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ABSTRACT We present MP-HTHEDL, a massively parallel hypothesis evaluation engine for inductive
learning in description logic (DL). MP-HTHEDL is an extension on our previous work HT-HEDL, which
also targets improving hypothesis evaluation performance for inductive logic programming (ILP) algorithms,
that uses DL as their representation language. Unlike our previous work (HT-HEDL), MP-HTHEDL is a
massively parallel approach that improves hypothesis evaluation performance through horizontal scaling,
by exploiting the computing capabilities of all CPUs and GPUs from networked machines in Hadoop
clusters.ManymodernCPUs, have extended instruction sets for accelerating specific types of computations –
especially for data parallel or vector computations. For CPU-based hypothesis evaluation, MP-HTHEDL
employs vectorized multiprocessing as opposed to HT-HEDL’s vectorized multithreading; though, both
MP-HTHEDL and HT-HEDL combine the classical scalar processing of multi-core CPUs with the extended
vector instructions of each CPU core. This combination of CPUs’ scalar and vector processing, resulted
in more extracted performance from CPUs. According to experimental results through Apache Spark
implementation, on a Hadoop cluster of 3 worker nodes that have a total of 36 CPU cores and 7 GPUs; the
performance improvement achieved using the pure scalar processing power of multi-core CPUs, has yielded
a speedup of up to ∼25.4 folds. When combining the scalar-processing and the extended vector instructions
of those multi-core CPUs, the performance gains increased from ∼25.4 folds to ∼67 folds, on the same
cluster of 3 worker nodes – these large speedups are achieved using only CPU-based processing. In terms
of GPU-based evaluation, MP-HTHEDL achieved a speedup of up to ∼161 folds, using the GPUs from the
same 3 worker nodes.

INDEX TERMS Machine learning, inductive logic programming, description logic, GPU, big data,
MapReduce, Apache Spark.

I. INTRODUCTION
With the constant improvement in computing hardware in
terms of processing power and data storage capabilities,
machine learning (ML) techniques are now more capable
of constructing complex ML models within reasonable time
frame; from relatively large training datasets. However, the
processing and storage capabilities of a single machine can
only be improved or upgraded up to a certain hard limit;
this limit will impose an upper boundary on the amount
of data that can be processed by the machine, as well as
the speed for ML algorithms. An approach for overcoming
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this single-machine limitation, is by using the aggregated
computing resources of several networked computers towards
a particular ML task. However, with the rapid generation of
data by both humans and machines, which in many cases are
too large to be processed by a single machine or even small
cluster of machines. Therefore, approaches and algorithms
were developed to address the growing need for scalable data
processing and storage – for handling rapidly growing data
into massive data sizes; those massive data are also known as
Big Data [2]. Hadoop [7] and its data processing component
(MapReduce [6]), are well known Big Data technologies
and infrastructure for handling massive data storage and
processing; though in recent years, many MapReduce-based
data processing approaches are migrating to Spark [8]
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(‘‘Unified engine for large-scale data analytics’’) – due to
its higher processing efficiency, with less overheads than
MapReduce.

In the context of this work, we focus on using Big
Data infrastructure to improve the performance and to
enable Inductive Logic Programming (ILP) algorithms to
learn from massive training datasets. ILP is a class of
ML techniques which uses logic programming (e.g. Horn
clauses) for model and knowledge representation, where
the learned ML model in ILP is often described in the
form of a textual logic rule or rules; those textual logic
rules are also known as a hypothesis (a single rule) or a
set of hypotheses (a set of rules). ILP models are capable
of describing complex and multi-relational concepts using
textual human-readable descriptions, and has been used
in many fields [15], [16], [30]. In addition, ILP can be
used with other logic formalisms for knowledge and model
representation, to achieve different balances between ML
model expressivity and computational complexity. Though
in this work, we focus on ILPs that use Description Logic
(DL) as their logic formalism. The reason for choosing
DL-based ILPs, is because they have high expressive capa-
bilities as a knowledge representation formalism, in addition
to their reduced computational complexity, as compared to
Horn clauses.

The aim of this work, is to address the limitations
associated with using a single machine or small cluster of
machines to accelerate ILP computations. In our proposed
approach, we will present a scalable hypothesis evaluation
algorithm that improves hypothesis evaluation performance;
when evaluating very large number of input hypotheses on
large ILP datasets. Our proposed approach targets improving
computations for DL-based ILPs, by exploiting Big Data’s
existing data processing and storage infrastructure.

II. RELATED WORK
ILP is a very capable ML technique, that can describe
complex and multi-relational concepts by constructing logic-
based white-box human-interpretable models. A typical ILP
learner formulates the learning problem, as a search problem;
where an ILP learner searches through the search space of
possible candidate hypotheses, i.e. logic-based descriptions;
to find either a single or a set of solution hypotheses
that matches the ILP training examples. Different ILP
learners have different computational complexities, which
are highly dependent on the used logic-based representation.
To demonstrate how the logic-based representation affects the
computational complexity of an ILP learner, we will use the
number of supported variables in a predicate, as measurement
for the complexity of a given logic formalism; there are
other factors as well that effects the complexity of a given
logic formalism, although, the number of variables in a
single predicate, is sufficient to demonstrate the concept
of computational complexity for a given logic formalism.
In First Order Logic (FOL), n-ary predicates are sup-
ported such as pred1(v1, v2, . . . , vn), which also subsumes

predicates like pred60(x), pred25(x, y), and pred124(x, y, z).
In FOL-based ILP learners, the hypothesis search space
consists of the possible logic statements, made using the
possible combinations of n-ary predicates with also the
logic operations supported by FOL; although, there are
FOL-based ILP learners that employ techniques that reduce
the hypothesis search space, which will be discussed in
this section. The hypothesis search space for FOL-based
ILP learners, is relatively larger than ILP learners, that uses
less expressive logic formalism. In other words, navigating
the search space of possible valid FOL-based hypotheses,
is computationally more expensive than less expressive
logics such as DL and PL (propositional logic). Moreover,
evaluating FOL-based hypotheses typically involve executing
FOL reasoning algorithms, which is more computationally
expensive than reasoning in DL and PL – due to the
complexity and the expressive power of FOL.

On the other hand, DL-based ILP learners are limited
to unary (pred60(x)) and binary (pred25(x, y)) predicates,
as opposed to FOL’s n-ary predicates. As a result, DL-based
hypotheses are less expressive than FOL-based hypothe-
ses. However, the hypothesis search space for DL-based
hypotheses is much less than the hypothesis search space for
FOL-based hypotheses; even though DL-based hypotheses
are less expressive than FOL-based hypotheses, yet DL has
enough expressive power to represent many real-world multi-
relational concepts. In fact, DL is commonly used as the
underlying logic-based representation for OWL ontologies in
the OWL-DL variation. OWL (Web Ontology Language) [5]
is a knowledge representation language that represents
knowledge as ontologies, and the role of DL is to perform
the reasoning tasks on the knowledge in OWL ontologies.
Reasoning tasks on DL are less computationally expensive
than FOL, which also translate into less computational
effort when performing hypothesis evaluation on DL-based
hypotheses.

In terms of PL, PL is limited to hypotheses using unary
predicates such as pred60(x), therefore they have very limited
expressive power as opposed DL, and FOL. Although,
PL-based ILP learning, has much smaller search space and
simpler reasoning computations for performing hypothesis
evaluation, as opposed to DL and FOL logics. In other
words, due to the simplicity of PL, PL-related computations
are completed faster than DL and FOL computations, with
limitation of having very limited expressive power.

Despite the capabilities and advantages of different ILP
systems, yet many ILP algorithms are inherently sequential,
and difficult to parallelize. Accelerating ILP learning using
parallel computing approaches, involves several design
challenges and considerations. First, different logic for-
malisms have different reasoning algorithms; these reasoning
algorithms need to be analyzed to find opportunities where
parallel computing approaches can be exploited, to accelerate
these reasoning algorithms either in part or in whole. Second,
since different logic formalisms also have different search
spaces, the parallel ILP learner must employ the appropriate
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parallel search strategy, that takes into account the nature
of the search space; resulting from the use of a particular
logic formalism. Furthermore, the data structures used for
representing the logic-based knowledge, must be optimized
or reengineered to allow efficient parallel memory accesses,
by the parallel processors. It is worth noting that parallel
computing approaches, also have their own design challenges
and considerations, which must be also accommodated in
addition to the design challenges and considerations related
to ILPs’ logic formalisms.

Even though parallelizing ILP algorithms involve several
challenges and considerations, several approaches and tech-
niques are developed to improve the performance and
capabilities of ILP learners; some developed approaches use
parallel computing, while others use different approaches.
In terms of non-parallel approaches, there are developed
approaches that focus on improving the efficiency of existing
ILP algorithms. For example, some approaches aim to
reduce or eliminate redundant ILP computations such as
query packs [4]. While other techniques, focus on utilizing
problem-specific or domain knowledge to avoid or shrink
redundant and invalid areas of the hypothesis search space;
such as Progol [9] for Horn clauses, and DL-Learner [3] and
SPILDL [26] for DL-based ILPs.
On the other hand, other performance improvement

approaches for ILP are developed, that exploit parallel com-
puting capabilities to accelerate ILP computations; which
can be categorized into shared-memory and distributed-
memory approaches. In shared memory approaches, ILP
computations are accelerated through multi-core CPUs [10],
while others use GPUs [21], [22], [23], [24], [25],
[26], [27], [28], [29]. Moreover, Other ILP performance
improvement approaches are developed that combine both
multi-core CPUs with their vector instructions and GPUs [1].
Furthermore, some approaches are developed to improve
ILP performance through dedicated hardware accelerators,
such as [12] and [31] which are dedicated FPGA-based
ILP accelerators. In terms of distributed-memory approaches,
ILP researchers has developed approaches that exploit Big
Data infrastructure, MapReduce in particular, to improve ILP
performance [11], [13], [14].
According to the literature review, ILP computations are

successfully accelerated through parallel computing and
other efficiency-related approaches; that lead to perfor-
mance improvements with varying degrees. We can also
observe that many ILP acceleration approaches, especially
the distributed-memory approaches, focus on improving
performance for classical ILPs that uses Horn clauses only;
and no distributed-memory approaches are developed to
improve computations for DL-based ILPs. Therefore, in this
work, we focus on addressing the ILP research gap of no
distributed-memory approaches for accelerating DL-based
ILPs; by proposing a scalable and massively parallel hypoth-
esis evaluation approach that accelerate the performance of
DL-based ILPs, by exploiting the processing and storage
capabilities of Big Data infrastructure. Consequently, leading

to achieve the capability of handling and learning from
massive amount of ILP data in a scalable manner; which also
contributes to learningmore accurate andmore representative
DL-based ILP models. In the next section, we describe the
details of our proposed approach.

III. MP-HTHEDL: A MASSIVELY PARALLEL HYPOTHESIS
EVALUATION ENGINE IN DESCRIPTION LOGIC
We present MP-HTHEDL, a Massively Parallel HT-HEDL,
which is an extension on our previous work HT-HEDL [1]
that inherit the same HT-HEDL’s capabilities of aggregating
the computing resources of multi-core CPUs and multi-
GPUs, towards accelerating hypothesis evaluation for DL-
based ILPs. Unlike our previous work (HT-HEDL), MP-
HTHEDL improves hypothesis evaluation performance,
by aggregating the computing power of multi-core CPUs
and multi-GPUs of all networked machines; instead of
only using the computing resources of a single machine.
The main goal of MP-HTHEDL is to improve hypothesis
evaluation performance when evaluating a very large number
of hypotheses on a very large dataset. Therefore, MP-
HTHEDL architecture is designed to leverage existing Big
Data infrastructure such as Hadoop, towards achieving
high hypothesis evaluation performance. See Fig. 1 for an
overview of MP-HTHEDL architecture. In Fig. 1, we can
observe that MP-HTHEDL uses HDFS (Hadoop Distributed
File System) for data storage. In terms of data processing,
we can use either MapReduce or Apache Spark to implement
MP-HTHEDL’s hypothesis evaluation master and worker
algorithms.

FIGURE 1. An overview of MP-HTHEDL architecture.

A. DATA STORAGE
In terms of data storage, MP-HTHEDL stores in HDFS:
the input hypotheses, knowledge base, learning examples,
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MP-HTHEDL executables, and the resulting output hypothe-
ses. In terms of input and output hypotheses, MP-HTHEDL
uses the same internal representation for DL hypotheses
as HT-HEDL. In MP-HTHEDL, the input hypotheses are
represented using either a single or multiple binary files
in the HDFS storage; where a single binary file contain
one or more serialized DL hypotheses, from their original
HT-HEDL representation. In terms of output hypotheses, they
use the same representation as input hypotheses; however,
the hypothesis_info field in each output hypothesis is updated
with examples coverage results – that is, the covered positives
and negatives.

In terms of knowledge representation, MP-HTHEDL uses
HT-HEDL’smatrix-based representation to represent both the
knowledge base and the learning examples. For HT-HEDL’s
matrix-based representation, see Fig. 2.

FIGURE 2. HT-HEDL matrix-based representation [1].

In Fig. 2, HT-HEDL uses the following to represent
knowledge bases in the ALCQI(D) DL language:

• Concepts matrix for representing concepts and their
assertions.

• Roles matrix for representing roles and their assertions.
• Numerical roles matrix for representing numerical
concrete roles and their assertions.

• String roles EQUAL matrix for representing and
computing EQUAL restrictions on string assertions.

• String roles CONTAIN matrix for representing and
computing CONTAIN restrictions on string assertions.

• Cardinality counters matrix for computing role cardi-
nality restrictions.

• Results matrix for storing intermediate results of DL
operations when evaluating DL hypotheses.

• Learning examplesmatrix for representing the positive
and negative learning examples.

• Coverage matrix for storing examples coverage results
for set of evaluated input hypotheses.

In terms of HT-HEDL lookup tables, they are used to map
concepts, roles, and concrete role names; to their numerical
IDs. Concepts table for mapping concepts, Roles table for
mapping roles, numeric concrete roles table for mapping
numeric concrete roles, etc. However, the String values
mapping table maps the string values of string assertions to
numerical IDs, to be used in the String roles EQUAL matrix;
to compute EQUAL string restrictions. After describing MP-
HTHEDL’s knowledge base, including learning examples,
and DL hypothesis representations which are based on HT-
HEDL’s representations; we next describe MP-HTHEDL
executables. MP-HTHEDL executables is a set of pro-
grams and scripts used by MP-HTHEDL’s data processing
component, to perform preprocessing and then hypothesis
evaluation computations on the data stored in HDFS.
MP-HTHEDL executables consists of the PreprocessProc
script and miniEvaluator worker program, which are
discussed next.

B. DATA PROCESSING
MP-HTHEDL’s data processing component is responsible for
performing hypothesis evaluation computations. To evaluate
hypotheses, MP-HTHEDL performs three main steps. First,
MP-HTHEDL asynchronously downloads the preprocessing
procedure script (PreprocessProc) from HDFS, that is
MP-HTHEDL executables in particular, to the local file
system of each node in the cluster. Second, the downloaded
preprocessing script is executed, to prepare the nodes in
the Hadoop cluster for the hypothesis evaluation task. Each
node in the Hadoop cluster, execute its own copy of the
preprocessing script, in parallel and independently of other
nodes in the cluster. See Algorithm 1 for the Preprocessing
procedure’s pseudocode.

In Algorithm 1, the procedure starts by downloading if not
already exist from HDFS, a copy of the knowledge base and
the learning examples to the node’s local file system. Next,
a copy of the miniEvaluator program is downloaded from
HDFS to the node’s local file system. The miniEvaluator
program is a smaller variation of HT-HEDL that evaluate a
set of input hypotheses using either a single scalar/vectorized
CPU or a single GPU; on startup, theminiEvaluator program
binds to a specific CPU core or a GPU, with affinity
towards binding to GPUs rather than CPUs – to achieve
better evaluation performance. For example, assuming a node
with 4 GPUs and 6 CPU cores; running 6 instances of
the miniEvaluator program, will result in 4 miniEvaluator
instances binding to the 4 GPUs, and 2 instances binding
to 2 CPU cores. MP-HTHEDL uses a set of miniEvaluator
processes on each node in the cluster, to carry out actual
hypothesis evaluation computations. See Fig. 3 for the
architecture of the miniEvaluator worker program.
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Algorithm 1 The Pseudocode for MP-HTHEDL’s
Preprocessing Procedure (PreprocessProc)

1 DownloadFromHDFSToLocalSystem (
2 KB_HDFSPath , KB_LocalPath ) ;
3
4 DownloadFromHDFSToLocalSystem (
5 miniEvalHDFSPath , m in iEva lLoca lP a t h ) ;
6
7 CPUCoresNum = getCPUcoresNum ( ) ;
8 e v a l S l o tA l l o c T a b l e ~=
9 C r e a t e E v a l S l o tA l l o cT a b l e ( CPUCoresNum ) ;

10
11 m i n iEv a l u a t o r e v a l s [ CPUCoresNum ] ;
12 f o r ( i n t i =0 ; i <CPUCoresNum ; i ++)
13 e v a l s [ i ] = s t a r tM i n i E v a l P r o c e s s (
14 KB_LocalPath , e v a l S l o tA l l o c T a b l e [ i ] ) ;
15
16 f o r ( i n t i =0 ; i <CPUCoresNum ; i ++)
17 e v a l s [ i ] . wa i tUn t i lRe ady ( ) ( ) ;

FIGURE 3. miniEvaluator worker program architecture.

In Fig. 3, when a process of the miniEvaluator worker
program is created, it will load the knowledge base and learn-
ing examples from the local system into main memory. After
that, it will create a shared memory area in the in-memory
file system; to provide an efficient means of receiving
large number of input hypotheses, with minimal overhead.
After the shared memory area is created, miniEvaluator will
open a loopback TCP communication server as a means of
IPC (inter-process communication); to receive and process
hypothesis evaluation commands from MP-HTHEDL’s main
master hypothesis evaluation algorithm. The reason for
using TCP communication for IPC instead of other methods
(Message Queues, Named Pipes, Unix domain sockets, etc.),
is because many of Big Data technologies are implemented

and used with Java, while HT-HEDL’s vectorized CPU and
GPU algorithms, are implemented and used with C/C++.
Therefore, using TCP communication for only receiving
commands, and not for transferring hypotheses; will result in
better interoperability between Java and C/C++ software, and
fast-enough speed for sending/receiving commands. In other
words, it is indeed true that new Java versions such as
Java 16 natively support IPC mechanisms such as Unix
domain sockets; in fact, we have considered using Unix
domain sockets instead of TCP sockets for IPC command
signaling, because Unix domain sockets are typically faster
due to less overheads than TCP sockets. However, since we
use Hadoop 3.3.5 in our Hadoop cluster, which is compiled
with Java 8 and can support up to Java 11 runtime only
according to [17]; therefore we limit our Java code to Java 8
to ensure best compatibility with Hadoop. Since Unix domain
sockets are not supported in Java 8, we therefore use TCP
sockets instead, for IPC command signaling. In terms of
named pipes, we can use them for IPC, however, we preferred
using sockets either Unix sockets or TCP sockets, because
sockets are portable and compatible with many programming
languages and operating systems; which is an important
feature when creating interfaces between programs written
in different programming languages. In addition, sockets are
intuitive interfaces for command/response communications.

In terms of miniEvaluator , once the shared memory area
and TCP communication channel are created, miniEvaluator
is now ready for performing hypothesis evaluation com-
putations. To evaluate hypotheses in miniEvaluator , input
hypotheses are copied to miniEvaluator’s shared memory
area. After that, a command is sent to miniEvaluator’s
through its TCP communication channel, to signal that
the data is ready to be processed. Next, miniEvaluator
will evaluate the input hypotheses stored in the shared
memory using either a GPU or a single core CPU, and
then add examples coverage results in hypothesis_info for
each hypothesis – in the same shared memory. Since
miniEvaluator’s output is stored in shared memory, the
output is also visible and accessible for other software in the
given node – in particular, MP-HTHEDL’s main hypothesis
evaluation algorithm.

In terms of Algorithm 1, Once HDFS downloads of
knowledge base, learning examples, and miniEvaluator
program are completed; an evalSlotAllocTable is created in a
shared memory area as a binary file stored in the in-memory
file system. evalSlotAllocTable is an array of single-byte
elements, with an array size equal to the number of CPU cores
in the given node. For each element in evalSlotAllocTable,
an instance or a process of the miniEvaluator program
is created; where each created miniEvaluator program
instance, is bound to specific index in the evalSlotAllocTable
array. If a particular miniEvaluator program instance is
busy in evaluating hypotheses, it will set the value ’1’
at its corresponding index in the evalSlotAllocTable array;
otherwise, the value is ’0’ is set, which indicates that the given
miniEvaluator instance is available, i.e. ready to perform new
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computations. The first indexes in evalSlotAllocTable, are
bound to the node’s GPUs first, and the remaining indexes
are used for the node’s CPU cores. For example, assuming
a node of 10 CPU cores and 4 GPUs, evalSlotAllocTable
will contain 10 elements where the indexes [0-3] are used
for the node’s 4 GPUs, and [4-9] indexes are used for the
node’s CPUs. Since using evalSlotAllocTable for allocating
miniEvaluator workers, entails parsing the table from its [0]
index for finding available CPU/GPU evaluators; as a result,
GPU-based evaluators are allocated first, then CPU-based
evaluators in case of all GPUs are busy.

The role of the evalSlotAllocTable array, is to keep track of
busy and available miniEvaluator instances; the information
in the evalSlotAllocTable array is used by MP-HTHEDL’s
main hypothesis evaluation algorithm, to facilitate efficient
in-node scheduling of hypothesis evaluation workloads.

In terms of MP-HTHEDL’s third step, the hypothesis
evaluation starts once all instances of miniEvaluator worker
program are ready on all nodes. The architecture for MP-
HTHEDL’s hypothesis evaluation is described in Fig. 4.
In Fig. 4, MP-HTHEDL’s hypothesis evaluation algorithm
starts by receiving the input hypotheses from HDFS, which
are then partitioned into multiple smaller data partitions. The
data partitions are distributed to the nodes in the Hadoop
cluster, where a single node may process one or multiple data
partitions – in parallel with other nodes in the cluster. Once
all data partitions are fully processed by MP-HTHEDL, the
output is the updated list of input hypotheses, that contain
examples coverage results for each input hypothesis.

FIGURE 4. The architecture for MP-HTHEDL’s Hadoop-based hypothesis
evaluation.

MP-HTHEDL employ a pool of vectorized CPU and GPU
hypothesis evaluators, in each node in the Hadoop cluster;
this pool of evaluators is used by in-node Eval. tasks, for
performing hypothesis evaluation computations. See Fig. 5
for processing parallel in-node Eval. tasks.

In Fig. 5, each parallel Eval. task receives its own
set of input hypotheses. Next, each Eval. task allocate

FIGURE 5. MP-HTHEDL’s in-node Eval. tasks.

a CPU/GPU hypothesis evaluator from evaluators pool
evalSlotAllocTable, with affinity towards allocating available
GPU-based evaluators, rather than CPU-based evaluators;
the process for allocating/deallocating evaluators is serialized
through locks, to prevent race condition between parallel
allocation requests issued by in-node Eval. tasks. Once an
evaluator is allocated for a given Eval. task, the Eval. task
will then evaluate the hypotheses in its data partition using the
assigned evaluator. After that, hypotheses evaluation results
from the Eval. task’s assigned evaluator, are written to the
Eval. task’s output. Once a Eval. task completes writing its
output, it will then release or deallocate the used evaluator
back to the given node’s evaluators pool. All Eval. tasks are
performing their tasks in parallel with one another, except any
operation related to allocating/deallocating evaluators, which
is serialized.

In terms of processing a single data partition in a Eval. task,
the procedure is described in Algorithm 2.

Algorithm 2 A C-Like Pseudocode for MP-
HTHEDL’s Eval. Task

1 / / INPUT : a s i n g l e da ta p a r t i t i o n ( inHyps ) ,
2 / / a s e t o f i n p u t h y p o t h e s e s
3
4 / / OUTPUT: out , a~ s e t o f e v a l u a t e d
5 / / h y p o t h e s e s
6
7 / / g e t an a v a i l a b l e e v a l u a t o r
8 l o ck ( e v a l S l o tA l l o c T a b l e ) ;
9 eva l ID= g e tA v a i l a b l e E v a l u a t o r ( ) ;
10 e v a l S l o tA l l o c T a b l e [ eva l ID ]=1 ; / / busy
11 un lock ( e v a l S l o tA l l o c T a b l e ) ;
12
13
14 / / a s s i g n work t o e v a l u a t o r
15 conne c tToEva l u a t o r ( eva l ID ) ;
16 Se r i a l i z eAndWr i t eHyp s I n t oBu f ( inHyps ,
17 inmemMemMappedBuf [ eva l ID ] ) ;
18
19 s t a r tAndWa i t Fo rHypEva l u a t i on ( eva l ID ) ;
20
21 / / pa r s e e v a l u a t o r o u t p u t
22 f o r ( h y p t h e s i s h : inmemMemMappedBuf [ eva l ID ] )
23 ou t . w r i t e ( h ) ;
24
25 / / d e a l l o c a t e e v a l u a t o r
26 l o ck ( e v a l S l o tA l l o c T a b l e ) ;
27 e v a l S l o tA l l o c T a b l e [ eva l ID ]=0 ; / / a v a i l a b l e
28 un lock ( e v a l S l o tA l l o c T a b l e ) ;
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In Algorithm 2, MP-HTHEDL’s Eval. task starts by first
calling the function getAvailableEvaluator(), that checks the
evalSlotAllocTable table and then returns the index of an
available evaluator; that is, the index of a first encountered
element with ’0’ (available) value. Since several parallel
instances of the Eval. task may execute on a single node,
we use locks to coordinate the access and to prevent race
conditions when accessing the evalSlotAllocTable table.
Once the index or the ID of an available evaluator is
acquired in evalID for the given Eval. task, the Eval.
task connects to the given evaluator’s TCP loopback
server. After the TCP connection is established, Eval. task
writes through SerializeAndWriteHypsIntoBuf (. . .) the data
partition’s binary data which is the set of hypotheses,
to the evaluator’s inmemMemMappedBuf [evalID]; which
is the evaluator’s memory mapped input hypotheses file,
stored in the in-memory file system (‘‘/dev/shm’’). After
input hypotheses in the data partition are written to
inmemMemMappedBuf [evalID], the Eval. task calls the
function startAndWaitForHypEvaluation(. . .), that send a
TCP packet to the evaluator to start evaluate the assigned
hypotheses; the startAndWaitForHypEvaluation(. . .) func-
tion blocks until the evaluator completes its assigned
computations. Once the computations are completed,
inmemMemMappedBuf [evalID] now contains the same set
of input hypotheses, though updated with their evaluation
results – that is, the covered positives and negatives for each
input hypothesis. The Eval. task then directs the evaluator’s
output, to the Eval. task’s output. Once the Eval. task’s output
is completely written, the used evaluator is then released
through evalSlotAllocTable[evalID] = 0;, so that it can later
be used by other Eval. tasks.

Next, we describe implementation and evaluation details
for MP-HTHEDL’s hypothesis evaluation algorithm.

IV. IMPLEMENTATION AND EVALUATION
For implementing MP-HTHEDL’s algorithms, we use
Apache Spark instead of MapReduce for many reasons.
First, Spark processes and caches data in memory, while
MapReduce uses disks for loading/storing intermediate
data; this difference, make Spark generally much faster
than MapReduce. Second, Spark supports iterative data
processing, which is an important capability needed for ILPs
inherent iterative learning approaches; unlike MapReduce
which is much more suitable for batch processing tasks.
We implement MP-HTHEDL using Spark with Hadoop’s
YARN (Yet Another Resource Negotiator), where Spark
uses Hadoop’s infrastructure to process large amount of
hypotheses data. MP-HTHEDL’s Spark application is written
using the JAVA language, and the miniEvaluator worker
program is written in C/C++. For implementing HT-HEDL’s
hypothesis evaluation algorithms, which also includes HT-
HEDL’s algorithms in theminiEvaluator worker program;we
use Nvidia CUDAAPI [19] for implementing the GPU-based
evaluation algorithms. For the CPU-based evaluation algo-
rithms, we use OpenMP [20] for CPU multithreading, and

Intel Intrinsics [18] for utilizing the CPUs’ SSE (Streaming
SIMD Extensions) vector instructions. In terms of data
storage, MP-HTHEDL’s Spark application uses HDFS for
data storage.

To evaluate MP-HTHEDL, we use a Hadoop cluster of
4 nodes, that have 1 master node and 3 worker nodes. The
details for the used Hadoop cluster are described in Table 1.

TABLE 1. The used 4-nodes cluster for MP-HTHEDL experiments.

We evaluate MP-HTHEDL using 3 types of experiments.
In the first experiment (see Table 2), we study how the number
of hypotheses affect performance. In the second experiment
(see Table 3), we study how the dataset size in terms of
the number of individuals, affect evaluation performance.
In terms of the third experiment (see Table 4), we study
the performance impact of adding more nodes to the cluster.
In the experiments, we use replicated copies of the same
hypothesis, where the replicated hypothesis is a conjunction
of 5 concepts – to reflect an average size hypothesis.
All measured execution times for evaluating hypotheses
in Table 2-4, are reported in milliseconds; the execution
times cover hypothesis evaluation computations only, and
doesn’t include MP-HTHEDL’s initialization steps – because
MP-HTHEDL is initialized once and reused multiple times,
by DL-based large-scale ILP learners for their hypothesis
evaluation. Since MP-HTHEDL inherits the hypothesis

TABLE 2. Experiment 1: study performance impact of evaluating #hyp
hypotheses on 10 million individuals dataset.
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TABLE 3. Experiment 2: study performance impact of evaluating 100,000
hypotheses on varying dataset of #ivsNum individuals.

TABLE 4. Experiment 3: study performance impact of evaluating 100,000
hypotheses on 10 million individuals dataset, using a cluster of #WNode
worker nodes.

evaluation capabilities of HT-HEDL in terms of using CPUs
and GPUs; therefore, we also report CPU-based and GPU-
based evaluation performance for each experiment type.
We use computer-generated synthetic data for all experi-
ments. In terms of experiments baseline, we use the sequential
scalar CPU performance ofM1 machine, which is reported in
the ‘‘Baseline’’ column on all experiment tables (Table 2-4).
The reason for using scalar single CPU performance as the
baseline, is because it is the evaluation method used by
traditional ILP learners and also used by DL-based ILPs like
the DL-learner; which is the state of the art in DL-based
ILP learning. According to the literature review, parallel ILP
approaches focused on either using: GPUs, or the scalar
performance of multi-core CPUs, through multithreading for
example. In other words, vectorized CPU-based hypothesis
evaluation is not used in the ILP literature yet. In fact, one of
the key contributions of our previous work HT-HEDL, is the
combination of multithreading with vector instructions of
modern multi-core CPUs to improve hypothesis evaluation.
Therefore, we consider vectorized CPU-based evaluation to
be an accelerated hypothesis evaluation method, and not a
traditional or a baseline method; especially since vectorized
CPU-based evaluation require explicit use of CPUs extended
vector instructions set. Moreover, the vector instructions
of CPUs are typically not as sophisticated as the vector
instructions of GPUs, because the vector instructions of
CPUs have more data alignment requirements; such as
the data must be loaded and stored in continuous and
adjacent memory addresses. The enabler for MP-HTHEDL’s
vectorized CPU-based hypothesis evaluation, is the matrix-
based representation of HT-HEDL and its data processing

algorithms, which are optimized for both CPU-based vector
instructions and also GPU-based processing.

In all experiment tables, the ‘‘Scalar’’ column refers to
the use of scalar CPU cores without vector instructions
for computing hypotheses evaluation results. The ‘‘Vector’’
column refers to the use of CPU cores in addition to
each core’s vector instructions for performing hypothesis
evaluation computations. The ‘‘GPUs only’’ column refers
to using only GPUs and ignoring CPUs in each worker
node for performing computations. In ‘‘Vector + GPUs’’, the
performance of all GPUs and all vectorized CPUs in each
worker node, are used for performing computations.

V. DISCUSSION
The experimental results provide a clear evidence that
MP-HTHEDL indeed introduces major speedups. In exper-
iment 1 (visualized in Fig. 6), we can observe MP-HTHEDL
starts to introduce performance improvements, when the
number of input hypotheses is ≥ 100 hypotheses; since
on and above 100 input hypotheses, Hadoop and Spark
related overheads, are masked or justified by the introduced
performance speedups. The speedups grow larger as the
number of input hypotheses increases. For example, at
100 input hypotheses, a speedup of 1.78 folds is achieved
using GPUs only; whereas at 100,000 input hypotheses,
a speedup of ∼161 folds is achieved using only GPUs.

FIGURE 6. Visualizing experiment 1 results using log-log plot: the
performance impact of evaluating #hyp hypotheses on 10 million
individuals.

In terms of experiment 2 (visualized in Fig. 7), per-
formance speedups start to appear at 100,000 individuals;
because the time spent in hypothesis evaluation computations
is large enough, to justify the overheads associated with:
Hadoop, Spark, and MP-HTHEDL’s in-node scheduler. The
speedups grow larger with the increase in the number
of individuals in the dataset. For example, at 100,000
individuals, a speedup of 3 folds is achieved by combining
CPUs and GPUs; on the other hand, at 10 million individuals,
a speed up of 154 folds is achieved using GPUs only.

We can deduce from experiment 1 and experiment 2,
that in order to achieve speedups and especially large
speedups, the number of input hypotheses and also the
number of individuals in the knowledge base, has to be large
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FIGURE 7. Visualizing experiment 2 results using log-log plot: the
performance impact of evaluating 100,000 hypotheses on #ivsNum
individuals.

enough – to justify the overheads related to Hadoop, Spark,
and MP-HTHEDL’s scheduler.

For experiment 3 (visualized in Fig. 8), we can observe
in the ‘‘HT-HEDL (M1)’’ experiments, that running a
single instance of HT-HEDL on M1, will introduce similar
performance gains as runningMP-HTHEDL on a single node
cluster that only has the M1 node; which clearly suggest
that the performance of MP-HTHEDL on a single node,
is comparable with the performance of running a single
HT-HEDL instance on that same node. Although, there
are some performance differences between HT-HEDL and
MP-HTHEDL. First, we can observe that among the different
evaluationmethods, HT-HEDL’s ‘‘vector’’ evaluation is supe-
rior to MP-HTHEDL’s ‘‘vector’’ evaluation. Second, we can
observe that the performance of HT-HEDL on the ‘‘vector’’
and ‘‘GPUs only’’ experiments, is roughly in the middle
point between the performance of MP-HTHEDL’s ‘‘M1’’
and ‘‘M1+M2’’ experiments. HT-HEDL is able to extract
more performance from the M1 machine, because of much
less scheduling and communication overheads as opposed to
MP-HTHEDL’s overheads. Also, the employed scheduling
strategy has a key role in affecting the performance for both
HT-HEDL and MP-HTHEDL.

FIGURE 8. Visualizing experiment 3 results using log scale: the
performance impact of evaluating 100,000 hypotheses on 10 million
individuals dataset, using #WNode cluster.

Despite MP-HTHEDL’s overheads, MP-HTHEDL intro-
duced performance gains higher than HT-HEDL, especially
when more worker nodes are added into the cluster;

for example, in the ‘‘M1+M2’’ experiments, MP-HTHEDL
provided faster performance than HT-HEDL. In fact, the
more worker nodes are added, the larger the performance
gap between HT-HEDL and MP-HTHEDL – in favor of
MP-HTHEDL. At 1 worker node (M1), performance increase
of 118 folds is achieved using GPUs only; by addingM2 node
to the cluster, the performance speedup is increased to
∼140 folds over baseline, using only GPUs. When using
all three M1 − 3 nodes, the performance speedup is further
increased to ∼161 folds using GPUs only over baseline.
It is worth noting that the speedups introduced by adding a
given node to the cluster, is highly dependent on that node’s
computing capabilities; which also include the node’s added
contribution to the clusters’ overall computing capabilities –
such as the number and performance of each added CPU core,
and the number and performance of each addedGPU. In other
words, adding a node with very weak computing capabilities,
in comparison to other existing nodes in the cluster; will
hinder the cluster overall performance, due to the introduced
performance bottleneck from the weaker node.

In terms of the ‘‘GPUs only’’ experiments, we can also
observe that adding more GPUs results in more performance
being achieved by the cluster. However, adding more GPUs
through different machines, result in achieving smaller
increases in performance as opposed to the ‘‘Scalar’’ and
‘‘Vector’’ experiments. The reason for such smaller perfor-
mance gains for the ‘‘GPUs only’’ experiments, is because
MP-HTHEDL’s in-node scheduler assigns a fixed number
of hypotheses to each available CPU or GPU evaluator in a
given node, which doesn’t take into account the individual
computing capabilities of each GPU and CPU. Depending
on the GPU’s computing performance, powerful GPUs
completes their assigned hypotheses sooner, and will remain
idle until the next set of input hypotheses is assigned; since
the powerful GPU is idle more often than the less powerful
GPU, therefore it will reduce the utilization efficiency of the
powerful GPU. On the other hand, less powerful GPUs will
take longer to process their assigned hypotheses. By the time
the less powerful GPU completes its assigned computations,
the next set of input hypotheses are already added in the
GPU’s processing queue; since the processing queue of the
less powerful GPU is often saturated with computation tasks,
this will result in efficient use of the GPU’s computing
resources.

In the ‘‘Vector + GPUs’’ experiments, the introduced
performance gains are higher than ‘‘Vector’’ experiments
and lower than ‘‘GPUs only’’ experiments. The reason for
why the performance gains of ‘‘Vector + GPUs’’ experiments
are less than the ‘‘GPUs only’’ experiments, is because
the GPUs are much more powerful than the CPUs; by
which, the GPUs complete their assigned computations
sooner than the CPU cores, whereas the CPU cores are
still processing their assigned computations. In other words,
the CPU cores become the performance bottleneck because
the CPUs cannot complete the same workload as fast as the
GPU can. Moreover, we can observe that ‘‘Vector + GPUs’’
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performance in HT-HEDL is slightly slower than MP-
HTHEDL (on #WNode = M1); the reason for this
performance, is because HT-HEDL’s scheduling algorithm,
sends GPU-based hypothesis evaluation workloads to all
GPUs first, and then proceed with executing the CPU’s
assigned hypothesis evaluation workloads. By the time these
GPU-related workload assignments are sent to all GPUs,
some GPUs - especially the powerful ones - may have
already finished some or all of their assigned computations
– while the CPU is still busy sending GPU-related workload
assignments to other GPUs. Since the CPU starts executing
its assigned hypothesis evaluation workloads later, after some
or all GPUs may have already finished their assigned compu-
tations, therefore the CPU negatively affects or bottlenecks
the CPU-GPU hypothesis evaluation performance.

On the other hand, in MP-HTHEDL’s ‘‘Vector + GPUs’’
performance, CPU-based and GPU-based hypothesis evalu-
ation workloads are assigned and started at the same time;
unlike HT-HEDL, where GPU-based hypothesis evaluation
workloads are started on all GPUs first, and then CPU-based
hypothesis evaluation workloads are started. As a result of
this workload scheduling difference between HT-HEDL and
MP-HTHEDL, we can observe that MP-HTHEDL extracted
more performance from the same hardware, as opposed by
HT-HEDL.

The solution to improve the utilization efficiency for both
powerful and less powerful GPUs in the cluster, is to employ
a GPU scheduling strategy that assigns the appropriate
workloads based on the computing capabilities of each
GPU – to maximize the cluster’s GPU-based evaluation
performance. In HT-HEDL, we have already developed
a capability-aware scheduler that uses information about
the performance of each CPU and GPU; to schedule the
appropriate workloads to each CPU and GPU based on
their individual computing capabilities in a single machine
environment. Although, employing HT-HEDL’s capability-
aware scheduler as MP-HTHEDL’s in-node scheduler will
remain as a potential future work.

Based on all experimental results, we can deduce the
following. In the first deduction, the input data in terms of
hypotheses number and knowledge base size, has to be large
enough to hide the aforementioned overheads; MP-HTHEDL
provides large speedups on large input data, whereas on small
input data, MP-HTHEDL is unable to compete with baseline
performance. In the second deduction, the largest speedups by
MP-HTHEDL, are achieved by using GPUs only, whereas the
least speedups are from scalar CPU performance. Moreover,
GPUs only evaluation achieved more performance than the
combined vectorized CPU + GPU evaluation; the reason is
because GPUs have much more powerful vector processing
capabilities than multi-core CPUs with vector instructions.
Therefore, a GPU will finish its assigned vector-based
workload much faster than a vectorized multi-core CPU,
which consequently leading the CPU into becoming the
performance bottleneck. In certain scenarios, a combination
of multi-core CPUs and GPUs will introduce more

performance, such as when combining amulti-core CPUwith
older generation GPUs; which resulted in more performance
speedups, as demonstrated from experimental results in our
previous work, HT-HEDL [1]. Combining CPUs and GPUs
to achieve more performance, is highly affected by the
computing capabilities, and the number of used CPUs and
GPUs; in addition, the workload distribution and scheduling
policy also affects the CPU-GPU performance.

In the third deduction, we can observe that MP-
HTHEDL’s in-node scheduler perform well with CPU-based
evaluators as opposed to GPU-based evaluators, because
the strategy of scheduling fixed workloads to multi-core
CPUs that have symmetric processing cores, will result
in significant CPU-based performance gains. In the fourth
deduction, the speedups achieved by MP-HTHEDL through
different hypothesis evaluation types using all three worker
nodes (M1 − 3); can be ranked from smallest to largest
speedups based on the experimental results: Scalar only
(∼25.4 folds)→Vector only (∼67 folds)→ combined:
CPUs+GPUs (∼125 folds)→GPUs only (∼161 folds)

VI. CONCLUSION
The aim of this work, is to propose and evaluate an
approach that improves hypothesis evaluation performance
(a key task for ILP learners), which also improves hypoth-
esis evaluation throughput; by aggregating the computing
resources of networked machines. The proposed approach
targets DL-based ILPs and designed as a massively parallel
algorithm that exploits computing resources of existing Big
Data infrastructure, namely Hadoop. In terms of computing
performance, the proposed approach not only uses CPU cores
in their classical scalar processing fashion, but rather com-
bines CPU’s scalar processing capabilities with each CPU
core’s vector processing instructions – typically available
on modern multi-core CPUs. The combination of CPU’s
scalar processing with its vector-processing instructions,
has consequently lead into improving the performance of
CPU-based hypothesis evaluation even more, according to
experimental results.

Based on the experimental results, even on a cluster
with only a single worker node, the proposed approach has
yielded very large speedups up to 118 folds. When the
number of worker nodes is increased to 2, the performance
speedups has increased from 118 folds to ∼140 folds; the
performance was increased further when 3 nodes were used,
which resulted in the speedups to increase from ∼140 folds
using 2 nodes, to ∼161 folds using 3 nodes. However,
due to the overheads related to Hadoop, Spark, and MP-
HTHEDL’s in-node scheduler; the input data has to be large
enough to cancel out or justify the those overheads. Since the
proposed approach is based on the Big Data infrastructure
paradigm, this makes it inherit Hadoop’s and Spark’s large
scale processing capabilities; that can utilizes large clusters
of 100+ or 1,000+ nodes – to accelerate computations.
Therefore, the proposed approach in this work, will act as a
scalable hypothesis evaluation tool or a scalable component,
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for handling very heavy hypothesis evaluation tasks against
large knowledge bases for DL-based ILPs.

In terms of future work, other performance accelerators
can also be integrated with MP-HTHEDL to further improve
performance, such as hardware based accelerators like
FPGAs for example. Moreover, MP-HTHEDL’s scheduling
algorithm can be improved to increase the utilization effi-
ciency of GPUs in the cluster. Furthermore, MP-HTHEDL’s
logic-based representation can be extended to support other
expressive logic formalisms such as Horn clauses.
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