

FIGURE 2. Siamese loss function. It can use an additional fully-connected
part (FC-part) to predict the target similarity for a pair of intervals or
Euclidean or cosine distance instead.

In our case, the Siamese loss is represented by the binary
cross entropy (BCE) between the target and the predictions:

BCE = −
1
n

(
n∑
i=1

yi log pi + (1 − yi) log (1 − pi)

)
, (1)

where yi are the target values, pi are the predicted probabili-
ties, n is the number of objects in the data.
For the Triplet loss, we use the standard formula with the

Euclidean distance:

L = max (||ai − pi||2 − ||ai − ni||2 + margin, 0) , (2)

where ai, pi, and ni are embeddings of anchor, positive,
and negative well-intervals, respectively. Following the
research [2], we set the margin to 1.75 for all datasets.

As encoders for these architectures, we propose to
use different variants of Transformers: our Reguformer
with different regularization strategies and baselines such
as the basic Transformer, Informer, Performer, DropDim,
and LRformer. Details on the architectures are provided
below.
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FIGURE 3. Triplet architecture with the desired distribution of
embeddings in the embedding space.

a: TRANSFORMER
It is a neural network architecture introduced for NLP
tasks [3]. Transformers outperform alternative recurrent and
convolution models in many problems. Besides recursion
avoidance that speeds up calculations via parallel compu-
tation during both training and inference steps, the authors
introduced a self-attention mechanism in the encoder part,
which we utilize as a backbone for the classification task.

The model’s input X is a sequence of length L described
by the d0 features (X ∈ RL×d0 ). Transformer processes it
via N layers: the input to the first layer is X . Inputs to the
following layers are outputs of respective previous layers. The
input sequence length is L for all layers. Each layer consists
of an attention block and a position-wise feed-forward block
(or feed-forward network, FFN) and is followed by layer
normalization with a skip connection.

The attention block is a Query-Key-Value (QKV) model
A(Q,K ,V ), which helps utilize the connections between
different points in a sequence:

A (Q,K ,V ) = softmax
(
QKT
√
d

)
V , (3)

where Q,K ,V ∈ RL×d are the query, key, and value
matrices, respectively, and d is the embeddings’ dimension.
In the encoder, Q = XWQ, K = XWK , V = XWV ,
where X is the output from the previous layer. Matrix
multiplication of Q and K followed by softmax gives the
attention matrix A. It consists of weights for V matrix
elements that share information between different words (or
log data from different well levels). Thus, the elements of the
attention matrix provide information about relations between
different parts of a sequence. Higher attention results from
closer correspondence between a key and a query, and, thus,

reflects closer correspondence between different elements
of a sequence. The division by

√
d mitigates the vanishing

gradient problem.We can rewrite the formula for the ith query.
According to [49], a kernel smoother in probability form
defines the ith query’s attention matrix [8]:

A (qi,K ,V ) =

∑
j

k
(
qi,kj

)∑
l k (qi,kl)

vj =

∑
j

p
(
kj|qi

)
, (4)

where kj is the jth column of the keys matrix K , k(qi,kj) =

exp
(

qikTj
√
d

)
is the asymmetric exponential kernel and

p
(
kj|qi

)
=

k(qi,kj)∑
l k(qi,kl )

.

However, it is beneficial to utilize not one attention func-
tion but several with different projection matrices to retrieve
different kinds of information from the data, so MultiHead
attention was introduced:

MA(Q,K ,V ) = concat(head1, . . . , headH)WO, (5)

where headi = A(XWQ
i ,X WK

i ,X WV
i ).

Processing the sequence as a whole avoids the problem of
forgetting past information, which is typical for RNNs.

The position-wise FFN is a fully-connected neural net-
work, which is applied to each element of the sequence
separately and uniformly:

FFN(x) = max(0, x W1 + b1)W2 + b2. (6)

b: INFORMER
The main novelty of the Informer [8] encoder part is the
sparse self-attention mechanism ProbSparse. The idea is to
use only the queries (4) for which p

(
kj|qi

)
is far from zero.

Again, let Q, K and V be the query, key and value matrices
respectively, qi, ki, vi be the ith rows of these matrices. The
authors propose to use the following sparsity measure to
select top queries Q̄:

M (qi,K ) = log
∑
j

k(qi,kj) −
1
L

∑
j

k(qi,kj). (7)

Using query sparsity measurement (7), we can get top
queries and define self-attention similar to the original work:
ProbSparse self-attention is

A(Q,K ,V ) = softmax
(
Q̄K⊤

√
d

)
V , (8)

where Q̄ is created only from top queries. So, for a single
head, we obtain a sparse attention matrix. As we have
multiple heads, we avoid severe loss of information via
ProbSparse self-attention.
The following equation determines the number of selected

rows in the query matrix:

⊓ = c lnL, (9)

where L is a sequence length and c is a constant sampling
factor, which is a hyperparameter.
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TABLE 1. The eight Reguformer modifications. The last column refers to the attention block formula; each regularization requires its own C for the
general formula provided in the column heading. · and ·̃ denotes top and random elements selection, respectively. The regularization implements both for
train and inference.

Generally, computation complexity for each query-key
lookup decreases from quadraticO(L2) toO(L lnL), the layer
memory usage from O(L2) to O(L lnL).

c: REGULARIZED TRANSFORMER (REGUFORMER)
Wepropose a generalized class ofmodels, Regularized Trans-
formers, consisting of eight models. All these models inherit
the attentionmechanism from the Transformer but implement
it more efficiently in terms of memory consumption and
computational cost. Our variants of Reguformers have the
computational and memory complexity equal to either
O(L lnL) in cases of top queries/keys selection or O(ln2 L)
if we choose queries/keys randomly. Table 1 contains
aggregated information about each Reguformermodification.
To select queries or/and keys, we, first, calculate the number
of elements that should be selected via the formula (9), and,
second, use random sampling in random selection case or/and
the sparsity measure (7) to select ⊓ objects.
The Reguformer architecture allows the adoption of the

dropout of the attention matrix and makes a wide class of
models with the simplest regularization as a random choice of
queries or/and keys and with a more complicated technique
as the sparsity measure. The Informer model is one of the
representatives of the Reguformers class. It is worth noting
that we consider the regularization of the query and key
matrix and omit the regularization of the value matrix, as this
procedure is equivalent to implementing dropout ideas to at
least one of the other matrices.

The introduction of the sparsification mechanism and
adoption of dropout ideas not only decreases the computa-
tional and memory complexity but also increases the models’
robustness. The dropout technique [50] is proposed initially
to cope with neural networks’ overfitting problem and
handling missing values. Implementing these ideas allows for
the wide usage of Reguformers in the industry.

3) ADDITIONAL BASELINES
a: PERFORMER
The Performer architecture [9] utilizes the Fast Attention Via
positive Orthogonal Random features (FAVOR+)mechanism
that provably achieves linear time and space complexity in
L of full-rank attention matrix estimation at any precision.

Moreover, it does not rely on prior assumptions about matrix
structure.
FAVOR+ mechanism can be summarised in the following

way. Attention matrix A may be considered a kernel matrix
with a kernel k(x, y) = exp(x⊤y). This allows it to be
estimated by an unbiased approximation with a random
feature map φtrig:

A(Q,K ,V ) = D̂−1(Q′((K ′)TV )) (10)

D̂ = diag(Q′((K ′)T 1L) (11)

Q′,K ′
∈ RL×r have rows φ(qTi )

T and φ(kTi )
T respectively.

Random feature maps have to be positive, regularized, and
orthogonal to achieve a stable estimation of the attention
matrix with low variance. This approach results in expo-
nentially small bounds on large deviation probabilities and
achieves O(Ld2 log d) complexity.
Multiple existing implementations of Performer can be

found online.4,5,6 Nevertheless, the theory presented in the
paper [9] may not only be applied to increase the performance
of Transformers but also to expand the Transformer archi-
tecture class and even go beyond their scope. For example,
random feature methods can be used for a broader family of
kernels [51], [52].

b: DropDim
To increase the vanilla Transformer’s robustness, the authors
of [10] integrate the dropout idea into the self-attention
mechanism. DropDim eliminates embedding dimensions
with a certain probability. The authors present two methods
for their elimination: random and span. In random mode,
embedding dimensions are dropped independently, while
span mode includes randomly choosing the starting dimen-
sion and eliminating the predefined number of elements
after this starting point. Moreover, the authors show a
significant increase in quality when combined with a label
smoothing technique [53]. In our experiments, we optimize
hyperparameters with (only for Siamese models as Triplet
loss does not require any labels) and without label smoothing
and optimize the DropDim mode as a hyperparameter.

4https://github.com/lucidrains/performer-pytorch
5https://github.com/xl402/performer
6https://github.com/nawnoes/pytorch-performer
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c: LRformer
The vanilla Transformers tend to be overconfident in their
predictions. The authors of [11] propose a regularization
method based on the Lipschitz bound. The key idea of their
modification is in the self-attention calculation: instead of the
classical formula presented in (3), they try to approximate it
in the way that it satisfies the bi-Lipschitz condition:

A (Q,K ,V )

= softmax

(
−α

||Q||
2
row − 2QTK + ||K ||

2
col

T

||Q||F ||XT ||(−∞,2)

)
V , (12)

where || · ||F and || · ||(−∞,2) denote the Frobenius and
(−∞, 2)-norms, respectively.

4) ATTENTION ANALYSIS
To investigate sensitivity to inputs and identify the most
important inputs, we can consider the attention matrix A.
We evaluate the attention matrix interpretability using the
Transformer model in the following ways:

• Calculate the correlation between the attention weights
and the models’ gradients. According to [54] and [55],
the attention weights seem to be uncorrelated with the
gradients. Moreover, as stated in [55], Transformer-
based models are resistant to removing random interval
parts, while it is more sensitive to deleting parts with
the smallest attention weights. However, in these papers,
the authors consider only simple architectures, while the
interpretability of the larger models based on attention
remains an open question.

• Eliminate parts of intervals and examine the models’
quality.
If excluding the most important (according to some
criterion) measurements reduces the quality more
significantly than a random drop, we can say that
the criterion reasonably identifies the most important
features. We consider the following criteria for the i-th
element of a sequence:
1) The smallest attention weights q⊤

i ki. To select
top-k queries, we consider the diagonal elements
of the attention matrix: we find an index of the k
smallest elements and drop the row with this index
in the original well-interval. We take the sum of
attention matrices over all layers and all heads.

2) The highest gradient with respect to the inputs.
We select the top-k model’s gradients, find
their indices, and delete elements in the original
well-interval according to these indices.

We use zeros and values from the normal distribution
as masks for the masking part when we fill gaps with
random values instead of dropping them completely.

IV. EXPERIMENTS AND RESULTS
Our experimental evaluation consists of several parts that
sequentially answer the following questions:

• Does the usage of models based on transformer architec-
tures improve the similarity models compared to RNNs
used previously?

• Does the introduction of the regularization technique
improve the models’ similarity estimation?

• How efficient and robust is the proposed approach? In
what way is it better than recurrent architectures?

• Can embeddings produced by our Reguformers
be reused to solve problems other than similarity
estimation?

• Does attention add to the interpretability of the model by
providing a new way to conduct sensitivity analysis?

In all our experiments, we use the following notation for
the regularization techniques of the Reguformer:

reg_typeQQ_reg_typeKK , (13)

where the first part, reg_typeQQ, and the second part,
reg_typeKK , stands for the regularization type of query
and keys matrices, respectively. The two variants for both
reg_typeQ and reg_typeK are ‘‘top’’ and ‘‘rand’’, which refers
to the top rows selection via sparsity measurement proposed
in [8] or to random selection, respectively. If the modification
includes only query or key matrix regularization, the other
part in the regularization notation is skipped.

The code for all our experiments is available at
roguLINA/Reguformer.7

A. MODELS QUALITY
This Section compares the quality of our models for the
similarity problem. Following the research [2], for both
Siamese and Triplet models, we calculate the Euclidean
and cosine distances (Eucl.dist. and Cos.dist.) to obtain the
probabilities. In the Siamese case, we also use the three
fully-connected layers (3 FC). More details of the models’
training can be found in Appendix B.

We consider the area under the receiver operating char-
acteristic (ROC AUC), the area under the precision-recall
curve (PR AUC), and the F1-score as the most representative
metrics and use them for models’ evaluation. The first
one was used during the hyperparameter optimization with
Optuna.8 The detailed description of the hyperparameter
optimization procedure is presented in Appendix B.

Figure 4 demonstrates the models’ quality during the
hyperparameter search for the well-linking task. Each point
represents a model with a selected hyperparameter set. The
variants of our Reguformer show scores comparable to the
classical Transformer and to another efficient Transformer
modification, the Performer. Moreover, some of the regular-
ization techniques outperform all baselines.

We evaluate the models’ quality via cross-validation with
five splits. For each split, we train our model with 25000 pairs
in the case of Siamese-based approach or triplets in the case

7https://github.com/roguLINA/Reguformer
8https://github.com/optuna/optuna
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FIGURE 4. ROC AUC scores of Regularized transformers (Reguformers)
and the baselines: Transformer, Performer, DropDim, and LRformer in
Siamese and triplet architectures during hyperparameter optimization for
well-linking problem. Each point represents the model’s quality with a
selected hyperparameter set. For DropDim, we also implemented label
smoothing for the Siamese loss function. However, we omit this boxplot
due to its poorer quality than the clean DropDim. We present the
DropDim with label smoothing scores in the tables in Appendix C. The
scores for triplet DropDim are close to 0.5, illustrated by the horizontal
line of points in the boxplot. The order of models’ boxplots from left to
right is the same as in the legend from top to bottom.

of Triplet-based approach. For testing, we use 5000 pairs or
triplets from other wells.

The detailed tables with the comparison of the ROC AUC
scores for each of the four datasets are presented in
Appendix C.

Table 2 shows the aggregated information about the results:
the ROC AUC scores of all models for each dataset. It shows
that the highest scores for most of the datasets belong
to Reguformer with top queries and keys. Moreover, the
Transformer shows comparable quality to our Reguformer.
Additionally, the results demonstrate no advantage of the Top
Queries approach from the Informer model, despite higher
metrics on the well and crimes datasets. The results can be
justified considering the nature of the data. Both the wells
and crimes datasets initially contain a significant number of
missing values and may consist of the noised data due to
their specificity. Moreover, the Top Queries Top Keys applies
stronger regularization as it utilizes two matrices, key and
query, which is excessive for these data. On the other hand,
the advantage of the Top Queries approach in these cases is
not as significant as the benefit seen with the Top Queries Top
Keysmethodwhen applied to the weather and stocks datasets.

In the following Sections, we examine Reguformers in
more detail and compare them with the Informer and the
classical Transformer model. The other models, such as
Performer, DropDim, and LRformer, have different ideas

FIGURE 5. The robustness of Reguformer with random keys (randK),
Reguformer with random queries and keys (randQ_randK), Reguformer
with top keys (topK), Reguformer with top queries (topQ) – the informer’s
analog, Reguformer with top queries and keys (topQ_topK), Reguformer
with top queries and random keys (topQ_randK), and the classical
transformer model. For each model, the initial ROC AUC scores are
presented (Init.) and ROC AUC during the increase of eliminated random
parts of well-intervals with white noise (rand -> rand).

behind them, and they were used as the baselines in the
similarity tasks.

B. ROBUSTNESS
One explanation for the obtained results for well-linking
similarity estimation is that Reguformers are more robust to
errors in data because they use sparse attention that utilizes
only a part of the data. As it is crucial to the oil&gas industry –
an area characterized by many missing values and noise in
the data, we conduct the experiment by replacing some data
elements with white noise and zeros to prove the statement
about Reguformers’ robustness.

To analyze the models’ robustness, we generate 5000 well-
intervals and study the dependence of the ROC AUC scores
on the percentage of changed data for the models achieving
top results on well-linking tasks, namely, Reguformer with
random keys (randK), Reguformer with random queries and
keys (randQ_randK), Reguformer with top keys (topK),
Reguformer with top queries (topQ) – the Informer’s
analog, Reguformer with top queries and keys (topQ_topK),
Reguformer with top queries and random keys (topQ_randK),
and the classical Transformer. Figure 5 demonstrates that
most of our Reguformers’ quality decreases slower than the
Transformer’s. Transformer outperforms only Reguformer
with random keys and only when the percentage of noised
elements is less than 45%. However, even if most parts
of the intervals are noised, the performance of all models
remains acceptable. Moreover, the Reguformer modification
with top keys (topK) is more robust than the Informer model
as it illustrates better quality along the whole percentages of
changed intervals.
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TABLE 2. Comparison of the ROC AUC scores of the best models for all datasets. TOP-1 values for each dataset are highlighted with bold font, and TOP-2
values are underlined.

FIGURE 6. Calculated distances between intervals from one well. The two
heatmaps refer to the two separate wells: well number 181 (left) and well
number 180 (right).

FIGURE 7. The visualization of the cosine distance between embeddings
from two different wells.

These results are also confirmed by the same experiment
with the replacement with zeros and testing these imitations
of missing and noisy data on other datasets in Appendix D.

Considering the oil&gas application, another explanation
for the well-linking task results comes from the data’s
uniform structure, with only one or two rock types in
the interval. Thus, we do not need many points to make
conclusions. Instead, the model should be robust to errors
and missing values. To prove this, we visualize the cosine
distance between well-intervals belonging to one well and
well-intervals from two different wells. Figure 6 shows that
parts can be easily distinguished. These changes indicate
different rock types, and each rock type’s data is uniform.

The same effect is illustrated in Figure 7 for cross-distances
for intervals from different wells. This type of heatmap can
be used to compare the rock types of two wells and identify
similarities between parts of the wells.

TABLE 3. Comparison of the embeddings’ clustering quality. TOP-1 values
are highlighted with bold font, and TOP-2 best values are underlined. The
upper part of the table contains reference results from [2].

C. EMBEDDINGS QUALITY
In this Section, we assess the quality of the well-interval
embeddings. The high quality of well-intervals’ embeddings
is crucial for the oil&gas industry as good well-interval
representations will allow to solve downstream tasks.

After training the models, we obtain 5000 embeddings
and cluster them with Agglomerative clustering. To get the
embeddings, we take the output of a Transformer-based
encoder, flatten it, and aggregate it with a linear layer. The
obtained clustering is compared to ‘‘true’’ clustering with
cluster labels being well names. There are 28 of them in
total. All models’ Adjusted Rand Index (ARI) scores are
presented in Table 3. Judging by the ARI, the closest score
to the classical Transformer model is demonstrated by the
Reguformer with random keys (randK). However, all other
regularization techniques also show a high quality of their
embeddings. In this clustering experiment, Triplet models
demonstrate better results than the Siamese due to the logic
behind the Triplet loss function to place similar objects in the
representation space closer than dissimilar ones. Further in
this Section, we visualize the embeddings of different Triplet
models.

We also try to solve a multiclass classification problem
with obtained embeddings. Class labels here are labels for
particular wells.

The procedure for training a downstream classifier for
embeddings is the following. We generate data intervals
from the original data series (wells), which are subsequently
transformed and classified. In our case, 5000 well-intervals
are generated.
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FIGURE 8. Visualization of t-SNE representation for Well-intervals
embeddings. Each point corresponds to a single well-interval. Each well
has its own color. The LSTM model correctly and precisely distinguishes
6 − 8 wells, transformer – 7 − 8 wells, its efficient modification Informer –
8 − 9 wells, and our Reguformer with random queries and keys –
10 − 12 wells.

The resulting embeddings are used as inputs to common
machine learning models (downstream classifiers):

1) XGBoost gradient boosting classifier with default
hyperparameters;

2) Logistic regression equivalent to a neural network with
one linear layer;

3) Neural network with three linear layers connected
by the ReLU activation function. The dimension of
the first layer equals the dimension of embedding,
the dimension of the second layer equals 64, and the
dimension of the third layer equals 128.

Since our tasks involve classification, we use the following
metrics: ROC AUC, PR AUC, and F1-score. We present
the comparison in Table 4. As we see from the table, the
quality of the models is high. This fact is true even though
the classification part is simple. Also, observing all metrics,
we can conclude that the Transformer’s embeddings are
classified quite well, especially given that there are 28 classes
in total with the best values provided by the Siamese Regu-
former with top queries and random keys, top queries, and
random queries. However, all other regularization techniques
demonstrate comparable results.

We can also compare the well-intervals’ representations
visualization. We compress 5000 embeddings obtained via
the Triplet models with t-SNE [56] to get two coordinates for
each well-interval and plot them. We consider Reguformer
with random queries and keys (randQ_randK), which shows
the most promising results in terms of the well-linking
problem, embeddings quality, and the model’s robustness,
and compare its embeddings with the Triplet Transformer,
the LSTM from [2], and the Reguformer with top queries
(topQ), which is equivalent to Informer. In Figure 8, we can
distinguish the precise areas dedicated to each well for our
Reguformers. This is not the case for LSTM and the classical
Transformer. Moreover, the visualization of some wells is

FIGURE 9. PR AUC score during the increase of the percentage of
eliminated interval’s parts for different criteria for elimination. A faster
decrease means that we better identify important measurements. The
notation refers to <the criterion for elements elimination> → <the values
that substitute the original ones>.

better if the Reguformer with random queries and keys
(randQ_randK) is used.

D. ATTENTION ANALYSIS
This Section aims to answer the question about the inter-
pretability of the attention scores and their relation to the
model’s gradients. Thus we conduct the sensitivity analysis of
Transformers using well logs. We look at the attention matrix
for the pretrained Transformers with the sensitivity analysis
in mind. We conduct two experiments:

1) Estimation of correlation between Transformer atten-
tions and models’ gradients;

2) For the second experiment, we repeatedly replace a part
of an interval with the lowest attention or a feature
with the biggest gradient with zeros or numbers from
the random normal distribution and calculate the initial
and the obtained model’s accuracy. Each sequence
element’s attention is the corresponding qTi ki averaged
over all layers and heads.

The idea is the same as the authors of [57] proposed: the
lower the attention scores, the higher the uncertainty, and
consequently, the higher the importance of the part of the
interval is.

We generate 5000 pairs of intervals, obtain gradients and
attentionweights, and calculate the correlation between them.
We also examine the dependence of Triplet Transformer
accuracy on the percentage of changed elements.

The correlation value is corr = 0.02± 0.08. Thus, there is
no direct relation between gradients and attention values.

Although the correlation is not high enough, Figure 9
demonstrates that masking of intervals with small attention
weights strongly influences the models’ quality, mainly when
wemask themwith the elements from the normal distribution.
We also note that Attention-based masking works differently;
it is most successful when we replace the given values
with random ones. The obtained results prove the statement
that ‘‘Attention is not not Explanation’’ [58]. Thus, we get
additional evidence that our model is more robust to noise
than others.
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TABLE 4. Mean values of quality metrics on multiclass classification task of well-intervals’ embeddings, TOP-1 values are highlighted with bold font and
TOP-2 best values are underlined.

E. INFERENCE TIME
We compare the Transformer’s modifications regarding GPU
inference time and the ROC AUC score. For this experiment,
we used Nvidia Titan RTX GPU and oil wells data.
We consider a batch of 64 well-intervals, and we measure

the GPU inference time on 300 iterations, with 20 warmup
iterations. Figure 10 shows that changing the Informer’s
regularization strategy with top queries (topQ) to the one
with random queries (randQ) or, particularly, random queries
and keys (randQ_randK) not only reduces the inference time
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FIGURE 10. The dependence of the ROC AUC metric on the GPU inference
time of Siamese models. The Informer’s regularization strategy with top
queries is highlighted with the star marker, the vanilla transformer – the
rhombus.

FIGURE 11. The dependence of ROC AUC on the GPU inference time of
Triplet models. The Informer’s regularization strategy with top queries is
highlighted with the star marker, the vanilla transformer – the rhombus.

but also significantly enhances the model’s quality. Almost
all other regularizations improve the models’ performance
with similar inference times, except for Reguformer with
top queries and keys (topQ_topK), which has a comparable
ROCAUC score and inference time to the Informer. Figure 11
demonstrates a similar effect: regularizations with random
queries (randQ) or random queries and keys (randQ_randK)
accelerate the model’s inference with a slight decrease in
the ROC AUC score for the latter strategy. Other models’
inference times are comparable to the Informer’s, while
the quality is significantly higher. The performance of
Reguformers with top queries and keys (topQ_topK) and top
keys (topK) are similar to the Informer’s. In general, the
ROC AUC score of all Reguformers is high.

V. CONCLUSION AND DISCUSSION
We have successfully applied Transformer-based architec-
tures to oil&gas logging data collected during drilling. Our
Reguformer models can accurately solve a similarity problem
between intervals of oil wells. These models are better in
terms of quality and efficiency, can solve diverse downstream
tasks, and are more interpretable and robust than previously
used.

The experimental results show an increase in quality: the
ROC AUC score of our Reguformer equals 0.97, which
outperforms the classical Transformer 0.967 and is close

to the Informer 0.978, while previous models only reach
0.934. We note that such improvement takes place for several
variations of the Reguformer.

The analogous experiments on three additional datasets
from different domains confirm our statement about
Reguformers’ high quality and robustness.

Judging by the embeddings in the clustering experiment,
our Reguformers, both in their Siamese and Triplet variations,
provide meaningful well-interval representations in terms of
geological properties. Our best ARI score is equal to 0.969 for
the random keys regularization strategy, which surpasses
Informer with the ARI score equal to 0.933. It is closer to
the perfect score of 1 and, again, higher than the previously
obtained value of 0.569. The ARI score for the original
Transformer is not significantly higher, being 0.981.

Our conclusions about strong embeddings are also sup-
ported by the experiments with the embeddings’ classifica-
tion on wells by a simple machine learning algorithm on
top of embeddings. This experiment demonstrates the higher
quality of embeddings from Reguformers than the ones from
the vanilla Transformer. Moreover, we show that attention
maps in our models provide interpretability. For our model,
lower attention values correspond to more important parts
of an interval: a model’s quality decreases as the percentage
of eliminated parts of intervals with a low attention score
increases. Furthermore, we show that the inference time
decreases for the best regularization strategies mentioned
above: random queries and random queries and keys. Both
these techniques allow to improve the models’ performance
and even to increase the model’s quality in the case of the
Reguformer with random queries and keys, especially in the
Siamese configuration. However, Reguformer with random
keys can significantly improve the model’s performance
without increasing the inference time.

APPENDIX A
DATA PREPROCESSING
A. WELL LOGS
The wells data preprocessing strategy resembles that of [2]
and is the following:

1) Eliminate intervals with negative or zero-equal resistiv-
ity and cavernous intervals with the difference between
calliper and bit size is greater than 0.35.

2) Fill missing values via forward and backward fill.
3) Convert all electrical resistivity data to log-normal

scale.
4) Normalize gamma-ray and neutron log datawithin each

well and formation using the standard scaler.
5) Normalize other features by subtracting the mean and

dividing by unit variance.

B. CRIMES
To cope with missing values in the columns with latitude
and longitude, we change their original −1 values to the
most popular latitude and longitude, correspondingly. Then,
we apply scaling to these columns: we subtract the minimum
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TABLE 5. The hyperparameters search space for all considered models:
Reguformers (Reguf), Transformer (Tr), Performer (Perf), DropDim (DD),
DropDim with label smoothing (DD+ls), LRformer (LRf). For each
regularization type in Reguformer, hyperparameter optimization was
conducted separately with the same hyperparameter search space.
We use curly brackets for denoting sets, python notation for ranges: start
value, excluded stop value and step, and [minimum, maximum] notation
for float features optimization in Optuna. Default values, from which
Optuna started the optimization process, and the corresponding models
for these hyperparameters are in bold.

TABLE 6. Siamese / Triplet best hyperparameters of baselines. If one
value is present, the Siamese and triplet models share this
hyperparameter value. DropDim with label smoothing is implemented
only in the Siamese models. All the float values are rounded to two
decimal places.

value in training samples from each value in each column
and divide the result by the difference between maximum and
minimum values in training samples in each column.

C. WEATHER
We eliminate weather stations with less than 100 records
and normalize other columns by subtracting the mean of
the training samples from each value and dividing it by the
standard deviation of the training samples.

D. STOCKS
For each company, we fill missing values with forward
fill and normalize the data by subtracting the minimum

TABLE 7. Siamese / Triplet best hyperparameters of Reguformers. If one
value is present, the Siamese and triplet models share this
hyperparameter value. All the float values are rounded to two decimal
places.

value in training samples from each value in each of these
columns and dividing the result by the difference between the
maximum and minimum values in training samples in each
column.

APPENDIX B
TECHNICAL DETAILS
The code for all the experiments is available in the
repository roguLINA/Reguformer.9 The Reguform-
ers’ and Informer’s realizations are inspired by the
code zhouhaoyi/Informer2020.10 For these models,
we use the GELU activation function. The code for
Performer, DropDim, and LRformer is also available in
our repository. The Performer realization is based on
nawnoes/pytorch-performer.11

The architecture of the three fully connected layers for
Siamese models is the following: FC (input_size,
hidden_size) + ReLU + Dropout (0.25) +

9https://github.com/roguLINA/Reguformer
10https://github.com/zhouhaoyi/Informer2020
11https://github.com/nawnoes/pytorch-performer
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TABLE 8. Comparison of the ROC AUC scores of models for well-linking problem. TOP-1 values for each model are highlighted with bold font, and TOP-2
best values are underlined. The two best scores among all the models are noted with italics. The LSTM reference results are from [2]; all other results are
from our experiments.

FC (hidden_size, hidden_size) + ReLU +

Dropout (0.25) + FC (hidden_size, output_
size) + Sigmoid. We use hidden_size = 64.
For hyperparameters optimization for all models, we use

Optuna12 with 30 iterations, group 2-fold cross-validation
with 100 epochs and early stopping with patience 10 for each
split and each model. Batch size equals to 64.

We vary the most essential hyperparameters for allmodels:

• n_heads – the number of heads for multi-head
attention;

• dropout – the dropout probability.

In addition, we vary:

• for Reguformer, vanilla Transformer, DropDim,
LRformer:

◦ d_ff – the dimension of the fully-connected
layers;

◦ e_layers – the number of layers in the encoder.

• for Reguformer, vanilla Transformer, DropDim:

◦ d_model – the model embedding dimension.

• for Reguformer:

◦ factor – the ProbSparse attention factor.

• for Performer:

◦ nb_random_features – the number of random
features.

• for DropDim:

◦ p – the probability of dropping the embeddings’
dimensions;

◦ drop_dim_type – the structured dropout
method;

◦ alpha – the pre-defined value determining the
maximum length of the consecutive drop during the
‘‘span’’ method.

• for DropDim with label smoothing:

◦ label_smoothing – the label smoothing factor.

12https://github.com/optuna/optuna

• for LRformer:

◦ alpha – the scaler factor of the regularization
scalar function.

The default hyperparameters and hyperparameters’ search
space for each model are presented in Table 5.

The best hyperparameters for all models are presented
in Tables 6 and 7. Zeros for alpha DropDim in Triplet
configurations in Table 6 means that DropDim decreases the
models’ quality; they perform better without DropDim.

All these models with the best hyperparameters were tested
via group 5-fold cross-validation. It can be seen even from
Figure 4 with the hyperparameter optimization process that
our Reformers outperform all the baselines.

APPENDIX C
SIMILARITY MODELS QUALITY: DIFFERENT DATASETS
In this Section, we provide the results for the similarity
problem statements in different domains, namely, oil&gas,
crime incidents, weather, and the stock market. For all
datasets, we provide ROC AUC scores as they are the most
representative.

According to the ROC AUC values presented in Table 8
for the models with the best hyperparameters, the usage
of Transformer-based architectures improves the previous
results obtained with RNN. Moreover, the scores of Regu-
formers are significantly higher than the classical Trans-
former model’s: the best results belong to the Siamese with
3 FC configuration with the mean ROC AUC scores 0.977−

0.978 achieved by Reguformer with random queries and
keys and Reguformer with top queries, respectively, while
the Tasnformer’s best result is 0.967. This experiment also
shows that there is no need to use only the top queries as the
Informer model; random queries or keys are enough to reach
the comparable quality. In addition, the similar results with
ROC AUC equal to 0.976 belong to the Reguformers with
random queries, random keys, and top queries and random
keys.

Tables 9 and 11 show the best performance of Siamese
models with 3 FC. TOP-1 scores for crimes data belong
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TABLE 9. Comparison of the ROC AUC scores of models for crimes’ districts similarity problem. TOP-1 values for each model are highlighted with bold
font, and TOP-2 best values are underlined. The two best scores among all the models are noted with italics.

TABLE 10. Comparison of the ROC AUC scores of models for weather stations similarity problem. TOP-1 values for each model are highlighted with bold
font, and TOP-2 best values are underlined. The two best scores among all the models are noted with italics.

TABLE 11. Comparison of the ROC AUC scores of models for stocks market similarity problem. TOP-1 values for each model are highlighted with bold
font, and TOP-2 best values are underlined. The two best scores among all the models are noted with italics.

to Reguformers with top queries (the Informer’s analog),
random queries, random keys, and random queries and top
keys, while Reguformer with top queries and random keys
and Performer achieve TOP-2 metrics. Reguformers with top
keys and random keys outperform all other models on the
stock market data. According to Table 10, combining the top
queries with top key or random keymatrix regularization with
Triplet loss with Euclidean distance improves the original
Transformer’s quality. All these results prove that, first, the
Reguformer performs better on time series similarity tasks,
and second, there is no need to select top queries as the
other and simpler techniques can outperform the vanilla

Transformer. In addition, the Reguformer with random
queries and keys demonstrates the comparable quality to the
best models for all four considered datasets.

However, there are no strict recommendations about loss
function as the most successful models for wells, crimes, and
stocks data are Siamese with 3 FC, while for weather – Triplet
with Euclidean distance.

APPENDIX D
ROBUSTNESS ON OTHER DATASETS
In this Section, we consider themost successfulmodifications
of the Reguformers and compare their robustness to the
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FIGURE 12. The comparison of the robustness of the most promising
Reguformers’ modifications and the classical Transformer model on the
wells data. For each model, the initial ROC AUC scores are presented
(Init.) and ROC AUC during the increase of eliminated random parts of
wells data intervals with zeros (rand -> 0) and white noise (rand -> rand).

FIGURE 13. The comparison of the robustness of the most promising
Reguformers’ modifications and the classical transformer model on the
crimes data. For each model, the initial ROC AUC scores are presented
(Init.) and ROC AUC during the increase of eliminated random parts of
crimes data intervals with zeros (rand -> 0) and white noise (rand ->
rand).

Transformer’s and the Informer’s adaptations.We test the best
models in the correspondence with the datasets from Table 2.
We provide the results for the simulation of noisy (rand ->
rand) and missing values (rand -> 0).

Figures 12, 13, 14, and 15 show that changing the
original values to zeros harms the models’ quality less
than substitution with white noise. For most datasets and
elimination techniques, the Transformer demonstrates the
worst results, and for the Stock market dataset, its quality
reaches even approximately 0.5 (Figure 15). Additionally,
for most datasets, Reguformer with top queries and random
keys (topQ_randK) and Reguformer with random queries and

FIGURE 14. The comparison of the robustness of the most promising
Reguformers’ modifications and the classical transformer model on the
weather data. For each model, the initial PR AUC scores are presented
(Init.) and PR AUC during the increase of eliminated random parts of
weather data intervals with zeros (rand -> 0) and white noise (rand ->
rand).

FIGURE 15. The comparison of the robustness of the most promising
Reguformers’ modifications and the classical transformer model on the
stocks data. For each model, the initial PR AUC scores are presented (Init.)
and PR AUC during the increase of eliminated random parts of stocks
data intervals with zeros (rand -> 0) and white noise (rand -> rand).

keys (randQ_randK) show top results and outperform both
the classical Transformer and Informer (Reguformer with top
queries, topQ).

The results obtained on all datasets confirm the Reguform-
ers’ robustness in real-world applications. The experiment
setup is similar to industrial cases, dealing with missing or
noisy data. Our models successfully cope with the similarity
problem even if the percentage of harmed values is high.
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