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ABSTRACT Predicting cutterhead torque is essential for optimizing TBM construction strategies and
minimizing jamming risks. This study presents a novel hybrid model (IEWOA-TSVD-ITELM), developed
using data from 7635 tunneling cycles from the Yinsong Project, to enhance cutterhead torque prediction
accuracy. The EWOA enhances its global search capability by introducing new position updating and
adaptive adjustment strategies (IEWOA). In addition, by leveraging the Softsign function for the nonlinear
transformation of the expected output matrix of the TELM, a third hidden layer is added to enhance
the feature extraction capabilities (ITELM), whereas truncated singular value decomposition (TSVD) is
employed to reduce the noise in the output matrix of the third hidden layer of the ITELM (TSVD-ITELM).
Furthermore, the IEWOA optimized the number of neurons and randomly generated weights and biases
in the TSVD-ITELM. This study comprehensively evaluates and compares six optimization algorithms
using 25 standard test functions. Additionally, the IEWOA-TSVD-ITELM is compared with eight classical
machine learning models. This study examines the impact of different timing lengths of the rising phase
and rock mass grades on model performance. The results demonstrate the outstanding performance of the
IEWOA as an optimization algorithm. The IEWOA-TSVD-ITELM model achieves an R2 value of 0.644 on
the test set, with an MAE of 326.623 and an RMSE of 435.821, outperforming the other algorithms.
Increasing the timing length from 30 to 60 s reduces theMAE and RMSE by 11.82% and 9.56%, respectively,
but the gains diminish when the timing length increases from 60 to 90 s.

INDEX TERMS TBM cutterhead torque prediction, whale optimization algorithm, truncated singular value
decomposition, two-hidden-layer extreme learning machine extreme, hybrid model.

I. INTRODUCTION
Full-face tunnel boring machines (TBMs) are extensively
employed in the construction of hard-rock tunnels, subways,
hydropower projects, and highways because of their high
excavation efficiency, notable economic benefits, and mini-
mal surface disturbance [1], [2]. As one of the most advanced
mechanical devices for long-distance tunnel construction,
TBMs integrate mechanical design and manufacturing,
hydraulics, electronics, sensing, information, and automation
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technologies [3], [4]. They can simultaneously perform
multiple tasks in tunnel excavation, including rock fragmen-
tation, muck transport, and segment installation, significantly
reducing the surface environmental impact compared with
traditional drilling and blasting methods. However, the rock
fragmentation process in TBMs is often constrained by
complex and challenging geological environments. Rock
fragmentation is achieved through the synergistic rotation
of the cutterhead and cutters, where the face pressure
applied by the cutterhead plays a crucial role [5]. The
torque of the cutterhead, which serves as the driving force
for the rotation of the cutters, is a pivotal metric that
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reflects the interaction intensity between the TBM and the
geological conditions [3]. Their dynamic variations and high-
load characteristics provide direct insights into geological
forecasting and cutter wear. In addition, the cutterhead torque
is a critical reference for operators to adjust the penetration
rate and cutterhead rotation speed. Therefore, predicting
the cutterhead torque is essential not only for the adaptive
adjustment of tunneling strategies but also for mitigating the
risk of jamming and related issues.

To make the significance of this study more accessible,
imagine driving a car through a tunnel where you constantly
adjust the steering and speed based on the road conditions.
In TBM operations, predicting the cutterhead torque is akin
to forecasting these adjustments ahead of time, allowing
for smoother and safer tunneling operations. This prediction
helps engineers adapt their strategies dynamically, much
like a driver would adjust driving based on upcoming road
conditions, thereby optimizing efficiency and minimizing
risks.

Models for predicting the cutterhead torque are broadly
classified into theoretical models, empirical models, numer-
ical simulations, and intelligent algorithms. Within the
domain of theoretical models, linear cutting machines are
predominantly used to examine the torque produced by
cutter heads, particularly the torque generated by indi-
vidual cutters [6]. Various factors have been established
that exhibit a strong correlation with cutterhead torque,
including cutterhead diameter, number of cutters, geological
parameters, cutterhead opening ratio, cutter spacing, friction
coefficient, and penetration [7], [8]. Notably, the geological
conditions and control parameters (cutterhead rotation speed
and penetration rate) serve as the principal determinants of
cutterhead torque [9]. The Norwegian University of Science
and Technology has developed a comprehensive hard rock
TBM database to create an empirical prediction model that
incorporates parameters such as the cutterhead torque [10].
Both the univariate and multivariate regression methods
have been extensively applied to empirical models [11].
Given known variables, such as the cutterhead diameter,
number of cutters, and geological parameters, theoretical and
empirical models facilitate rapid preliminary estimates of the
cutterhead torque before the initiation of TBM tunneling.
However, owing to the challenges associated with the real-
time acquisition of geological parameters, theoretical and
empirical models often fail to meet practical construction
requirements. Numerical simulations, including the discrete
element method [12], [13] and the finite element method [14],
have been employed to assess the cutterhead torque by
simulating the intricate interaction mechanisms between the
TBM cutterhead and rock, thereby playing a critical role
in optimizing the TBM cutterhead design and mitigating
jamming risks.

With the application of internet of things technology,
TBM operational data are no longer limited to isolated
datasets, and real-time data transmission and acquisition

have become feasible. For example, in the Yin-Song project,
the sensor parameters reached 199. These datasets cover
complete tunneling cycles and downtime data under various
geological conditions. Owing to the heterogeneity of geo-
logical conditions and groundwater distribution, significant
fluctuations in the cutterhead torque have been observed
across different tunneling cycles of TBMs [15]. These
fluctuations reflect the high variance in the data, which
exacerbates the difficulty in predicting the cutterhead torque.
TBM tunneling cycles are typically segmented into rising
and stable phases. During the stable phase, the tunneling
parameters were dynamically adjusted based on the data
accumulated during the rising phase [16]. Given that the
rising phase generally extends beyond 4 min [17], it reduces
the construction efficiency of the TBM. To address this
challenge, there is an increasing focus on utilizing data from
the initial 30 s of the rising phase combined with intelligent
algorithms to swiftly predict the cutterhead torque of the
stable phase [18]. The mechanical, electrical, and hydraulic
characteristics of the TBM were incorporated as input
features into these predictivemodels [19]. This approach aims
to enhance predictive accuracy and operational efficiency by
rapidly adapting to evolving tunneling conditions.

The application of intelligent algorithms for predicting
cutterhead torque in TBMs is characterized by two predom-
inant research orientations. Models such as convolutional
neural networks [20], [21], long short-term memory (LSTM)
networks [18], and bidirectional LSTM (BLSTM) [4] are
primarily employed when continuous data from the rising
phase are used as the input. These models were selected
because of their ability to effectively capture complex
temporal dependencies in TBM operational data. However,
these methods have limitations. For example, convolutional
neural networks are computationally intensive and require
substantial processing power. LSTMs and BLSTMs can
experience issues, such as vanishing gradients, and generally
have slower training speeds. Moreover, all of these models
require large amounts of labeled data for effective training.

Conversely, when mean values derived from ramp-up data
are utilized as inputs, decision trees, support vector machines
(SVMs), and Gaussian processes [22], along with gradient
bosting decision trees [23], random forests [24], and deep
neural networks [25], are the preferred models. Utilizing
mean values as inputs not only simplifies the analysis process
but also reduces the demands on computational resources
and minimizes the impact of data noise. However, current
models have certain limitations, such as the inadequate
nonlinear fitting capabilities of decision trees and the
enhanced accuracy of SVM in datasets characterized by
small sample sizes and limited features. Studies have shown
that two hidden layer extreme learning machines (TELMs)
are suitable for predicting TBM tunneling parameters
(such as thrust), but their performance is limited by the
number of hidden layers and randomly generated weights
and biases [17]. Effective hyperparameter optimization can
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significantly enhance model performance by fine-tuning the
parameters that govern learning algorithms; however, existing
methods often fail to provide robust solutions. Therefore,
there is a pressing need for more advanced and efficient
optimization techniques to improve the predictive accuracy
and reliability of these models.

Recently, optimization techniques such as particle swarm
optimization (PSO) [26], grey wolf optimizer (GWO) [27],
butterfly optimization algorithm (BOA) [28], and whale
optimization algorithm (WOA) [29] have gained prominence
in research. The WOA is extensively utilized in path
optimization [30], engineering problem resolution [31], and
fault diagnosis [32] because of its rapid convergence and
strong global search capabilities. Certain scholars have
further enhanced the performance of the algorithm by
simplifying and refining the prey strategy, resulting in an
enhanced whale optimization algorithm (EWOA) [33] that
exhibits superior performance compared to other variants.
However, limitations persist in the position-update strategies
of the EWOA and adaptive searching, indicating substantial
scope for performance enhancement.

To improve the prediction accuracy of the cutterhead
torque, this study proposes a hybrid machine learning model
based on the TELM framework. The feature extraction capa-
bilities of the TELM were enhanced by initially employing
the Softsign function to execute a nonlinear transforma-
tion of the outputs from the second hidden layer. This
approach circumvents the establishment of rigid boundaries
and mitigates loss of pertinent information. The model
architecture was subsequently deepened by the addition of
a third hidden layer, with a variable number of neurons
employed to enhance the generalization capacity of the
model. To combat the risk of overfitting, truncated singular
value decomposition (TSVD) was implemented to retain the
singular values of the weight matrix of the third hidden layer
that contributed the most to the model, thereby reducing data
noise. To address the issue of poor parameter adaptability
owing to the intrinsic randomness in the generation ofweights
and biases in TELMs, the EWOA introduces new methods
for calculating convergence factors and dynamic weight
parameters, enhancing the adaptive search capabilities of the
algorithm. By iteratively updating the randomly generated
weights and biases in the ITELM, this approach reduces
training errors.

The remainder of this paper is organized as follows:
Section II introduces the extreme learning machine model,
whale optimization algorithm, and evaluation metrics.
Section III presents the proposed IEWOA-TSVD-ITELM.
Section IV describes engineering case data and feature
selection. Section V compares the performance of the
optimization algorithms and the predictive results of nine
machine learning models. Section VI discusses the impact of
the rising timing length and rock mass grades on the model
performance, as well as the data distribution before and after
weight optimization. Finally, section VII concludes the study
and presents the main findings.

II. METHODS
TBM construction data are continuously updated in real
time, allowing the quick prediction of cutterhead torque
under various geological conditions. Complex geological
conditions complicate torque prediction, necessitating a
robust and efficient modeling approach. Gaussian processes
offer excellent uncertainty quantification but face high
computational costs [34], limiting their real-time application
in TBMoperations. Physics-informed neural networks ensure
that predictions adhere to physical laws but require significant
computational resources [35], [36].

By contrast, the ELM, proposed by Huang et al., addresses
the time consumption issue in iterative backpropagation
training in neural networks [37], as shown in Figure 1. ELM
employs a single hidden-layer feedforward neural network
with randomly assigned fixed input weights and hidden-layer
biases. The ELM quickly adapts to new data, meets the real-
time demands of TBM operations, and provides a practical
and efficient solution for predicting the cutterhead torque
under complex geological conditions.

A. EXTREME LEARNING MACHINE
Given a dataset with N samples, there exists an input matrix
E = [e1, e2, . . . , eN ]T ∈ RN×n and an output matrix O =

[O1,O2, · · · ,ON ]T ∈ RN×m. Between them, where ej =[
ej1, ej2, . . . , ejn

]T
∈ Rn, Oj =

[
oj1, oj2, . . . , ojm

]T
∈ Rm.

The input feature dimension is n, and the output feature
dimension is m. The ELMmethod initially randomizes a bias
matrix B =

[
b1, b2, . . . , bq

]
∈ RN×L and a weight matrix

W =
[
W1,W2, . . . ,Wq

]
∈ Rn×L to connect the input layer

with the hidden layer, where L denotes the number of neurons
in the hidden layer, andWq =

[
Wq1,Wq2, . . . ,Wqn

]T
∈ Rn is

the weight vector connecting n input neurons to the q hidden
neurons.

The output matrix H can be calculated by Eq. (1).

H = h (EW + B) (1)

The output matrix O is calculated by Eq. (2).

HF= O (2)

where F = [F1,F2, . . . ,FL]T ∈ RL×m represents the output
weight matrix connecting the hidden and output layers.

The output weight matrix F is calculated using the least-
squares method, as shown in Eq. (3).

F = H+O (3)

The Moore–Penrose (MP) inverse matrix H is represented
asH+. When N is greater than L, ifHTH is nonsingular, then
H+

=
(
HTH

)−1HT, conversely, whenN is less than L,HHT

is nonsingular, and then H+
= HT

(
HHT)−1

.

B. TWO-HIDDEN-LAYER EXTREME LEARNING MACHINE
To further improve the nonlinear fitting ability of the ELM,
the TELM was proposed by Qu et al. in 2016 [38], as shown
in Figure 2. Compared to the ELM, the TELM has two hidden
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FIGURE 1. Structure of the ELM.

FIGURE 2. Structure of the TELM.

layers, that is, it has 2 L neurons. Given a data set containing
(ej, oj)(j = 1, 2, . . . ,N ) with N samples, after initializing
the weight matrix W1 and bias B1 of the first hidden layer,
W1 and B1 are spliced to construct an augmented matrix

WA1 =

[
B1
W1

]
. To meet the computational requirements, the

input matrix E and N column vectors, whose elements are all
one, are concatenated, that is, EA1 = [1 E]. The calculation
process for the output matrix HA1 of the first hidden layer is
expressed in Eq. (4).

HA1 = h (EA1WA1) (4)

The calculation process of the weight matrix F1 is shown
in Eq. (5), which is used to connect the second hidden layer
and the output layer.

F1 = H+

A1O (5)

The expected output H2 of the second hidden layer can be
calculated using Eq. (6).

H2 = OF+

1 (6)

To implement the calculation process between the first and
second hidden layers, the augmented matrices WA2 and HB
must be defined.WA2 was calculated from the weight matrix
W2 of the first and second hidden layers and the bias matrix

of the second hidden layer B2, that is WA2 =

[
B2
W2

]
. HB

is obtained by concatenating the output matrix of the first
hidden layer and N column vectors, whose elements are all 1;
that is, HB = [1 HA1]. Eq. (7) expresses the H2 calculation
process for the expected output matrix.

H2 = h (HA1W2 + B2) (7)

The augmented matrix WA2 can also be obtained by the
inverse calculation of Eq. (8), thereby avoiding the need to
randomly generate a new weight matrix W2 and bias matrix
B2.

WA2 = H+

Bh
−1 (H2) (8)

The generalized inverse matrix ofHB isH+

B , h
−1(x) which

represents h(x) the inverse activation function. Eq. (9) is the
calculation process of the second hidden layer output matrix
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HA2.

HA2 = h(HBWA2) (9)

Eq. (10) shows the calculation process for the weight
matrix F2 that connects the second hidden layer to the output
layer.

F2 = H+

A2O (10)

With H+

A2 representing the generalized inverse matrix of
HA2, the final output of the TELM can be expressed as f (x) =

HA2F2.

C. IMPROVED TWO-HIDDEN-LAYER EXTREME LEARNING
MACHINE
In the actual calculation process of the TELM, to avoid the
null value in the result of h−1(H2) in Eq. (10), when the
maximum value of H2 exceeds 1 or the minimum value
is lower than −1, it needs to be normalized to the range
of −0.9 to 0.9. HA2 performs the corresponding denormal-
ization to ensure the consistency of the numerical values
in the calculation process. Nonetheless, this normalization
and denormalization processes may inadvertently modify the
fundamental attributes of the data, thereby introducing errors
and potentially compromising model performance.

To avoid these effects, the Softsign function is used to
perform a nonlinear transformation on H2 such that the
numerical interval of H2 is within (−1, 1), as shown in Eq.
(11). Through its continuous and asymptotic characteristics,
the Softsign function can achieve adaptive compression of
data and map values to the (−1, 1) interval. This process not
only avoids the setting of hard boundaries and reduces the
risk of information loss but also preserves the relative size
and structure of the data. Furthermore, it helps alleviate the
sensitivity of the model to extreme values and improves its
generalization ability and numerical stability.

Softsign =
x

1 + |x|
(11)

The two hidden layers of the TELM have the same number
of neurons, and this structure is limited in capturing deeper
and more complex data features and relationships, partic-
ularly for highly nonlinear and multidimensional datasets.
Therefore, this study added a third hidden layer based on the
TELM to improve the ability of the model to extract features
and define the number of transformable neurons in the third
layer. After randomly initializing the weight matrix W3 and
bias B3 of the third hidden layer, the calculation process for
the third hidden layer output matrixHA3 is shown in Eq. (12).

HA3 = h(HA2W3 + B3) (12)

The weight matrix FA3, which connects the third hidden
layer to the output layer, is calculated using Eq. (13).

F3 = H+

A3O (13)

Based on the above improvements to the TELM, we abbre-
viate it as ITELM, as shown in Figure 3. The increased

FIGURE 3. Structure of the ITELM.

number of neurons helps the TELM show better general-
ization capabilities. However, this design may cause the
risk of overfitting and increase the instability of the model.
To balance these factors, this study uses the truncated
singular value decomposition (TSVD) method to process
HA3, as shown in Eq. (14). This method optimizes the data
representation by retaining only the top k singular values
that contribute the most to the original matrix. This method
maintains the dimensions of the original matrix and reduces
redundancy and potential noise in the data by retaining only
the singular values that contribute the most energy and zero
out the remaining singular values. This process is described
as follows:

HA3 = U
∑

VT . (14)

Given the matrix HA3, the three matrices, U,
∑

, and VT ,
are obtained through singular value decomposition, and

∑
is

a diagonal matrix.
The process for calculating the total energy Dtotal is shown

in Eq. (15), where σi is a singular value in
∑

.

Dtotal =

∑
i
σ 2
i (15)

The cumulative energy proportion Dcumulative(i) is shown
in Eq. (16).

Dcumulative(i) =

∑i
j=1 σ 2

j

Dtotal
(16)

The steps to determine the number k of retained singular
values based on the cumulative energy proportion and set
energy threshold are shown in Eq. (17).

k = min {k|Dcumulative(k) ≥ threshold} (17)

Finally, HA3 is reconstructed using the first k singular
values, as expressed in Eq. (18).

HA3 = U
∑

k
VT (18)
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Here,
∑

k is a modified diagonal matrix containing only
the first k singular values; the other elements are 0 and
the dimensions matching the original matrix, that is

∑
k =

diag(σ1, σ2, . . . , 0, . . . 0).
Based on TSVD’s improvements to ITELM, we call

it TSVD-ITELM. The weights and biases are randomly
initialized in the third hidden layer, which may cause the
TSVD-ITELM to ineffectively match the distribution of the
current training data. Iteratively updating the weights and
biases using optimization algorithms is an effective strategy
to solve this problem. Considering the applicability of the
whale optimization algorithm in many fields, such as fault
diagnosis and path optimization, this study intends to use this
method to solve this problem.

D. BASIC WHALE OPTIMIZATION ALGORITHM
The whale optimization algorithm (WOA) is inspired by the
hunting behaviors of humpback whales. Mirjalili and Lewis
used three processes to model it: (i) surround the prey, when
|G| < 1 (exploitation stage); (ii) use a bubble net to attack
the prey; and (iii) randomly search for prey, when |G| > 1
(exploration stage).

if r1 < 0.5 and |G| ≤ 1:

Xt+1 = X∗
− G× P, (19)

whereD = |C×X∗
−Xt |,G = 2×a×r−2, a = 2−2(t/tmax),

and C = 2 × r .
If r1 < 0.5 and |G| > 1:

Xt+1 = Xrand − G× Prand , (20)

where Prand = |C × Xrand − Xt |.
If r1 ≥ 0.5:

Xt+1 = X∗
+ cos(2π l) × P′

× ebl, (21)

where P′
= |X∗

− Xt |, l = (a2 − 1) × rand + 1,
a2 = −1 − t/tmax
Factor G fluctuates randomly within the [−2, 2] interval,

while parameter l varies randomly between [−1, 1] intervals.
Variable t represents the current iteration, with tmax setting the
maximum iteration limit. The constant b is recommended to
be 1. In addition, r is a uniformly distributed random variable
within the range [0, 1].

E. IMPROVED OPTIMIZATION ALGORITHM
To improve the simplicity and efficiency of the WOA, the
Enhanced WOA (EWOA) was introduced [33]. This revised
algorithm features two significant enhancements: firstly,
it adopts a cosine function (where 1 > cos(2π l) > −1) to
refine the searching and encircling phases, replacing the older
criteria of 2 > A > −2. Second, it advances the exploitation
phase by assigning parameter b a random integer value within
the range of 0–500, aiming for more dynamic optimization
processes.

If r1 ≥ 0.5:

Xt+1 = X∗
+ cos(2π l) × P′

× ebl, (22)

where D′
= |X∗

− Xt |
If r1 < 0.5:

Xt+1 = X∗
− cos(2π l) × Pnew, (23)

where Pnew = (C × X∗
− Xt ).

The EWOAoutperforms theWOA in terms of convergence
speed and optimization efficacy; however, its performance
is constrained by the update dynamics of parameter l.
This parameter is crucial during the exploration phase
for exploring various search areas and dictates the search
trajectory during the exploitation phase, which is heavily
influenced by the convergence factor a2. Research shows that
shifting a2 from a linear to a nonlinear pattern significantly
enhances the operational efficiency [39], as detailed in Eq.
(24). However, this alteration resulted in an initially slow
convergence rate for a2, which then accelerated in subsequent
iterations. To address this issue, we introduce an optimized
updating method for a2, as presented in Eq. (25), enabling a
faster initial convergence and consistent performance in the
later phases, as shown in Figure 2.

a2 = 2 ×

(
e
−

(
1+ t

tmax

)
− 1

)
(24)

a′

2 = 2 ×

e−
(
1+2×

(
t

tmax

)0.5)
− 1

 (25)

To adjust the search behavior adaptively during the
iterations, we introduced a dynamic weight parameter w,
as shown in Eq. (26). By combining cosine and sine functions,
leveraging their periodicity and phase differences, the EWOA
adjusts its search strategies dynamically. The cosine func-
tion, which gradually decreases, promotes extensive global
exploration early on. By contrast, the sine function, which
gradually increases, supports precise local searches later. The
settings forwmax andwmin ensurew varies within a predefined
range.

w = wmax × cos
(

π × t
tmax

)
+ wmin × sin

(
π × t
tmax

)
(26)

To explore the weight w adjustment mechanism in the
WOA, a comparative analysis of different wmax and wmin
combinations revealed their effects. Figure 4 shows that
reducing wmax and wmin narrows the variation range of w.
Higher wmax and wmin settings expand the search range and
diversity of the algorithm, whereas lower settings focus the
search on specific areas during later iterations, improving
efficiency and precision.

By introducing the dynamic weight parameter w, the
improved calculation method is shown in Eq. (27) and Eq.
(28). The calculation flowchart of the WOA and proposed
IEWOA is shown in Figure 5.

If r1 ≥ 0.5:

Xt+1 = w× X∗
+ cos(2π l) × P′

× ebl . (27)

If r1 < 0.5:

Xt+1 = w× X∗
− cos(2π l) × Pnew. (28)
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Algorithm 1 TSVD-ITELM
Input: h(x): activation function, E: input matrix with N samples, O: output matrix with N samples
Output: f (x) = h {h {[h(EW1 + B1)W2 + B2]}W3 + B3}Fnew
1. Randomly initialize biases B1 and weightsW1,define the augmented matrixWA1 and EA1
2. Calculate the matrix HA1 = h (EA1WA1) and define the augmented matrix HB
3. Calculate matrix F1 = H+

A1O
4. Calculate matrix H2 = OF+

1
5. Calculate the augmented matrixH2 = h (HA1W2 + B2)

6. Perform nonlinear transformation on H2 =
H2

1+|H2|

7. Calculate matrixWA2 = H+

Bh
−1 (H2)

7. Calculate matrix HA2 = h(HBWA2)
8. Randomly initialize biases B3 and weightsW3
9. Calculate matrix HA3 = h(HA2W3 + B3)
10. Calculate the matrix HA3 = U

∑
kV

T using TSVD
11. Calculate matrix F3 = H+

A3O

FIGURE 4. Comparative results of different a2 calculation methods and different weight combinations.

F. EVALUATION METRICS
In this study, the prediction of cutterhead torque is formulated
as a regression problem. To analyze the performance of the
diverse models, the coefficient of determination (R2), mean
absolute error (MAE), and root mean square error (RMSE)
were selected as the primary metrics for evaluation, enabling
a comprehensive assessment of model capabilities from
multiple perspectives. The MAE is particularly emphasized
as the main criterion during the process of optimization
algorithm selection and hyperparameter tuning owing to its
straightforward depiction of the average deviation between
the predicted and observed values. The calculation formulas
for these three evaluative metrics are as follows:

R2
= 1 −

∑n
i=1 (yi − ŷi)2∑n
i=1 (yi − ȳi)2

, (29)

MAE =
1
n

n∑
i=1

|(yi − ŷi)|, (30)

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2. (31)

III. PROPOSED IEWOA-TSVD-ITELM
Figure 6 shows the predictive framework for the cutter-
head torque, encompassing four modules: (1) the TBM
construction data preprocessing module, (2) the proposed
ITELM module, (3) the proposed IEWOA module, and (4)
the prediction and evaluation of the IEWOA-TSVD-ITELM
module. The specifics are as follows.

(1) TBM construction data preprocessing module: This
module encompasses the segmentation of the TBM tunneling
cycles, data preprocessing, and feature extraction processes.

(2) The proposed IEWOA module enhanced the opti-
mization performance of the EWOA by introducing a new
convergence factor a2 and a methodology for calculating the
dynamic weight parameters w.

(3) The proposed ITELM module: Initiates with a
Softsign function for the nonlinear transformation of the
expected output matrix H2, incorporates a third hidden
layer to augment the nonlinear fitting capabilities of the
TELM, and utilizes TSVD to mitigate errors caused by
randomly generated weights and biases in the third hidden
layer.
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FIGURE 5. Flowchart of WOA and proposed IEWOA.

(4) Prediction and evaluation of the IEWOA-TSVD-
ITELM module: Optimize the weights and biases of the
ITELM using the IEWOA and evaluate the performance of
various models in predicting the cutterhead torque using three
metrics: the coefficient of determination (R2), mean absolute
error (MAE), and mean square error (MSE). Table 1 lists the
necessary tools and techniques used in the simulation and
evaluation of the proposed model.

IV. CASE DATA AND FEATURE SELECTION
The Yinsong water diversion project, a key component
of China’s 13th Five-Year Plan, is Jilin Province’s most
significant interregional water transfer project (Figure 7)s.
This study focuses on the TBM-3 construction section, which
begins at the Yinma River diversion and ends at the Chalu
River, spanning from the 71+476 to the 51+705 milestone.
Utilizing an open-type TBM for excavation, this segment
achieved an effective tunneling distance of 17,488 m, with
a tunnel diameter of 7.93 m. The TBM operations were
extended over 728 days, with the tunnel achieving depths
ranging from 85 to 260 m. According to the rock mass
classification system of China Hydropower (HC) [40], the
project primarily involved rock mass classes II, III, IV, and V,

reflecting the diverse geological challenges of TBM
construction.

The preprocessing of TBM construction data is detailed
in [41]. In this project, approximately 200 parameters
were collected from the TBM construction data. However,
most of these parameters were not directly related to the
cutterhead torque. To optimize the input features, Li et
al. [18] employed a data-driven approach to identify key
parameters impacting the cutterhead torque, including the
elimination of constants, parameters with low variance,
and those with high correlation. Consequently, 10 input
features were determined for torque prediction. Li et al. [17]
performed a parameter sensitivity analysis to demonstrate
that the left and top shield pressures affect the TBM
excavation parameters. Ultimately, 12 parameters were
selected as input features, including right shield pressure
(X1), top shield pressure (X2), machine conveyor motor
current (X3), gripper pressure (X4), cutterhead speed setting
value (X5), propel pump motor current (X6), cutterhead
power (X7), cutterhead rotation speed (X8), left shield
pressure (X9), propel speed potentiometer setting value
(X10), gear seal pressure (X11), and propel pressure
(X12). The correlation between the input features and
cutterhead torque and the data distribution under different
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FIGURE 6. Flowchart of the developed approach for IEWOA-TSVD-ITELM prediction.

rock mass grades, taking the cutterhead rotation speed
as an example, are shown in Figure 8. Although the
correlation between some features is high, they have been
shown to affect the prediction results of the cutterhead
torque [18].

V. APPLICATION OF THE IEWOA ON BENCHMARK
FUNCTIONS
A. TWENTY-FIVE BENCHMARK FUNCTIONS
To evaluate the performance of the proposed IEWOA,
we tested it using the 25 well-known benchmark functions
listed in Table 2. These functions comprehensively assess the
ability of optimization algorithms to find the global optima
under various dimensions and complexities. The performance
of the IEWOA was compared with those of several standard
algorithms, including PSO, GWO, WOA, LWOA, and
EWOA. All the algorithms used a population size of 30 and
a maximum of 500 iterations. Each benchmark function was
independently run 30 times to ensure accuracy and reliability.
The means and standard deviations of these runs were used
for detailed comparison. This approachminimized the impact
of randomness and provided stable and reliable evaluations.
Experiments were conducted on a desktop computer with an
Intel i5-12500 3.00 GHz processor and 16 GB of RAM, run-
ning Windows 10 (64-bit) with PyCharm as the development
environment.

B. COMPARISON OF THE RESULTS OF SIX OPTIMIZATION
ALGORITHMS
Table 3 presents the mean and standard deviation of the
different algorithms for each test function, with the best
results highlighted in bold. The results show that, except
for F2, F9, F10, F13, and F25, the proposed IEWOA
outperformed the other algorithms on all test functions. This
demonstrates the superiority of the IEWOA. Notably, the
IEWOA shows a significant performance improvement over
the EWOA, highlighting the effectiveness of the innovative
convergence factor a2 and dynamic weight parameter w.

VI. RESULTS
A. PREDICTIVE OF IEWOA-TSVD-ITELM
To evaluate the performance of the IEWOA-TSVD-ITELM,
the dataset was split into training and testing sets in an
80% to 20% ratio. The training set was used to obtain
the optimal hyperparameter combination using optimization
algorithms to achieve the best performance. The testing set
was employed to assess the generalization ability of the
model for unknown data. Given that the performance of the
ELM is directly influenced by the number of neurons, it is
necessary to optimize the number of neurons. Adjustments
were made to the number of neurons for the ITELM and
TSVD-ITELM using the IEWOA, with the target range set
between 100 and 300, followed by the utilization of the
IEWOA to optimize randomly generated weights and biases
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TABLE 1. Tools and techniques used in the simulation and evaluation of the proposed model.

FIGURE 7. Location and planimetric map of the Yinsong diversion project.

and conduct performance comparison analyses involving the
ITELM, TSVD-ITELM, and IEWOA-TSVD-ITELM.

To obtain the optimal hyperparameter combination, this
study employed 5-fold cross-validation [17] combined with
the IEWOA, where MAE served as the fitness function to
minimize errors. Considering the limitations of the compu-
tational resources, 30 particles were set with a maximum of
30 iterations. This study demonstrated that using the mean
of the data from the first 90 s of the rising phase accurately
predicted the mean thrust during the stable phase [17].

Therefore, utilizing the same data input, the impact of
different durations of the rising phase on cutterhead torque
prediction was analyzed, which is included in the discussion
section.

Following the optimization of the cumulative energy ratio
for TSVD-ITELM, it was ultimately set to 0.99. Compared
with ITELM, TSVD-ITELM significantly enhanced the
generalization capability of the test set, achieving an R2 of
0.634 and an RMSE of 444.980, as listed in Table 4. The
performance degradation in the ITELM is attributed to the
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FIGURE 8. Feature correlation analysis and data distribution of cutterhead rotation speed.

random generation of weights and biases in the third hidden
layer, which introduces errors. TSVD-ITELM optimizes the
performance by retaining only the top k singular values
from the output matrix of the third hidden layer and
zeroing the remaining singular values. This approach not
only streamlines the data but also minimizes errors induced
by randomness, thereby improving the model performance.
Next, the performance of the optimized TSVD-ITELM is
analyzed to further validate its effectiveness and robustness.

Compared to IEWOA-TSVD-ITELM, TSVD-ITELM
exhibited superior performance on the training set, specif-
ically reflected by an R2 of 0.651, MAE of 319.174,
and RMSE of 434.611. However, when evaluating the
results on the test set, IEWOA-TSVD-ITELM demonstrated
stronger generalization capabilities, with an R2 of 0.644,
MAE of 326.623, and RMSE of 435.821, as shown in
Figure 9. These results indicate that the optimization of
randomly generated weights and biases in the ITELM
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TABLE 2. Twenty-five standard benchmark functions.
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TABLE 2. (Continued.) Twenty-five standard benchmark functions.

model using the IEWOA significantly reduces the prediction
errors.

B. COMPARISON OF DIFFERENT MODEL RESULTS
To evaluate the performance of the proposed model, several
classical machine learning models were incorporated for
comparison, including ELM, TELM, least absolute shrinkage
and selection operator (Lasso), decision tree, support vector
machine (SVM), and light gradient boosting machine (Light-
GBM). During the modeling process, the Lasso, decision
Tree, and SVM were implemented using the scikit-learn
library [42], whereas the LightGBM regression model was
developed using the Lightbm library [41]. Subsequently, the
Lasso, SVM, and decision tree, and LightGBM are each
briefly introduced.

Lasso is used to enhance prediction accuracy and inter-
pretability in torque prediction. By imposing a constraint
on the sum of the absolute values of the coefficients, Lasso
encourages sparsity, effectively reducing the number of
predictors and focusing on the most relevant features among
the 12 selected features. SVM is employed for regression
in torque prediction, constructing hyperplanes in a high-
dimensional space to predict continuous values accurately.
The algorithm identifies critical data points, or support
vectors, ensuring robust and precise regression outcomes
even with complex feature sets. The decision tree predicts
the torque result by recursively splitting the data based on
12 selected features. This tree-like structure helps efficiently
segment the data, making the prediction process transparent
and interpretable, although it may require techniques like
pruning to avoid overfitting. LightGBM is well-suited for
torque prediction due to its efficiency and scalability in
handling large datasets. Despite its computational intensity,
LightGBM achieves high prediction accuracy by growing
trees leaf-wise and employing advanced optimization tech-
niques, making it effective for processing the 12 selected
features with substantial predictive power.

The performances of the ELM and TELM models are
directly related to the number of neurons. In general,
an increase in the number of neurons enhances the per-
formance of the model. However, an excessive number
of neurons can lead to model overfitting [38]. Through a
comparative analysis, the optimal number of neurons for
both the ELM and TELM models was determined to be

350. For models such as Lasso, decision tree, SVM, and
LightGBM, the IEWOA and five-fold cross-validation were
employed to optimize the hyperparameters, aiming to identify
the combinations that yield the best predictive performance.
The ranges of the hyperparameters optimized for each model
are listed in Table 5.

As shown in Table 6, among the six compared models,
TELM exhibits the best performance for the test set, with an
R2 value of 0.632, MAE of 330.784, and RMSE of 443.382.
This is closely followed by the LASSSO, which achieves an
R2 of 0.596, an MAE of 358.853, and an RMSE of 464.587.
By contrast, the SVM performs the poorest, with an R2 of
only 0.297, MAE of 507.651, and RMSE of 612.804, clearly
indicating that the SVM is not suitable for predicting the cut-
terhead torque. Additionally, the training duration for SVM
extends up to 15min, far exceeding that of other models, such
as Lasso, which requires only 0.36min, LightGBM at 11min,
and decision tree at 0.38 min. LightGBM revealed significant
overfitting when the predictions on the training and test sets
were compared. Meanwhile, ELM, owing to its structure
containing only one hidden layer, underperforms compared
to TELM. The prediction results of the six models are shown
in Figure 10.
Compared with the TELM, the ITELM demonstrated

a suboptimal performance on the test set. This shortfall
is attributed to the random generation of weights and
biases in the third hidden layer of the ITELM, which
disrupts effective computation with the output matrix
from the second hidden layer. Although an additional
hidden layer was incorporated, incongruent parameters
failed to improve model performance. This underscores
the potential of the TSVD and IEWOA optimization
strategies to substantially enhance the effectiveness of
the ITELM.

Compared with the TELM, the ITELM shows a suboptimal
performance on the test set. This deficiency arises from
the random generation of weights and biases in the third
hidden layer of the ITELM, leading to a disruption in
the effective computation of the output matrix from the
second hidden layer. Despite the addition of an extra hidden
layer, the incongruent parameters failed to enhance model
performance. This highlights the potential of the TSVD and
IEWOA optimization strategies to substantially improve the
effectiveness of the ITELM.
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TABLE 3. Statistical results of six optimization algorithms for 25 benchmark functions.

The performance of the Lasso model, second only to
TELM, indicates that the Lasso regularization strategy

prevents overfitting while maintaining good predictive per-
formance when handling high-dimensional data. The Lasso,

VOLUME 12, 2024 88671



L. Li, Z. Liu: Rapid Prediction of Cutterhead Torque in Hard-Rock Tunneling Using IEWOA-TSVD-ITELM

TABLE 4. Prediction results of ITELM, TSVD-ITELM, and IEWOA-TSVD-ITELM in the datasets.

FIGURE 9. Scatter plots comparing the predicted and observed cutterhead torque for IEWOA-TSVD-ITELM.

TABLE 5. Optimized hyperparameters and optimal hyperparameters of six models.

being a linear model, reduces model complexity and prevents
overfitting by incorporating an L1 regularization term, thus
performing well with high-dimensional data. Its linear nature
simplifies the optimization process, resulting in a shorter
optimization time (0.36 min). The SVM model performed
the worst in this study, probably because it struggled
with nonlinear and high-dimensional data. Additionally, the
optimization process for the SVM requires computing the

kernel matrix, which is computationally intensive for large
datasets, resulting in a training time of 15 min. These factors
limit the applicability of SVM for real-time predictions.
Although LightGBM performed well on the training set,
it showed overfitting on the test set. This is likely because
LightGBM, although highly capable of learning complex
data patterns, tends to outperform the training data, leading
to insufficient generalization. The complex structure of the
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TABLE 6. Prediction results of six models in training set and test set.

LightGBM and the optimization of multiple parameters
require more computational resources and time, resulting in
a longer optimization time (11 min).

VII. DISCUSSION
A. ANALYSIS ON THE IMPACT OF RISING PHASE TIMING
LENGTH ON IEWOA-TSVD-ITLEM PERFORMANCE
To explore the relationship between the duration of the
rising phase and the predictive capability for the cutterhead
torque, this section presents a detailed analysis. As shown
in Figure 11 (a), the timing length of the rising phase
typically exceeded 90 s for most tunneling cycles. However,
approximately 600 tunneling cycles exhibited a rising phase
duration of less than 60 s, prompting further investigation
into the impact of shorter timing lengths on the accuracy of
the cutterhead torque predictions. Consequently, this section
examines the specific effects of varying the timing lengths of
the rising phase (30, 60, and 90 s) on the performance of the
IEWOA-TSVD-ITELM.

As shown in Figure 12, as the timing length of the
rising phase increases, both MAE and RMSE exhibit
declining trends in the training and test datasets, thereby
confirming the positive effect of extending the timing
length of the rising phase to enhance the model predictive
performance. A comparison between the prediction results
for the 30–60 s and 60–90 s intervals revealed notable
differences in the extent of error reduction. Specifically,
when the timing length of the input duration was increased
from 30 to 60 s, the MAE and RMSE of the test dataset
decreased by 11.82% and 9.56%, respectively, whereas
increasing the timing length from 60 to 90 s resulted in
reductions of 6.51% and 4.71% in the MAE and RMSE,
respectively. However, as the timing length continued to
increase, the rate of improvement in the model performance
decreased.

These findings provide invaluable guidance for tunnel
boring operations and have significant practical application
potential. By flexibly adjusting the duration of the rising
phase during construction, contractors can predict the

cutterhead torque more effectively, thereby optimizing the
boring parameters and enhancing the overall operational
efficiency. In particular, contractors can establish detailed
operating protocols, adjust the rising phase duration to
at least 60 s, and extend it to 90 s when necessary to
accommodate varying geological conditions and construction
environments. This flexible adjustment can significantly
improve the prediction accuracy, reduce mechanical failures,
and minimize unplanned downtime.

B. EFFECT OF DIFFERENT ROCK MASS GRADES
The variation in the rock mass grade significantly affects
the efficiency of the TBM operation and cutter wear [41].
To further explore the impact of different rock mass grades
on the model performance, this study utilized the IEWOA-
TSVD-ITELM for analysis, as shown in Figure 13. Given
the higher proportions of Classes III and IV in the sample
set, 150 predictions related to the cutterhead torque during
the tunneling cycles were selected for visualization to clearly
demonstrate the model performance. Comparisons of MAE
and RMSE revealed that IEWOA-TSVD-ITELM exhibited
the smallest prediction errors under Class V, with values
of 281.135 and 395.351, respectively, indicating the high
adaptability and accuracy of the model under complex
geological conditions. Additionally, the model performed
relatively well under Class III with MAE and RMSE
values of 321.022 and 422.640, respectively. By contrast,
under Classes II and IV, the model displayed greater
prediction errors, particularly under Class II, where the
MAE and RMSE reached 340.171 and 501.355, respectively,
indicating a weaker predictive performance for these rock
mass grades. Overall, comparisons of model performance
revealed a consistent trend between the predicted and
actual values, demonstrating that the IEWOA-TSVD-ITELM
provides effective predictions across different rock mass
grades.

By incorporating the characteristics of different rock mass
grades and prediction errors of the model, construction
strategies can be optimized to enhance overall efficiency
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FIGURE 10. Scatter plots comparing the predicted and observed cutterhead torque for six models.

and safety. For example, in the case of Class II, the
model exhibited larger prediction errors, indicating a lower
accuracy under harder rock conditions; therefore, a more
conservative operational strategy should be adopted. Con-
versely, for Class V, the model demonstrated the highest
prediction accuracy, indicating reliable predictions under
softer rock conditions, which increased the operational
efficiency.

C. DISTRIBUTION OF WEIGHTS BEFORE AND AFTER
OPTIMIZATION
This study aims to address the limitations imposed by the
random initialization of weights and biases in traditional
TSVD-ITELM by proposing an approach that utilizes the
IEWOA to update weights and biases, thereby minimizing
errors in the training set and enhancing the generalization
ability and predictive accuracy of the model. The core
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FIGURE 11. Statistical analysis of rising phase timing length.

FIGURE 12. Comparison of prediction results using different timing lengths in the rising phase as input.

concept involves adjusting the distribution of weights during
the updating process using an optimization algorithm.
Specifically, this study elucidates the changes in weights
before and after iterations of the IEWOA-TSVD-ITELM.
Before optimization, the weights of the model are normally
distributed approximately between −3 and 3, as shown in
Figure 14(a). After iterative optimization with IEWOA, the
distribution of weights is narrowed to between −1 and
1 and tends toward a more uniform distribution, as shown in
Figure 14(b). This transformation in the weight distribution
significantly improved the predictive performance of the
model.

Cao et al. [43] introduced a novel activation function
based on scaling and translation (affine transformation
activation function), designed to adjust the weights and
biases in the hidden layer to approximate a uniform distri-
bution, thereby enhancing the performance of the TSVD-
ITELM. Furthermore, the weight distribution achieved by the

proposed IEWOA is similar to the functionality of the affine
transformation activation function, highlighting the critical
role of optimizing the weight distribution in enhancing the
performance of the TSVD-ITELM.

As shown in Figs. 15 (a) and (b), this study conducted
a comprehensive analysis of the corresponding weights for
the 12 input features. Taking X7 (cutterhead power) as an
example, prior to weight optimization, this feature exhibited
the broadest data range among all the input features. After the
optimization process, the fluctuations in the data related to
the weights of the cutterhead power decreased significantly.
Furthermore, both the mean and median values show notable
changes after optimization. During the optimization process
of the TSVD-ITELM, the model utilizes error feedback for
adaptive weight adjustment, significantly enhancing the over-
all performance of the model. This analysis provides a new
perspective for understanding and improving the dynamism
of weight adjustment mechanisms in the TSVD-ITELM.
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FIGURE 13. Prediction results of IEWOA-TSVD-ITELMA under different rock mass grades.
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FIGURE 13. (Continued.) Prediction results of IEWOA-TSVD-ITELMA under different rock mass grades.

FIGURE 14. Comparison of results before and after the IEWOA-TSVD-ITELMA weight optimization.

D. FURTHER DISCUSSION
In this study, a hybrid model, IEWOA-TSVD-ITELM, sur-
passed traditional machine learning models in predicting the
cutterhead torque for TBM construction. This study provides
invaluable guidance for tunnel boring operations. By flexibly
adjusting the rising phase duration between 60 and 90 s based
on geological conditions, contractors can optimize boring
parameters, improve prediction accuracy, reduce mechanical
failures, and minimize downtime. The model performance
varies with the rock mass grades, suggesting conservative
strategies for harder conditions (Class II) and efficient
operations for softer conditions (Class V). Incorporating this
model into control systems allows real-time adjustments
of construction parameters, such as the cutterhead rotation
speed, which significantly reduces downtime and wear, thus
lowering maintenance costs. Additionally, by adjusting the
input data length, the model enhanced anomaly detection,
such as cutter head jamming, thereby enabling timely

preventive actions. Overall, the IEWOA-TSVD-ITELM
model ensured construction safety and significantly enhanced
the economic and safety outcomes of engineering projects.

E. LIMITATION AND FUTURE WORK
This study utilized the mean values of the rising phase data
but did not investigate the impact of temporal models on
the cutterhead torque (such as LSTM). Its primary objective
was to simplify the training time and provide a method for
rapidly predicting the cutterhead torque. This method has
not yet been applied to other engineering projects because
of the significant differences in the cutterhead diameter,
number of cutters, and tunneling parameters, requiring model
retraining for each new project. Additionally, this study failed
to explore the effectiveness of the model under extreme
conditions (e.g., fault impacts), primarily because collecting
and annotating relevant station information is extremely
difficult. Future studies will focus on overcoming these
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FIGURE 15. Comparison of results before and after the optimization of weights corresponding to different input features.

limitations by gathering diverse TBM engineering data and
establishing datasets that are adaptable to extremely complex
conditions, thereby enhancing the generalization capabilities
of the model and providing more precise guidance for TBM
construction.

VIII. CONCLUSION
This study introduces a novel hybrid machine learning
model based on the TELM framework to enhance cutterhead
torque prediction accuracy. The model leverages the Softsign
function for nonlinear transformation in the second hidden
layer, preserving crucial information. A third hidden layer
with variable neurons improves generalization, while TSVD
reduces data noise and overfitting by retaining key singular
values. EWOA enhances adaptive search capabilities with
innovative methods for calculating convergence factors and
dynamic weight parameters, iteratively updating weights and
biases to reduce training errors.

The proposed IEWOA further enhances EWOA’s perfor-
mance by incorporating new position-updating and adaptive
adjustment strategies. Comparative analysis of 25 benchmark
functions reveals that IEWOA excels in 20, outperforming

PSO, GWO, WOA, LWOA, and EWOA. The IEWOA-
TSVD-ITELM model achieves an R2 of 0.644, MAE of
326.623, and RMSE of 435.821 on the test set. TSVD
enhances ITELM by retaining key singular values, while
IEWOA optimizes weights and biases to minimize prediction
errors.

Among the models tested, the Lasso model ranks second
due to its effective L1 regularization, preventing overfitting
and maintaining predictive accuracy with high-dimensional
data, optimized in just 0.36 minutes. In contrast, the SVM
model struggles with nonlinear, high-dimensional data, tak-
ing 15 minutes for training due to kernel matrix computation.
LightGBM overfits the test set and requires 11 minutes for
optimization, indicating insufficient generalization.

These results underscore the applicability of the IEWOA-
TSVD-ITELM model in predicting cutterhead torque.
Extending the timing from 30 to 60 seconds significantly
reduces MAE by 11.82% and RMSE by 9.56%, aiding
real-time decision-making. However, further extension to
90 seconds shows diminishing returns, suggesting an optimal
timing length for balancing accuracy and computational
efficiency.
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The model performs best under Class V geological condi-
tions, achieving the lowest prediction errors (MAE=281.135,
RMSE=395.351), which is crucial for efficient TBM opera-
tion in softer rocks. Class III conditions also perform well
(MAE=321.022, RMSE=422.640). However, the model
shows increased errors under Class II and IV conditions, indi-
cating the need for careful consideration of its applicability
and potential risks during construction.

The IEWOA facilitates iterative optimization, effectively
narrowing the weight distribution range within the IEWOA-
TSVD-ITELM model, leading to near-uniform distribution.
These adjustments significantly improve the model’s predic-
tive accuracy. Analysis of the weight distribution across the
12 input features indicates that the model adaptively adjusts
weights using error feedback.

In summary, while the IEWOA-TSVD-ITELM model
demonstrates strong performance in predicting cutterhead
torque, it faces increased errors in Class II and IV geological
conditions. Future research should focus on enhancing gener-
alization techniques and developingmore efficient algorithms
to reduce training time and computational demands, thereby
improving the model’s applicability and reliability in diverse
construction scenarios.
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