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ABSTRACT We present PineSU, a lightweight system that integrates Git with the Ethereum blockchain
for sharing electronic documents, enabling decentralized integrity protection and timestamping. PineSU
introduces the concept of Storage Unit (SU for short), which is essentially a Git repository along with
some descriptor files needed to interact with the blockchain. SUs can be open or closed. Open SUs serve
to secure Git repositories whose content may change in the future. At any moment, users can create a
Blockchain Synchronization Point (BSP for short) of their open SUs. This allows for a rigorous integrity
and authenticity verification of the corresponding digital documents. Whereas closed SUs are mainly a
mechanism to invalidate any change to a Git repository. They are useful when a set of files must be
definitively archived and made immutable, while enabling their sharing securely. As shown by a case study
on clones of two public repositories onGitHub (owned by the Italian government) containing reports and data
about the COVID-19 diffusion, PineSU has proven to be very effective in protecting Git repositories under a
few security hypotheses that are easy to guarantee in many circumstances. Furthermore, an experimental and
simulated performance evaluation demonstrates that the system scales well for storage units of increasing
sizes and structure complexity. Finally, a qualitative comparison with existing solutions shows the strengths
of PineSU against state-of-the-art approaches.

INDEX TERMS Blockchain, control version systems, Ethereum, Git, trusted data sharing, COVID-19.

I. INTRODUCTION
Developing effective solutions for sharing data is crucial to
speed up digital business transformation. As reported by the
Data Governance Act proposal of the European Commis-
sion [1], [2], by 2028 the data economy and the economic
value of data sharing should rise to e533 billion, under the
baseline scenario. This would increase to e544.4 billion if
specific actions will be implemented, including mechanisms
for the enhanced use of public sector data. Moreover,
according to Gartner, Inc. [3], the promotion of data sharing
can be a primary competitive factor for organizations, but the
lack of adequate security may discourage it.

Although many best practices and recommendations have
been issued for secure data sharing [4], [5], several challenges
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still remain. Besides the CIA triad, ensuring data trustworthi-
ness and high levels of trust in data sources will be essential
to achieve business value. In this respect, blockchain and
DLT technologies may play a central role in many application
domains; a limited list includes IoT [6], financial services [7],
healthcare services [8] and digital government [9], [10], [11].
Another challenge is to ensure data interoperability, namely,
the possibility of easily sharing, gathering and processing
data from different IT infrastructures by using standardized
formats and protocols [12]. Otherwise, only a few large online
platforms could benefit from the economic opportunities
of the digital economy. The Solid project, led by Sir Tim
Berners-Lee [13], represents one of the most ambitious
attempts to provide a set of open standards and technologies
for data interoperability.

This work focuses on sharing and tracking changes to
digital resources in a secure, trusted, and verifiable manner.
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FIGURE 1. Illustration of a series of blockchain registration points for a
storage unit.

By digital resources we mean a single file, a group of files,
or a portion of file system. The idea is to combine control
version systems with blockchain technologies, enabling
decentralized integrity protection and timestamping. As con-
trol version system we consider Git [14], which is arguably
the most effective and versatile one. Millions of software
developers use Git for collaborating and sharing their
code bases. Additionally, Git’s distributed nature facilitates
its integration into existing IT infrastructures, promoting
data interoperability. However, Git alone is not suitable
for applications that require strong protection of integrity
and authenticity, such as e-government and health care
services.

The aim of this work is to fill this gap by extending
Git’s functionality with a lightweight software layer, called
PineSU, which is backed up by a blockchain ledger. PineSU
logically wraps a Git repository into a so-called Storage
Unit (SU) by adding specific metadata into the repository
itself. SUs can be in one of two basic states: open or
closed. Open SUs are used to secure Git repositories whose
content may change in the future. At any moment, users
can create a Blockchain Synchronization Point (BSP for
short) of their open SUs (see, e.g., Fig. 1). This allows for
common notarization operations, such as proving that a file is
unchanged, confirming the origin of a file, confirming that a
file already existed at a certain date, an so on. Instead, closed
SUs are mainly a mechanism to invalidate any change to a
Git repository. They are useful when a set of files must be
definitively archived and made immutable, while enabling
a blockchain-based integrity and authenticity verification of
their content.

PineSU has been designed with the following philosophy
in mind:

• The system should be as lightweight as possible, without
relying on any DBMS technology. To keep track of all
the blockchain operations, only PineSU-dedicated Git
repositories should be used.

• SUs should add as little overhead as possible to the Git
repositories they wrap.

• There should be mechanisms to reduce blockchain-
related costs, minimizing the number of transactions,
and the amount of computational resources (memory
and CPU usage) of blockchain nodes. In particular,
it should be possible to synchronize or close more SUs
by executing only one transaction.

• PineSU should be largely blockchain agnostic, and
thus easy to adapt to different kind of blockchains,
including blockchains with limited programmability
(e.g., Bitcoin).

• Git itself should be easily replaceable by any other
distributed version control system.

The contribution and the structure of this article are as
follows.

• In Section II we provide the necessary background to
make the paper self-contained.

• Section III summarizes the existing projects and the
scientific literature related to our work.

• Section IV describes a simplified PineSU workflow and
illustrates the high-level architecture of our system.

• In Section V, we describe the data model adopted by
PineSU to turn standard Git repositories into SUs using
PineSU-specific hidden files. We also introduce a tree
data structure (called MerkleCalendar) that efficiently
tracks blockchain data into a PineSU-specific Git
repository. It enables efficient calendar-based queries
to retrieve SU fingerprints for a specific (registration)
timestamp.

• Section VI provides more details on how PineSU
interacts with the blockchain, what data are stored
locally and what data are stored in blockchain blocks.

• In Section VII we give a more in-depth description of
PineSU functionality.

• Section VIII draws some considerations about the level
of protection of SUs, under increasingly restricting
security hypotheses.

• Section IX describes a case study using PineSU to
protect two clones of two real Git repositories owned
by the Italian government and containing documents and
data about the COVID-19 infection diffusion.

• Section X illustrates the results of an experimental and
simulated performance evaluation of PineSU, expressed
in terms of memory and time consumption, for storage
units of varying sizes and structures.

• Section XI discusses the results of our research by
illustrating a qualitative comparison of PineSU against
existing state-of-the-art solutions.

• Section XII illustrates the main limitations of the
proposed solution.

• Section XIII concludes the paper and suggests further
development of our system.

II. PRELIMINARIES
In order to make the paper self-contained, we give the neces-
sary background and terminology on distributed control ver-
sion systems (Section II-A), Git in particular (Section II-B),
integrity and authenticity protection (Section II-C), and
blockchain technology (Section II-D).

A. VERSION CONTROL SYSTEMS
A Version Control System (VCS for short) is a software for
sharing, recording and tracking changes to files/directories
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over time, enabling users to easily recover specific versions
later. Resources (i.e., files and/or folders) under version
control are organized into repositories, which are treated in
isolation from one another. A repository is a directory in
the local file system, called working directory or working
tree, which includes specific metadata that are stored by the
VCS software in hidden folders and files. Not all content
of a working directory is also part of the corresponding
repository, as users may specify resources that must be
ignored. Also, whenever a new resource is created, the VCS
software must be informed in order to include it into the
repository (add command). VCSs can be roughly classified
as centralized or distributed. In centralizedVCSs, the version
control engine runs in a single (central) server. Users manage
their local repositories using lightweight clients, which need
to interact with the corresponding servers to carry out almost
all operations. Basically, clients have only a snapshot or
a shallow copy of a specific version (typically the latest
one) of the full repository stored in the server. Instead,
in distributed VCSs, each client fully mirrors the repository,
and has a complete versioned backup of all the data. Servers
are involved to synchronize repositories among clients, i.e.,
they are the bridge that makes their cooperation possible, but
most operations on a client’s repository do not require any
interaction with the corresponding server.

B. GIT
Git [14] is the most widespread distributed version control
system. It models every repository as a sequence of snapshots
(or stream of snapshots) of a miniature file system.Whenever
a user saves the state of their project (through a commit
operation), Git takes a snapshot of all files and folders under
version control at that moment, and stores the snapshot in
its local database; files that have been modified (since the
last commit) are entirely included in the latest snapshot,
while every unchanged file is not duplicated, and just a link
to the previous identical copy is inserted in the snapshot.
Every resource in a repository is internally identified by its
checksum (SHA-1), which allows Git to efficiently detect
changes in files, and makes any undetectable change very
unlikely. Moreover, nearly all Git operations only add data
to its database, including the file removal operation (rm
command). This ensures that any change is reversible, with
basically no risk of losing data permanently.

Every file in a working directory can be in one of two
main states: untracked or tracked. An untracked file is a
file that was never added to the repository or that has been
removed from the set of tracked files (rm command). A newly
created file is therefore in the untracked state. All the other
files are tracked and can in turn be in one of three states:
unmodified (or committed), modified and staged. A tracked
file is unmodified (or committed) when it coincides with its
latest version in the local database. If any change occurs, the
state switches to modified. An untracked file or a (tracked)
modified file gets staged if it is explicitly marked by the user
to go into the next snapshot with the add command. More

specifically, the add command adds or updates the target
resource in the staging area (or index) of the repository, which
is a special hidden file containing information about what
will be included in the next snapshot. Basically, the staging
area contains all currently tracked files, with a flag for each
file that has been modified since the last snapshot. A commit
operation (commit command) creates a new snapshot that
incorporates all the changes specified in the staging area, and
stores this snapshot in the local database. As a result, the
staging area will be cleaned, i.e., flags indicating modified
staged files will be removed, and all the previously (modified)
staged files will get committed (i.e., unmodified).

Git users share information and collaborate with each
other through remote repositories on servers, which can be
synchronized with their own local repositories. Pushing and
pulling data to and from remote servers are typical tasks when
working on a shared project. The main commands to work
with remote repositories are: clone, fetch, pull and push. The
clone command creates a full-fledged working copy of the
target repository, including a remote repository somewhere
in Internet. The fetch command can be used to pull down
all the resources from a remote project that are not yet in
the (local) working directory, without modifying or merging
the current local content with the downloaded data. While the
pull command is similar to fetch, except that it also tries to
automatically merge the downloaded data into the current
local content. Finally, the push command uploads the local
commit to the server, so that the local and remote projects are
in sync. For further details about Git and its usage, we refer
the reader to [15].

C. INTEGRITY AND AUTHENTICITY PROTECTION
Integrity is a pillar of information security with a broad
meaning, it can be seen as the property that information
has not been altered by unauthorized subjects or entities.
A stronger property is the authenticity, which means that
besides the integrity even the origin of specific information
is guaranteed, where the origin is the subject or entity that
either created or approved that information. Authenticity
therefore implies integrity, but the converse is not true in
general. Protecting integrity and authenticity is a fundamental
requirement to make data and resources trustworthy. This is
accomplished by implementing appropriate security mecha-
nisms, which typically fall into two main classes: proactive
(or preventive) mechanisms and reactive (or detection)
mechanisms. Proactive mechanisms try to prevent violations
through suitable access control strategies, i.e., their goal is
to avoid that unauthorized subjects interfere with protected
resources. Whereas reactive mechanisms came into play
after an integrity breach has occurred, and they should
restore the earlier information state. Regardless of the type
and level of sophistication, all the reactive mechanisms are
triggered only if an integrity violation is detected, making
the detection of integrity attacks of paramount importance.
Indeed, by integrity protection, it is often meant only the
ability to detect integrity attacks.
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This work mainly concentrates on blockchain-based secu-
rity mechanisms to detect integrity attacks on Git repositories
and to protect their authenticity. However, by leveraging
the built-in features of Git, the recovery of the right state
of corrupted repositories is also possible. We remark that
the attacker could be the repository owner themselves when
they no longer have the write privilege. We now give more
technical concepts and tools on this subject that will be
extensively used later on.

Let m = m(t) be any digital resource whose content
may vary over time; by content, we mean the low-level
sequence of bytes encoding m. Assume that no authorized
subject has modifiedm since a specific instant t0. Throughout
this paper, unless otherwise specified, by integrity protection
we mean providing a strong and verifiable evidence that
m has not been modified since t0, i.e., m(t0) = m(t1)
where t1 represents the current time. We will concentrate
on protecting the integrity of stored information; namely,
integrity protections for the transmission and processing
phases are not considered. A common strategy to protect the
integrity of m is to use a compact cryptographic redundancy
cm, of fixed length (no more than 512 bits), such that each
bit of cm depends on every bit of m unpredictably and
with uniform probability. It follows that any change to m,
even imperceptible, approximately affects half of the bits of
cm (avalanche effect). An attack on integrity can be easily
detected by testing whether cm(t0) and cm(t1) differ, provided
that some security assumptions hold. More specifically, there
are two possible scenarios depending on whether cm(t0)
(differently from m) can be stored in a secure place, or not.
In the first scenario, by the security assumption, an attacker
cannot modify cm(t0), thus they cannot bypass the integrity
check, even if they know how to compute cm for any givenm.
No cryptographic secret is needed to compute cm in this case.
While in the second scenario, an attacker can modify both
m and cm(t0), thus the redundancy cm must also depend on
a cryptographic secret not known to unauthorized subjects.
This prevents an attacker from modifying m and then cm
consistently.

In this work, we consider the first scenario, where the
secure place to store cm(t0) is the blockchain. To produce cm
we use a message digest generated by a cryptographic hash
function (SHA-256 [16]). A cryptographic hash function
is a deterministic function h : {0, 1}∗ → {0, 1}b that
takes in input a binary string m of any length, and returns
a fixed-length output h(m) of b ≥ 128 bits; typical
values of b are 128, 160, 224, 384, 256 and 512. The
output h(m) is called a message digest of m, which depends
only on m and on the chosen hash function. Besides the
avalanche effect, a cryptographic hash function must satisfy
two fundamental properties known as inversion resistance (or
pre-image resistance) and collision resistance. The inversion
resistance means that, for a given hash h, it should be
infeasible to find an input m such that h = h(m). In practice,
the only strategy for inverting a hash is a brute force search

in the input space, which requires exponential time. For this
reason, cryptographic hash functions are a particular type of
one-way functions: they are easy to compute, yet hard to
invert. Instead, collision resistance means that finding any
two distinct inputsm1 andm2 such that h(m1) = h(m2) should
not be feasible; such a pair of inputs is called a collision.

The absence of collisions along with the acceptance of
arbitrary length inputs make cryptographic hash functions
one of the best ways to get fingerprints of digital resources,
where a fingerprint is a compact sequence of bits that
identifies a digital resource in the whole cyberspace. The
integrity of a resource m can be protected by storing its
fingerprint h(m) in a secure storage place. But if we have
a large set of resourcesM = {m1,m2, . . . ,mk} (k ≫ 1),
storing k independent fingerprints may bememory inefficient
and expensive. In this case, a convenient solution is to store
only an accumulator value aM of the whole setM, using a
suitable cryptographic accumulator. For the purpose of this
paper, a cryptographic accumulator is a generalization of a
cryptographic hash function, which has an arbitrarily large
set of inputs, rather than just one. For each input mi, it also
provides a compact witness wi (or proof) to verify whether
mi is a member ofM. More specifically, to verify whether
M(t0) coincides with M(t1) it suffices to compare aM(t0)
and aM(t1). Whereas, the membership test for a resource
mi can be efficiently performed by an algorithm that takes
in input mi, wi and aM, without knowing the elements mj
with j ̸= i; it is typically accomplished by first computing
a binary string a(mi,wi), and then by verifying the equality
a(mi,wi) = aM. In particular, if a(mi(t1),wi(t0)) = aM(t0),
then mi(t1) = mi(t0) ∈ M(t0), which guarantees that the
integrity of mi has been preserved.

Cryptographic accumulators were formally introduced
by Benaloh and de Mare [17], since then they have
been employed in several computer security applications,
including authenticity [18] and anonymity [19] protection
and, recently, in improving the efficiency of blockchain
technology [20], [21]; for further details we refer the reader
to [22] and [23]. Many cryptographic accumulator schemes
are based on the Merkle tree data structure [24], [25]; for a
gentle introduction to this subject, we refer the reader to [26].

In PineSU, we use specific versions of Merkle trees that
preserve a prescribed ordering of the elements of M. For
a given hash function h(·), and for an ordered set of digital
resources M = (m1,m2, . . . ,mk ) (k > 1), a Merkle tree
mkt(M) built on top ofM is a complete binary tree with k
leaves such that (a) the i-th leaf (in the left-to-right order) is
associated with mi and is labelled with h(mi); and (b) each
non-leaf node n is labelled with a hash h(n) obtained by
suitably combining the hashes h(n.l) and h(n.r) of its left
and right children n.l and n.r , respectively; for example h(n)
can be the hash of the concatenation of the children’s hashes:
h(n) = h(h(n.l)||h(n.r)). The accumulator value aM is the
hash of the root node of mkt(M). For any 1 ≤ i ≤ k , the
witness wi of a resourcemi is its authentication pathπi, which
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basically consists of the siblings hashes of all nodes on the
path from mi to the root, along with a ‘‘left’’ or ‘‘right’’ label
to specify whether a sibling hash represents the left or right
subtree, respectively. More formally, let πi = hi1hi2 . . . hit
be the authentication path of mi, where hij (1 ≤ j ≤ t) is the
hash of the j-th sibling in the path frommi to the root. Also, let
si = bi1bi2 . . . bit be the binary string encoding the left/right
position of each sibling, i.e., bij = 0 (resp. bij = 1) if the
j-th sibling is a left child (resp. right child). The witness wi of
mi can be defined as the pair ⟨πi, si⟩. It is easy to see that wi
requires O(t) = O(log|M|) space, and that the accumulator
value aM can be computed in O(t) = O(log|M|) time by
knowing only wi and mi.
Concerning the authenticity protection, as already men-

tioned, it can be seen as a stronger form of integrity
protection which also includes mechanisms to verify the
origin of a given resource. This is typically achieved by
using asymmetric encryption techniques, in particular digital
signature algorithms. In this context, every subject (person
or entity), say Bob, has a pair of related keys ⟨PRB,PUB⟩,
known as private and public keys of Bob. The fundamental
assumption is that only Bob knows his private key PRB,
whereas his public key PUB, as the name suggests, can
be known to everyone without exposing the private key.
To authenticate a resource m, Bob has to digitally sign it, i.e.,
he encrypts m using his private key; we may write [m]B =

E(PRB,m) where [m]B is the digital signature of m signed
by Bob, and E(·, ·) is the adopted asymmetric encryption
function.Whoever knows Bob’s public keyPUB, the resource
m and the signature [m]B, can verify the authenticity of m
by testing whether the equality m = D(PUB, [m]B) holds;
D(·, ·) is the asymmetric decryption function associated with
E(·, ·). Functions E(·, ·) and D(·, ·) are one the inverse of the
other, provided that they use different keys of the Bob’s pair,
i.e.,D(PUB,E(PRB,m)) = m. Due to computational reasons,
asymmetric encryption algorithms pose serious restriction on
the input length (at most a few thousand bits), it follows
that fingerprints or cryptographic accumulators of digital
resources are typically signed, rather than the resources
themselves.

D. BLOCKCHAIN
Different types of blockchain technologies have been
developed since the inception of the Bitcoin system [27].
In this work, we mainly refer to public and permissionless
blockchain like Bitcoin [27], [28], [29] and Ethereum [30],
[31], [32]. However, most concepts also apply to other types
of blockchains.

Literally, a blockchain is a logical data structure consisting
of a continuously-growing list of timestamped records, called
blocks. It is physically stored in every node of a Peer-to-
Peer (P2P) network, i.e., each node (or peer, or miner)
maintains a whole replica, and no special or central nodes
exist; namely, any two nodes are completely interchange-
able. A distributed and decentralized cryptographic protocol
ensures synchronization between peers and immutability of

blocks. A block is a container of information that consists of
a header and a list of transactions. A transaction typically
describes an ownership transfer of some digital asset (e.g.,
cryptocurrencies).More in general, bymodeling a blockchain
as a state transition system [31], [32], a transaction represents
a state transition from one consistent state to a new consistent
state, according to a prescribed set of validation rules.
There also exist mechanisms to include arbitrary data within
transactions, with possible constraints on the maximum size.
Indeed, there are subtle tricks to attach data to Bitcoin
transactions [33], whereas Ethereum does provide an optional
data attribute for this purpose [34].

Both blocks and transactions are uniquely identified by
their cryptographic hash (i.e., by their fingerprint). Blocks
can also be identified by their height—the integer represent-
ing the position in the blockchain, starting from zero—but in
case of a temporary fork this does not guarantee uniqueness,
as there could be two or more blocks with the same height.
The block header includes metadata such as the reference to
the previous block (i.e., its cryptographic hash), a timestamp,
a nonce, and a Merkle tree root of all the transactions in
the block. The block hash is actually the hash of its header,
and it must be lower than a dynamically adjusted threshold,
called target hash, to be accepted by the P2P network. Nonces
have to be chosen so as to guarantee such constraint. Due to
the inversion resistance of cryptographic hash functions, this
requires a significant, but still feasible, computational effort,
called Proof-of-Work (PoW), which must be remunerated
to make the system sustainable. In particular, miners are
remunerated in two different ways: with the PoW reward and
with transactions fees. The first transaction of each block,
called coinbase transaction, generates new coins equal to the
PoW reward; through this transaction a miner assigns itself
both the PoW reward and the fees of all transactions in the
block.

Blocks can be considered immutable, because any
modification, even imperceptible, propagates to all the
subsequent blocks, invalidating the corresponding PoWs.
Thus, an attacker should recompute all these PoWs and
then convince most of the peers to update their database
consistently. Transactions are created by software, called
clients or wallets, which are typically controlled by human
beings. Every wallet sends transactions to one or more nodes
of the P2P network, which, in turn, broadcast them to the
whole network. Statistically, once a transaction is stored in
a block followed by six or more other blocks, it can be
considered definitively valid by every peer.

Validation rules always include the authenticity of trans-
actions; transactions must be digitally signed by the owners
of digital assets being transferred, or in general, by those
users who are authorized to trigger a specific state transition.
However, protecting the authenticity is not enough to
guarantee state consistency. Usually, several other validation
rules have to be satisfied, some of them depend on the timing
of operations, or briefly on the current state of the blockchain.
Classical examples are the validation rules to prevent double
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spending attacks. In absence of such rules, a legitimate user
can spend some of its assets at an instant t0, and just after
they can illegitimately spend again the same assets, possibly
by specifying a fake instant t1 < t0. Transactions timestamps
established by users’ wallets are therefore not reliable. This
is why blocks are timestamped and chained into a list: once a
transaction has been included in a block, a reliable timestamp
is that of the corresponding block.

One of the distinctive features of a blockchain is its
consensus mechanism, which is the way nodes agree on
a single state or single truth, that is on a single chain of
blocks with no branches. In a fully decentralized blockchain,
like Bitcoin and Ethereum, all nodes of the P2P network
compete with each other to create the next last block Bn.
As there are several thousands of nodes, Bn is created by
a two-step procedure: (S1) first, one or very few nodes are
randomly selected to propose their own Bn; (S2) then, the
remaining nodes vote the proposed blocks, by expressing
their acceptance or rejection. This process may lead to some
(temporary) forks involving the ending part of the blockchain.
But as soon as one branch gets longer than the others of six
or more blocks, then all nodes consider this branch as the true
one.

Bitcoin (and Ethereum until September 2022) uses aProof-
of-Work (PoW) consensus protocol, as it strongly relies on the
effort for computing the PoW of a block. In particular, Step
S1 is accomplished by rejecting blocks with no or incorrect
PoW, which is equivalent to randomly select a very limited
number of nodes with uniform probability (i.e., those nodes
that have solved the PoW for their block), assuming that
all nodes have the same computational power. Concerning
Step S2, a node working on a block B′

n accepts a block Bn
proposed by some other node, by stopping working on B′

n,
and by starting working on a new block B′

n+1 which points to
Bn as previous block. Unfortunately, a pure PoW consensus
mechanism turns out to be very inefficient in terms of
energy consumption, throughput (i.e., number of confirmed
transactions per second) and latency (i.e., confirmation time
of a transaction). In general, fully decentralized blockchains
suffer from bottlenecks and scalability issues [35], therefore
they might not be suitable for applications that require
fast or immediate transactions, with low or even no fees.
On September 2022, Ethereum switched from Proof-of-
Work to Proof-of-Stake (PoS). Proof-of-Stake is a much
more efficient consensus mechanism, where validators stake
capital, which acts as a security deposit that can be lost if they
behave dishonestly or lazily.

Another fundamental feature of a blockchain is the
level of programmability, that is the possibility to modify
existing validation rules, or to introduce new ones, through
specific instructions written in a high level language. In a
fully programmable blockchain like Ethereum, third-party
developers can create decentralized programs that run on top
of the blockchain; the P2P network can be viewed as a decen-
tralized virtual machine for the execution of decentralized
applications (or briefly dapps). These programs are called

smart contracts, as they are typically used to create new
digital assets and to manage their ownership. Currently, smart
contracts in Ethereum can be implemented in Solidity [36]
or Vyper [37]. Solidity is a Turing complete programming
language, Vyper is not. Vyper has been introduced to increase
the security of smart contracts by preventing bugs and
vulnerabilities that are difficult to detect in Solidity.

Unlike the Ethereum platform, Bitcoin has very lim-
ited programmability. It does provide only a very simple
stack-based scripting system, called Script [38], which is
not Turing complete. In fact, Script is not intended to
support general purpose smart contracts, but rather it provides
enough flexibility to implement custom policies for spending
Bitcoin.

III. RELATED WORK
Modern data-sharing solutions typically use cloud storage
and computing services, which act as intermediaries and may
have complete control of the shared information. It makes
protecting integrity and confidentiality challenging [39],
compared to on-premises solutions, especially when the
cloud service may behave dishonestly or is not trusted.

In this section, we give an overview of the relevant
literature and projects about how to share data in a trusted,
secure, and verifiable manner. Our focus is on the protection
of integrity and authenticity. We identified three main
approaches, from the more general to the more specific and
similar to our work.

A. OFFCHAIN
By offchain approaches, wemean those that are not based on a
blockchain. They use specific cryptographic protocols to pro-
tect the shared data [40] and typically rely on authenticated
data structures obtained by suitably combining existing data
structures with specific cryptographic accumulators [41],
[42]. These approaches assume that data sources (i.e., data
owners) are trustworthy and never behaves maliciously, while
there could be untrusted third-parties. A typical scenario
involves a data owner, one or more third-party untrusted
publishers (e.g., data replication servers), and one or more
clients. Each client accesses the data by submitting a specific
query to a publisher, which responds with an answer that
includes a verifiable proof. To verify the authenticity of
the answer, the client uses the proof and some digest value
previously provided by the owner through a secure channel.
Clients can reliably detect if a publisher is trying to fool them,
and thus they can connect to another publisher. Moreover,
if an adversary is unable to change the digest value (sent by
the owner to the client), they cannot fool clients, even if they
compromise publishers. There are several challenging aspects
in the design of effective authenticated data structures.
In particular, the verifiable proof should be succinct, efficient
to compute and verify, and computationally infeasible to
forge. Another critical issue is whether frequent updates by
data owners can be efficiently performed, in this case, the
authenticated data structure is said to be dynamic. Several
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papers have been devoted to provide various schemes of
authenticated data structures. Martel et al. [41] developed
a unified framework which generalizes many previously
published schemes, by introducing a simple and abstract
data model, called Search DAG. The Search DAG model
makes it possible to turn existing data structures, including
hybrid data structures like combinations of trees, arrays, and
linked lists, into authenticated data structures. The model has
been designed assuming fairly static data sets, however, for
some underlying data structures, updates can be efficiently
performed. Tamassia and Triandopoulos [43] introduce a new
model for distributed data authentication over an untrusted
P2P network, and present an efficient construction of a
Distributed Merkle Tree (DMT), which realizes that model.
Based on the DMT they realize an efficient Authenticated
Distributed Hash Table (ADHT), which supports authenti-
cated deletions. They also present aDistributed Authenticated
Dictionary, a more general data authentication scheme, based
on the ADHT. Papamanthou et al. [18] present two schemes
that implement an efficient authenticated hash table based on
cryptographic accumulators. The proposed schemes provide
constant verification time, constant proof size and sublinear
query or update time.

There is a substantial difference between the solution
proposed in our work and the aforementioned papers. All
these approaches assume that data owners are trustworthy
and have a full control of what data can be written, updated
and deleted (when deletion is supported). Instead, in our
model, even data owners must not perform undetectable
data modifications. This requirement can be guaranteed since
blockchain blocks are immutable and timestamped. However,
we cannot rule out that the blockchain can be replaced
by a platform based on some append-only authenticated
data structure, but currently this direction seems not yet
viable [44].

B. BLOCKCHAIN-BASED
Several blockchain-based methods have been proposed for
trustworthy data sharing [45]. Most of them assume that
the actual data are maintained off-chain, whereas only pairs
⟨data-identifier, data-hash⟩ are stored into the blockchain [46]
through amapping in a smart contract. The validation consists
of comparing the actual data hash against the hash on the
blockchain. Some solutions combine the InterPlanetary File
System (IPFS) [47] and blockchain smart contracts. For
example: Nizamuddin et al. [48] propose a method to protect
originality and authenticity of digital content published
online, by storing such content in IPFS, and by tracking
their publication history through an Ethereum smart contract;
Khatal et al. [49] introduce a secure decentralized application
framework for sharing files and data provenance, which uses
IPFS as its data storage layer, and an Ethereum dapp for
access control of digital content and storage of provenance
data; Azizi et al. [50] provide a decentralized solution to
store log data in IPFS, using an Ethereum dapp to protect
the integrity. Some other solutions exploit the blockchain to

securely share healthcare data produced by IoT devices and
stored off-chain on a decentralized directory service [51] or in
the cloud [52]. Blockchain-based approaches have also been
extensively proposed for integrity auditing in cloud storage.
The typical scenario is pretty the same as that mentioned for
authenticated data structures: data owners do not trust cloud
storage providers, so they need to protect the integrity of their
data in the cloud. Often, the integrity auditing process relies
on a (supposed trusted) third-party auditor to reduce the user’s
workload during the verification phase. For a comprehensive
overview of integrity auditing schemes in cloud storage,
we refer the reader to [53].

Unlike the aforementioned papers, our work focuses on
securing Git repositories, irrespective whether they are stored
in the cloud or on-premises. Most of the efforts are devoted
to design a cost-effective solution based on a lightweight
software, without relying on any third-party service, except
a blockchain. Furthermore, all the off-chain data are stored
in Git repositories, and no DBMS technology is used.
Concerning IPFS, PineSU currently does not use it, and a
possible adoption of IPFS depends on how compatible it is
with Git’s standard workflow.

C. COMBINED: DISTRIBUTED VCS AND BLOCKCHAIN
To the best of our knowledge, there are only two scientific
articles [54], [55] that deal with blockchain and file version
control. The first work [54] describes a decentralized
document version control solution obtained by storing digital
resources on IPFS, and by leveraging the security and
decentralization of the Ethereum blockchain. The proposed
solution has two primary actors: the developers and the
approvers. Developers create and upload documents to IPFS,
then they request for their approval, from the registered
approvers, by providing the corresponding IPFS hashes. Suit-
able smart contracts manage the document version control
functionality among creators and developers. In particular,
they enable document version approval through a consensus
by approvers.

The second work [55] presents the architecture of a
decentralized version control system built on top of a
private blockchain (specifically, Hyperledger Fabric1) and
IPFS. The proposed architecture, named BDA-SCV, uses
smart contracts to implement suitable access controls and,
in particular, to manage the upload of documents. There are
two types of users in BDA-CSV: developers and authorizers.
The former are the classical users of any version control
system. Whereas the latter are administrative users who
provide permissions to developers, i.e., they are responsible
for adding developers to the private blockchain. However,
developers cannot add, edit, or delete code files.

The aim of these works significantly differs from ours,
as we do not design a version control system from scratch,
but we rely on Git. Furthermore, we are not aiming to
achieve a decentralized consensus on the content of a

1https://www.hyperledger.org/projects/fabric
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FIGURE 2. Simplified workflow of PineSU illustrated through a UML activity diagram. Create new Storage Unit turns a
local directory into an open storage unit, by first making it a Git repository, and then adding PineSU-specific hidden files
that appropriately describe the current content of the directory. Update SU updates the SU hidden files to reflect the
recent changes in the local directory, since the last updated state. Synchronize with blockchain stores in the blockchain
the hash root of a suitable cryptographic accumulator of the whole SU content. Verify integrity with blockchain tests
whether the SU is exactly the same as it was just after the last blockchain synchronization. Export blockchain verifiable
bundle creates a compressed archive of user-selectable files/folders in the SU, along with a special descriptor file which
enables a blockchain-based integrity verification of all the resources in the bundle. Close Storage Unit is similar to
Synchronize with blockchain, but also prevents any undetectable change, thus any further modification to the SU will
be considered invalid. Colors encode three distinct aspects of the previous commands: whether they change local
metadata, whether they involve some interaction with the blockchain, and whether they are repeatable or not.

storage unit. Instead, we exploit the blockchain immutability
and verifiability to provide decentralized authentication and
timestamping for the state of a storage unit at a given
date. It makes unauthorized modifications easily detectable,
including retroactive alterations by storage unit owners.

Concerning existing projects aimed at combining Git
and blockchain, we found only one by Cardstack,2 named
Gitchain [56], [57], which has important similarities to
PineSU. Gitchain is a ‘‘chain-agnostic Layer 2 application
state synchronization and syndication protocol based on
Git’’ [58]. A group of digital resources to be shared with
Gitchain are firstly bundled together into a Git repository.
The bundle is then compressed into a single zip-like archive
file, obtaining what is called a packfile. The packfile is then
stored off-chain in some distributed storage system, such as
a shared drive on the cloud, a distributed file system like
IPFS, or another type of blockchain-driven storage system.
Next, a link to the packfile and its hash are stored in
some distributed ledger (e.g., on the Ethereum blockchain);
whoever gets this link can find the packfile and recreate the
original content.

Although PineSU and Gitchain share many aspects, a key
difference is that our system exploits a suitable cryptographic
accumulator to reduce the data stored on-chain, rather than
compute the hash of a single compressed archive. Moreover,
much of our work is devoted to define metadata, data
structures, protocols and batching techniques that enable a
cost-effective blockchain-based authenticity verification of
Git repositories through a lightweight software.

2Cardstack - The Collaborative OS for Web3 https://cardstack.com/.

IV. PineSU WORKFLOW AND ARCHITECTURE
A simplified workflow of PineSU is depicted in Fig. 2,
through a UML activity diagram. As already mentioned,
PineSU organizes digital resources into Storage Units
(SUs), where each SU consists of a Git repository along
with additional metadata stored in hidden files within
the repository itself. The first step of a typical workflow
is the creation of a new SU (create command), which
will be open by default. Subsequently, the corresponding
(local) working directory can be modified as many times
as necessary, but the SU metadata will not automatically
update, i.e., they will no longer be consistent with the
modified content. To get a new consistent state, the storage
unit needs to be explicitly updated by running the update
command. Before a blockchain registration, a storage unit
must be staged, which adds it to the next group of
SUs that will be registered, spending only one transaction
(batching).

An open SU can be synchronized with the blockchain by
creating a Blockchain Synchronization Point (BPS for short),
which enables a blockchain-based integrity verification of
the latest updated content. This is obtained by storing in
the blockchain (sync command) the root hash of a suitable
cryptographic accumulator (e.g., the root hash of a Merkle
tree) of the SU content, relative to the time of the last
update operation. Once an SU has been synchronized, its
content can be checked against the blockchain (checkbc
command); anyone who imports an SU clone can verify its
integrity by leveraging the security of the blockchain. It is
also possible to export a bundle of files with specificmetadata
(including the whole SU content), so that the integrity of
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FIGURE 3. Simplified state diagram of a storage unit. Colors encode the degree of consistency of the SU and the possibility
of modifying it or not. Consistency can be local or global. Global consistency means that both the content of the (local)
descriptor files of PineSU and that of the blockchain reflect the content of the SU. Local consistency means that only the
content of the local descriptor files reflects that of the SU. When there is no consistency at all, neither global nor local,
there is global inconsistency.

FIGURE 4. High level architecture of PineSU. Black arrows show messages that are triggered by the corresponding
source entities, whereas gray arrows show passive reply messages. Software modules of PineSU are highlighted with
distinct background colors. White and gray backgrounds indicate libraries or external (local or remote) services that
PineSU relies on.

all the resources in the bundle can be verified with the
blockchain. Finally, if one wants to definitively freeze an SU,
invalidating any further change, it is possible to close it by
creating a Blockchain Closing Point (BCP for short). PineSU
prevents any change to a closed SU, but of course, it still
allows for a blockchain-based integrity verification, as well
as the export of verifiable bundles, exactly as it happens for
an open synchronized SU. From now on, we will refer to
both the Synchronize with blockchain and Close Storage Unit
operations as blockchain registration operations, or simply
blockchain registrations. We will see that there are two
main approaches for implementing blockchain registrations,
depending on the desired trade-off between security and
costs.

To better understand how PineSU works, a simplified
state diagram of an SU is also shown in Fig. 3. The
possible states of an SU are determined by three boolean
state variables: open/closed, synchronized/unsynchronized
and updated/non-updated. However, not all combinations
are possible, in fact an SU can only be in one of the
following four states: open unsynchronized updated (ouu
for short), open unsynchronized not-updated (oun for short),
open synchronized updated (osu for short) and closed
synchronized updated (csu for short).

PineSU is a lightweight software system3 that is built on
top of a Git local client [14], [15] and of the Ethereum
blockchain [31], [59], a high level architecture is shown
in Fig. 4. The main architectural components are listed
below.

• PineSU CLI (Command Line Interface). Users interact
with PineSU through a JavaScript terminal emulator,4

similar to the original command line of Git. Besides the
specific commands of PineSU, also basic Git commands
are supported, so users do not need to interact with Git
in a typical workflow.

• PineSU BEL (Back-End Logic). This is the core
component of PineSU. It manages all the storage units
and controls the communication with the blockchain,
with the local Git client and, indirectly, with remote Git
servers. The back-end logic also takes care of batching
blockchain registrations, in such a way that with a single
blockchain transaction a whole set of SUs are registered,
and not only one. Moreover, it maintains a temporal

3A first prototype implementation in JavaScript is publicly available at
https://github.com/plspeziali/PineSU.

4Based on the Inquirer.js JavaScript library https://github.com/
SBoudrias/Inquirer.js.
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FIGURE 5. List of PineSU commands shown in the startup screen.

cryptographic accumulator, named MerkleCalendar,5

to efficiently recover specific time-referenced crypto-
graphic strings, for any given blockchain registration,
which are necessary to verify the integrity and authen-
ticity of an SU. The MerkleCalendar and its associated
information are stored in a special Git repository whose
access is restricted to PineSU.

• PineSU EC (Ethereum Connector). PineSU is largely
blockchain agnostic, i.e., it can be easily adapted
to different blockchains, including blockchains with
limited programmability. This is achieved by decoupling
the back-end logic from the chosen blockchain, through
a blockchain-specific connector. However, at the time
of writing, only the connector for Ethereum has been
developed by exploiting the web3.js library [60], [61].

• PineSUGC (Git Connector). This component decouples
the back-end logic from Git. It takes care of the
interaction with the local Git client and, indirectly, with
remote Git servers, by using the simple-git library [62].

V. PineSU DATA MODEL
In this section, we describe the datamodel adopted by PineSU
to represent storage units and to support all the operations
described in the basic workflow. The data model consists
of three main entities: Storage Unit, Storage Group and
MerkleCalendar. Below we give a detailed description of
each of these entities.

A. STORAGE UNIT
As already said, PineSU logically wraps a Git working
directory into a single SU. All the SU resources and other
important properties are described in a JSON hidden file,
named .pinesu.json, which is stored in the root folder of the
working directory and tracked by Git itself; see also Fig. 6
for an illustration. Note that, there are other PineSU-specific
hidden resources in the working directory, but they will be
described later on.

The SU metadata in .pinesu.json consists of four main
properties: hash, header, filelist, and offhash. The
hash property provides the cryptographic fingerprint of the
whole SU and some relevant metadata relative to the time of

5A recent implementation in TypeScript is publicly available at
https://github.com/plspeziali/merkle-calendar.

the last update operation. It suitably depends on the content
of the header properties, which, in turn, depends on that
of the filelist property. We now describe each of the
aforementioned main properties.

1) offhash
The content of the offhash property, as the name suggests,
does not affect the SU hash, since this property includes
data that depend on the SU hash itself; so, the only way
to break the unavoidable loop of dependencies is to make
the SU hash independent of this property. More precisely,
bcregnumber and bcregtime give, respectively, the total
number of blockchain registrations for this SU, and the
timestamp of the last registration. Whereas, the closed flag
provides the current open/closed state of the SU. Observe
that the values of all these properties depend on the type
(synchronization or closing) and result of the last blockchain
registration, which needs the SU hash to be performed.

2) filelist
The filelist property describes the SU content through
a list of strings in lexicographic order, where each item
consists of the relative path of a file or folder to the working
directory, a colon separator, and the corresponding (one-
way) fingerprint. The fingerprint of a file file is the
cryptographic hash (SHA-256) of the string consisting of the
relative path of file followed by the cryptographic hash
of the file itself (hash(file)) in hexadecimal format (see,
e.g., Table 1). The fingerprint of an empty folder is the
cryptographic hash of its relative path. While the fingerprint
of a non-empty folder is the hash of its relative path followed
by the fingerprints of its resources in lexicographic order
(with respect to their relative paths).

3) header
The header property contains important SU attributes and
other fundamental data that are needed to perform effective
integrity checks. In particular, SUs are distinguished by their
universal unique identifiers (uuid attribute) [63], and they
are publicly available at unique URLs (remote attribute); the
URL format consists of an https server name followed by the
uuid string. Each SU has one owner (owner attribute) that
is identified by a blockchain public address; in the current
implementation, the public address of an externally owned
account in Ethereum. It is also included a human-readable
name, a description and a creation date (crtime attribute).
In order to verify the consistency of an SU history, as it

will better clarified in the next sections, for each attribute
x of the offhash property, there is the corresponding
prevx attribute, of the header property, which tracks the
value of x one step back in the past. These attributes are
prevbcregnumber, prevbcregtime and prevclosed.
For the same purpose, there are also two additional attributes
prevsuhash and prevmkcalroot; namely, prevsuhash
stores the previous SU hash, whereas prevmkcalroot
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FIGURE 6. Illustration of a storage unit of PineSU. (a) Files and folders of the SU working directory that are tracked by
Git. (b) A possible .pinesu.json hidden file, which is stored in the root folder and describes the SU properties and its
content, excluding the PineSU-specific hidden resources. JSON keys, string values and non-string values have been
colored in blue, teal and red, respectively.

TABLE 1. Illustration of the procedure for computing fingerprints of files and folders in an SU; the vertical bar symbol | represents the string
concatenation operator.

contains the previous MerkleCalendar root hash. The (non-
hidden) working directory content is succinctly represented
by the merkleroot attribute, which is the root hash of a
complete binaryMerkle tree whose leaves are the fingerprints
of the SU resources. The left-to-right order of the leaves
is given by the lexicographic order of their corresponding
relative paths (see, e.g., Fig. 7). It is not hard to see that there
is no ambiguity in the definition of this Merkle tree, and that
its depth grows logarithmically with the number of resources
in the working directory.

4) hash
The hash property provides the SU (global) hash, which
is the cryptographic hash of the header content, after
removing (if any) line breaks, tab characters, and separating
white spaces. We remark that the SU hash depends on
its previous hash (through prevsuhash), on the previous
MerkleCalendar root hash (through prevmkcalroot), on the
working directory content (through merkleroot) at the time
of the last update, but does not depend on the offhash

content.

B. SU RESOURCES BUNDLE
PineSU enables users to export a blockchain verifiable
bundle of a subset of SU resources. A bundle consists

of a compressed archive, and the included resources must
preserve the naming and the hierarchical structure of the
SU they are extracted from. A special descriptor file
.bundlepinesu.json is also added in place of .pinesu.json.
It contains enough information for computing theMerkle root
hash of the SU, even if some (or many) resources are not
included in the bundle. The .bundlepinesu.json file is indeed
obtained by copying the .pinesu.json file, and by replacing
the ending name of every entry in the filelist array that
is not in the bundle with a $count placeholder. Observe
that if an SU contains a folder that is not present in the
bundle, its name and that of its resources will not appear in
the .bundlepinesu.json file, but only their fingerprints, which
drastically reduces the exposition of information that a user
does not want to share.

C. STORAGE GROUP
According to the basic workflow depicted in Fig. 2, PineSU
provides a Stage for batching operation to make blockchain
registrations cheaper. Indeed, when two or more SUs must be
registered, they can be grouped into a single Storage Group
so as only a single blockchain transaction is performed, rather
than a number of transactions equal to the number of SUs;
such a functionality is typically referred to as batching [21].
When operating on a single SU, a storage group with only
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FIGURE 7. Complete binary Merkle tree of a working directory with nine resources. (a) Node-link diagram with leaves that are
aligned from left to right based on the lexicographic order of their relative paths (for space reasons, only the final name of
each resource has been inserted). (b) Fingerprints of files and folders in the working directory (colored teal), hashes of
non-leaf nodes (colored brown), and Merkle tree root hash (colored black).

FIGURE 8. An example of a storage unit bundle. (a) Missing SU resources are represented with no icon and with a red $count
placeholder. (b) Illustration of the corresponding .bundlepinesu.json hidden file included in the bundle; entries of resources in
the bundle are colored in teal, whereas those of missing resources are in red.

one entry is created. More formally, a Storage Group (SG)
of size n is a collection of pairs {⟨uuid(SUi), hash(SUi)⟩ :

i ∈ [1, n]}, where (a) each pair ⟨uuid(SUi), hash(SUi)⟩ gives,
respectively, the UUID and the hash of the i-th storage unit
SUi in the group, and (b) there is no repetition of UUIDs.
The hash sequence of a storage group is the ordered set of
hashes (hi)i∈[1,n], where hi = hash(uuid(SUi)|hash(SUi))
and the hashes are considered in lexicographic order of their
corresponding UUIDs; namely, the index is chosen in such a
way that i < j if and only if the string uuid(SUi) precedes
uuid(SUj), in lexicographic order. A complete binary Merkle
tree can be built on top of the SG hash sequence. The storage
group hash is the root hash of this Merkle tree.

As it will be better clarified later, before performing a
blockchain registration, PineSU distinguishes storage groups

into Open Storage Group (OSG) and Closed Storage Group
(CSG). The former contains only open SUs, whereas the
latter contains only awaiting closing SUs. In other words,
an open (resp. closed) storage group is used when a set of
open (resp. awaiting closing) SUs need to be synchronized
with the blockchain (resp. closed) by performing only a single
transaction.

From the user perspective, PineSU provides a stage6 com-
mand to add open SUs to a forming storage group. According
to the type of the subsequent registration operation, this
storage group will be an OSG, a CSG, or it can be partitioned
into two subgroups: one open and the other closed.

6We used the term ‘‘stage’’ because this operation resembles Git’s stage
command, even if it is not based on it.
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FIGURE 9. Schematic illustration of a MerkleCalendar. The left subtree tracks all the synchronization operations on
open storage groups. Each of its leaves represents a BSP, including the timestamp in which the synchronization
operation started, and it is associated with the corresponding OSG. Similarly, the right subtree tracks all the closing
operations on closed storage groups. The parent of a leaf with a timestamp YYYY-MM-DDThh-mm-ssZ represents the
corresponding calendar month MM, while the grandparent node represents the corresponding calendar year YYYY.
Children of nodes of level 1, 2 and 3 are left-to-right ordered by increasing years, months and timestamps, respectively.
Objects associated with leaves are highlighted in gray, while open and closed internal nodes are highlighted in green
and red tones, respectively. Colors get darker moving from bottom to top; the root node is highlighted in black.

TABLE 2. Schematic illustration of how the MerkleCalendar root hash is computed.

D. MERKLECALENDAR
A MerkleCalendar is a tree data structure that is stored in a
special Git repository of PineSU (reserved only to it), which
implements a particular cryptographic accumulator having
the highest level of hierarchy in PineSU. Its leaves are in
bijection with the storage groups, and whenever PineSU
writes some SU-related hash string into the blockchain,
it actually writes the MerkleCalendar root hash. The general
aim of a MerkleCalendar is to efficiently track and recover its
root hash and some other hash strings associated with SGs,
for a given date or timestamp. In other words, it has been
designed to quickly perform temporal queries like ‘‘What
was the MerkleCalendar root hash when the BSP of the 5th
August 2021 was created?’’. Therefore, in perfect accordance
with the Git’s philosophy, PineSU does not need to interact
with nodes in the blockchain P2P network (or with a server
on Internet connected to some of them) to recover a hash
string written into the blockchain in a specific day in the
past.

From a structural point of view, a MerkleCalendar is a
tree with depth four that is defined as follows (a schematic
illustration is shown in Fig. 9). It has exactly two internal
nodes of level 1: the OpenRoot and the ClosedRoot. The
former is the root of the subtree whose leaves are in bijection
with the open storage groups, while the latter is the root of
the subtree associated with the closed storage groups; we will
refer to these subtrees as the open subtree and the closed
subtree, respectively. An internal node of level 2 represents
a calendar year, while an internal node of level 3 represents
a calendar month. Every leaf in the open subtree describes a
BSP created in the month and year corresponding to its parent
and grandparent nodes, respectively. Similarly, leaves in the
closed subtree represent BCPs added in months and years
corresponding to their ancestor nodes. Of course, a specific
month/year node is created if and only if at least one
blockchain-related operation occurred in that period.

Every node of the MerkleCalendar has the own hash
attribute that is computed based on the hashes of its children.
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Leaf nodes also include a timestamp attribute that precisely
describes the instant of time in which the corresponding
BSP (or BCP) operation was initiated. Children nodes
are left-to-right ordered based on the level they belong
to. More specifically, the open root is to the left of the
closed root, while the children of a node of level 1, 2 and
3 are ordered by increasing years, months and timestamps,
respectively. It follows that the open and closed subtrees
grow incrementally on their ‘‘right side’’, leaving unchanged
what is on the left. Therefore, it is easy to identify
the subtree of the current MerkleCalendar which was the
MerkleCalendar of some past day, as well as to recover
the corresponding hash root. We now give more details on
how the MerkleCalendar hash root mkcal_hash_root is
computed. We follow a top-down procedure focusing on
the open subtree, the description for the closed subtree is
substantially analogous; a schematic illustration is given in
Table 2.

The hash mkcal_hash_root of the root node is the
cryptographic hash of the concatenation of its children
hashes. Let or denote the open root node, and let
or.childhash[] be the sequence of hashes induced by its
child nodes. The hash or.hash = h_open_root is the root
hash of the complete binary Merkle tree that is built on top
of or.childhash[]; more formally, we write or.hash =

root(bmkt(or.childhash[])). Similarly, if cr denotes
the closed root node, the corresponding hash is cr.hash

= root(bmkt(cr.childhash[])). The hash h_YYYY of
a generic calendar year node cy_YYYY (the name has been
chosen so that cy_YYYY.year = YYYY) is cr_YYYY.hash
= root(bmkt(cr_YYYY.childhash[])). While the hash
h_MM_YYYY of a calendar month node cm_MM_YYYY

is given by root(bmkt(cm_MM_YYYY.childhash[]));
note that the name convention follows that adopted in
Fig. 9, i.e., parent(cm_MM_YYYY).year = YYYY and
cm_MM_YYYY.month = MM. Finally, if bsp_i denotes the
leaf node representing the i-th blockchain synchroniza-
tion point, then bsp_i.hash = h_i is defined as the
cryptographic hash of the concatenation of its timestamp
bsp_i.timestamp = t_i with the hash of the associated
open storage group osg(bsp_i).hash = h_osg_i.
Each BSP (respectively, BCP) node is associated with

an object representing the corresponding OSG (respectively,
CSG). This object contains the storage group hash (hash
attribute), and a map (map attribute) that stores key/value
pairs 〈uuid, hash〉 for all the SUs in that storage group.
Keeping track of the hash of each SU in a storage group is
indeed fundamental to verify the integrity of any SU in that
group.

In the next section we will see that each BSP/BCP node
is also associated with another object containing specific
information about the corresponding blockchain transaction
and its block, such as the block number, the block hash,
the block timestamp, the transaction hash, the transac-
tion addresses, the transaction value, and the transaction
data.

VI. PineSU INTERACTION WITH THE BLOCKCHAIN
In this section, we describe how PineSU interacts with
the blockchain, and what information stores to efficiently
recover previous registration data. We preliminarily observe
that two main interaction modalities are possible, each
with pros and cons. The first one, called detection mode,
does not make use of smart contracts, but just regular
transactions. Namely, the MerkleCalendar root hash is
included within the transaction data, so eventually this hash
will be written in some block. This modality is easier to
manage, is largely blockchain-agnostic, and is also suitable
for non-programmable blockchains. On the other hand,
at blockchain level, it cannot prevent writing operations
that are forbidden by PineSU, such as closing an already
closed storage unit. However, such forbidden operations
can be detected by PineSU through specific validation
checks. The other interaction modality is the prevention
mode. It requires a specific smart contract to implement
the blockchain side of PineSU, which includes an access
control logic to verify whether a blockchain interaction,
in particular a write operation, can be performed or has to
be denied. The prevention mode guarantees a higher level of
security, but it is more difficult to manage, is more expensive,
and is much more coupled with the adopted programmable
blockchain. The current implementation of PineSU is based
on the detection mode, which is described hereafter, whereas
the prevention mode is left as a future development.

A. DETECTION MODE
Let Bob denote a PineSU user who wants to perform a
blockchain registration (synchronization or closing) for a
group of his storage units. The registration request consists of
performing a regular Ethereum transaction that includes the
MerkleCalendar root hash in its data field (see, e.g., Fig. 10).
The sender and the recipient of the submitted transaction will
be the addresses of two externally owned accounts that are
both controlled by Bob. In particular, the sender’s address
must coincide with the value of the owner attribute in the
.pinesu.json file of every storage unit being registered, since
only the owner has the right of doing this registration. The
amount of ETH to transfer (value field) will be set to
zero, as the actual aim of the transaction is to store data
in the blockchain, and not transferring cryptocurrency. The
values of the other transaction fields can be chosen by Bob
to get a good compromise between validation time and
cost.

Once the transaction has been validated, the corresponding
Blockchain Registration Data (BRD), like the block hash and
its timestamp, are suitably associated with the corresponding
BSP/BCP node in the MerkleCalendar (see, e.g., Fig. 11a),
even if they are not considered in the procedure for computing
the root hash.

To enable a blockchain-based integrity verification to non-
owner users, a storage unit has to be equipped with additional
metadata extracted from the corresponding MerkleCalendar.
These metadata are stored in the .regpinesu.json hidden file
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FIGURE 10. Illustration of a regular ETH transaction triggered by a registration operation of PineSU, through its Ethereum
connector. All the SUs in the storage group being registered must have the same owner in their .pinesu.json file, which must
coincide with the sender’s EOA address (from attribute). The EOA addresses of the sender and the recipient are both
controlled by the same person. The from key and its value are colored gray, since they are not explicitly included in the
transaction data, but they can be obtained indirectly; namely, every transaction must be signed by the sender, who has to be
identified to verify the signature.

(see, e.g., Fig. 11b), and contain a minimal amount of infor-
mation that makes it possible to verify the integrity against
the blockchain, without knowing the whole MerkleCalendar.
For each SU of the registered storage group, PineSU writes
the corresponding .regpinesu.json file in the root folder of
that SU. The content of this file is briefly reported hereafter.
The type attribute specifies whether the registration is a syn-
chronization or a closing operation. Attributes mkcalroot
and mkcaltimestamp store, respectively, the root hash of
the MerkleCalendar, and the timestamp of the BSP/BCP
node associated with this operation. The blockchain reg-
istration data—the transaction hash, the block hash, the
block height, and the block timestamp—are stored in the
attributes txhash, bkhash, bkheight, and bktimestamp.
Of course, the timestamp indicated by mkcaltimestamp

must strictly precede that of bktimestamp. The witness

and openstoragegroup (resp. closedstoragegroup)
attributes allow users to compute the MerkleCalendar root
hash of the storage unit, even if they do not know the whole
MerkleCalendar nor the other SUs in the registered storage
group. This is accomplished by using only the hashes of all
the SUs in the storage group, and the hashes of the BSP
node (resp. BCP node) ancestors’ siblings along the path
to the MerkleCalendar root. In particular, the closedroot
attribute (resp. openroot attribute) contains the hash of
the ClosedRoot node (resp. OpenRoot node). Let BSP∗

(resp. BCP∗) be the leaf node of the MerkleCalendar that
is associated with the registered OSG (resp. CSG), and
let CM∗ and CY ∗ be the two ancestors of BSP∗ (resp.
BCP∗) of level three and two, respectively. The years

attribute stores the sequence of hashes of all the CalendarYear
nodes that strictly precede their sibling CY ∗. The months

attribute stores the hashes of CalendarMonth nodes that are
children of CY ∗ and strictly precede their sibling CM∗.
Similarly, the syncpoints attribute (resp. closingpoints
attribute) stores the hashes of BSP nodes (resp. BCP
nodes) that are children of CM∗ and strictly precede their
sibling BSP∗ (resp. BCP∗). Finally, the openstoragegroup
(resp. closedstoragegroup) array contains the set of
pairs ⟨uuid, hash ⟩, for each storage unit in the storage
group.

Assuming that the number of SUs in a same storage group,
the number of registration operations per month, and the
number of years in the MerkleCalendar are all bounded
by a relative small constant, then the total length of the
.regpinesu.json file can be considered small as well, and
suitable for many applications.

VII. BASIC PineSU FUNCTIONALITY
In this section, we give some implementation details of the
basic PineSU’s functionality and how the system interacts
with Git.

A. CREATE NEW STORAGE UNIT
By interacting with the command line interface of PineSU
(create command), the user can turn the current working
directory into a storage unit. This implicitly creates the
corresponding Git repository, if it does not exist yet. PineSU
prompts the user to enter the fundamental SU properties that
it cannot deduce from itself, such as the name, the URL, and
the address of the owner’s blockchain account. Other non-
fundamental properties are left empty or get some defaults,
for example the closed flag is false by default. Optionally,
specific files that must be excluded from the SU (and from its
Git repository) can be indicated through a standard .gitignore
file. To get the SU hash, PineSU computes the fingerprint
of every resource in the working directory, then builds an
ephemeral Merkle tree, as described in Subsection V-A. If the
command is successfully executed, a .pinesu.json descriptor
file is created and stored in the root folder, after which
a Git commit is done. In case this descriptor file already
exists, PineSU deduces that the working directory is already
a storage unit. Therefore, if the closed flag is false, PineSU
asks the user whether they want to update the SU (see next
functionality), otherwise displays an error message, since any
operation that may change the SU content is not allowed.

B. UPDATE STORAGE UNIT
This functionality applies only to open SUs, and is required to
update the list of files/folders and to recompute the SU hash,
whenever somemodification occurred, including the creation
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FIGURE 11. Illustration of how the blockchain registration data are stored in PineSU, in case of a synchronization
operation. (a) A BRD element is associated with the corresponding BSP node in the MerkleCalendar. (b) Blockchain
registration metadata for a specific SU in the synchronized OSG; the metadata are stored in the .regpinesu.json hidden
file (in the root folder of the SU) which is tracked by Git.

or removal of resources. Eventually, the .pinesu.json file is
updated consistently, and a Git commit is done.

C. STAGE FOR BATCHING
Similarly to Git, PineSU has the own staging area to indicate
which open SUs will form the next storage group, for the next
blockchain registration. By entering the command stage from
the root folder of an open SU, a reference to such SU will
be added to the forming storage group; from that moment on,
we say that the SU is staged. At the low level, PineSU does not
distinguish storage groups into open or closed, this distinction
is made at the time of the subsequent blockchain registration
operation. An SU is staged if a reference to it is included
in a temporary file reserved to PineSU, which is not tracked
by Git, however. To unstage an SU, it suffices to remove its
reference from this file, which can be easily done through
the CLI of PineSU. We remark that only open SUs can be
staged; if the closed flag is true, then the SU cannot be staged.
We also remark that the staging area is automatically emptied
immediately after a blockchain registration (synchronization
or closing) is executed.

D. SYNCHRONIZATION WITH BLOCKCHAIN
By entering the sync command into the PineSU CLI,
the staged SUs area synchronized with the blockchain.
If the staging area is empty, the command is ignored. This
operation is one of the most involved, since it is made up
of several steps, besides interacting with the blockchain.
We will describe the current implementation, which has
been tested on a local blockchain testnet (Ganache [64]) and

on the Ethereum Mainnet. However, we will also briefly
discuss possible modifications for a faster and more effective
interaction with the Ethereum Mainnet. The main steps that
PineSU carries out are:
(i) a preliminary check is executed to verify whether all the

staged SUs have the same owner, but distinct UUID; in
the negative case, the synchronization is aborted and an
error message is shown to the user;

(ii) an ephemeral Merkle tree is built on top of the staged
SUs, as described in Section V-C, and a new OSG is
created;

(iii) a new BSP is created and added to the MerkleCalendar,
if necessary even a new CalendarMonth and a new
CalendarYear are preliminarily created and added to the
open subtree;

(iv) the MerkleCalendar root hash is updated;
(v) a regular ETH transaction is submitted to a blockchain

node, attaching the MerkleCalendar root hash in the
data field, as described in Subsection VI-A (the other
transaction fields are set to default values, even if the
user can easily overwrite each of them through the CLI
of PineSU);

(vi) PineSUwaits for the validation of the transaction, in the
negative case, the user can either retry the transaction
or abort the synchronization, emptying the staging area
and restoring the MerkleCalendar state before step (iii);

(vii) once the transaction has been validated, a BRD element
is created and associated with the corresponding BSP
node in the MerkleCalendar;

(viii) for each SU in the OSG, a .regpinesu.json descriptor
file is written in the root folder, overwriting the
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previous file, if any, and a copy is also stored in the
.pinesureghistory/ hidden folder after being renamed
as .regpinesu-YYYY-MM-DDThh-mm-ssZ.json,
where YYYY-MM-DDThh-mm-ssZ is the block times-
tamp;

(ix) for each SU in the OSG, the offhash property in the
.pinesu.json file is updated, and a copy of this file is
stored in the .pinesureghistory/ folder, with a different
name like .pinesu-YYYY-MM-DDThh-mm-ssZ.json;

(x) for each SU in the OSG, the header property of the
.pinesu.json file is consistently updated (i.e., all the
prevX fields are updated), the global storage unit hash
is computed, and the result is assigned to the hash

property.
(xi) All the changes in the local Git repository containing

the MerkleCalendar are committed.
In our proof-of-concept implementation, step (vi) is exe-

cuted quickly, but it may take a while when interacting with
the Ethereum Mainnet. At the time of writing, a transaction
confirmation takes from fifteen seconds to five minutes,
on average, depending on the amount of offered tip per gas
and on the network congestion. Of course, the longer is the
confirmation time, the more is the probability of losing the
connection to the blockchain node. A resilient implementa-
tion should tolerate even long transaction validation times.
This can be done by introducing a pending state, where
PineSU enters just after the execution of step (v). To avoid
introducing inconsistencies, as long as PineSU is in this
pending state, no other blockchain registration operations can
be executed. In the meanwhile, with a prescribed frequency
and timeout, PineSU can check for the transaction validation.
After which, it exits the pending state and goes to either
step (vi) or (vii), depending on whether the transaction is
confirmed or not.

E. CLOSE STORAGE UNITS
This functionality works much like the previous one, but
allows the creation of a blockchain closing point for a set
of SUs, rather than a BSP. The steps executed by PineSU
are basically the same as that for the synchronization,
provided that OSG, BSP, and open subtree, are replaced by,
respectively, CSG, CSP and closed subtree. Clearly, at step
(ix), the closed flag in the .pinesu.json file is set to true.

F. SYNCHRONIZATION AND CLOSING
This functionality is extremely useful when the user wants to
synchronize some SUs and close some others, spending only
one transaction. By entering the synclose command, PineSU
displays the list of staged SUs, and asks the user to select
which ones should remain open and which ones should be
closed. The implementation of this functionality essentially
consists of merging each step of the last two.

G. VERIFY INTEGRITY WITH BLOCKCHAIN
A fundamental requirement of PineSU is to enable any
user of an SU, especially users who are not the owner,

to carry out a blockchain-based integrity check. The
command checkbc makes it possible to do it easily, exploiting
only the .pinesu.json and .regpinesu.json hidden files in
the corresponding Git repository (including those in the
.pinesureghistory/ folder), without knowing the MerkleCal-
endar. The basic idea is to verify whether the SU content
is consistent with the MerkleCalendar root hash stored in
the blockchain block indicated in the .regpinesu.json file; we
will refer to this integrity check and to the corresponding
block as the local block integrity check and the local block,
respectively. We will see that there could be subtle attacks to
trick the local block integrity check, if none of the following
security hypotheses is ensured: (SH1) there exists only one
SU history, i.e., no forking has been done; (SH2) even
assuming that the SU history has been forked, there exists
only one verifiable true branch, and the local block belongs to
this branch. The main steps of the local block integrity check
are as follows.
i The existence of the block indicated in the .regpinesu.json
file, as well as the correctness of all the BRD properties,
are verified by querying a blockchain node or some
Internet API service connected to it. Moreover, the value
of the mkcalroot property must equal that of the data
field in the transaction, as well as the values of the owner
and bcregtime properties in the .pinesu.json file must
coincide with the sender’s EOA address and the block
timestamp, respectively. In case of some mismatching,
the test outputs false.

ii The Merkle root hash of the SU content is computed
by applying the procedure described in Subsection V-A,
thus fingerprints of resources in the working directory are
recomputed; the result is compared with the value of the
merkleroot property in the .pinesu.json file. In case of
mismatching, the test returns false.

iii The SU global hash is computed by hashing the header
content as described in SubsectionV-A1. If the result does
not coincide with the value of the hash property, then the
test outputs false.

iv The SU global hash is also compared with the hash in the
array openstoragegroup (or closedstoragegroup)
that is associated with the UUID of the SU. Again, in case
of mismatching, the test returns false.

v It is checkedwhether there are repetitions of UUIDs in the
openstoragegroup (or closedstoragegroup) array.
In the affirmative case, the test outputs false.

vi A complete binary Merkle tree is built on top of the
array of SUs hashes in the openstoragegroup (or
closedstoragegroup), as described in SubsectionV-C.
Using the root hash of this Merkle tree and the data
associated with the witness property, the corresponding
MerkleCalendar root hash is computed, and then
compared with the value of the mkcalroot property.
If they coincide, then the local block integrity test returns
true, otherwise false.

The local block integrity check does not verify the
history consistency, that is, the consistency of the SU
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metadata in the .pinesureghistory/ folder with the blockchain
data and between them. Of course, the global integrity
verification test must output true if and only if the local
block integrity check yields true, for the last registration, and
the history consistency is also verified. However, exploiting
the SU metadata, a history consistency check can be
easily and efficiently performed. Indeed, the header of the
.pinesu.json file contains fields that refer to the previous
blockchain registration, which should match the data in
the corresponding registration file in the .pinesureghistory/
folder. In particular, if YYYY-MM-DDThh-mm-ssZ is the
value of the prevbcregtime field, then there must exist a
file .regpinesu-YYYY-MM-DDThh-mm-ssZ.json, whose
content should be coherent with that of prevx fields in
.pinesu.json. In this way, it is possible to trace back from
the last blockchain registration to the first one, while
performing a suitable set of consistency checks. To speed
up the procedure, the local block integrity checks for blocks
preceding the last one are shallow, i.e., they do not compute
fingerprints of resources (as in step (ii)), but just use the
metadata. This means that if the global integrity verification
test outputs true, we cannot say that even the integrity of
the previous Git versions of the working directory are also
verified. In other words, the integrity test must be redone for
each previous version of the working directory.

H. EXPORT A BLOCKCHAIN VERIFIABLE BUNDLE
A user of an SU, even a non-owner, can export a subset of
resources, that are packaged into a compressed archive, while
preserving the possibility of checking the integrity with the
blockchain. After entering the export command from the root
folder of an SU, PineSU prompts the user to select a subset
of resources that they desire to export. Then, a compressed
.zip archive of the SU subset is created. The hidden file
.pinesu.json is replaced with the .bundlepinesu.json file,
as described in Subsection V-B. Moreover, the .pinesureghis-
tory/ folder is renamed as .bundlepinesureghistory/, and in
each of its files the filelist array is removed. Observe that
this does not prevent a (shallow) history consistency check.
A special option of the checkbc command makes it possible
to verify the integrity of an SU bundle.

VIII. SECURITY CONSIDERATIONS
Although an in-depth security analysis of PineSU has not
been conducted yet, we can draw some important consid-
erations. Assume that the following security hypothesis is
satisfied: (H1) every user knows the URL and the owner’s
address (i.e., the EOA) of a storage unit. Then, under the
H1 hypothesis, a non-owner user cannot modify an SU and
create a new BSP/BCP without being detected, since the
corresponding transaction must be signed by the SU’s owner.
It follows that undetectable BSPs/BCPs can only be created
by the owners of SUs. A first attack that we identified,
named double independent history, can be summarized as
follows. The owner of an SU can craft two (or more) versions
of it, which are completely isolated to one another since

their creation. Each SU version has the own evolution with
registration points that never are stored in a same block.
Therefore, a non-owner user, say Bob, may be tricked into
thinking that only the first variant exists. Conversely, another
user, say Alice, may be convinced that only the second
variant exists. Most importantly, with no additional security
hypotheses, the blockchain-based integrity test does not
detect this attack. Of course, a comparison between Alice
and Bob’s versions may reveal the attack, and if so, they
have a verifiable proof that the attack was conducted by the
SU owner, which constitutes a strong reason for deterrence.
But in many circumstances, such a deterrence may not be
enough. However, a double independent history attack can
be detected if a second security hypothesis is satisfied: (H2)
every SU user knows the block of the first registration. Indeed,
the checkbc command includes a history consistency check of
an SU. By tracing back along the history, the first registration
block is identified and compared with that known to the user.
Since the two SU versions do not share any registration block,
the attack is detectable. Unfortunately, this is not true in
case of a forking attack, where the SU owner crafts two (or
more) versions that share the beginning of their history, i.e.,
at least the first registration point, after which they evolve
into two independent branches. To detect a forking attack,
another security hypothesis must hold: (H3) every SU user
knows the block of the last registration. Observe that if (H3)
is satisfied, then (H2) is no longer necessary. In general,
due to time delay issues, guaranteeing (H3) may not be
always easy, especially when the latest registrations involve
consecutive blocks, or blocks that are close to each other.
However, these time-related issues can be overcome by a
suitable usage policy of PineSU; namely, by imposing that
blockchain registrations associated with a specific address
must have a minimal temporal distance, e.g., six hours at
least. Observe that this is perfectly inline with the PineSU’s
philosophy, according to which the system should be as much
cost-effective as possible.

Summarizing, exploiting the blockchain immutability,
PineSU adds strong authenticity and integrity protections to
Git repositories, provided that non-owner users know the
right owner’s address andURL of the corresponding SUs, and
registrations performed by a same owner occur sufficiently
far away from each other.

IX. CASE STUDY
In this section, we describe an experience using PineSU
on clones of two real Git repositories owned by the Italian
Presidency of the Council of Ministers (Presidenza del
Consiglio dei Ministri,7 PCM for short) and the Civil Pro-
tection Department (Dipartimento della Protezione Civile,8

DPC for short). We will refer to these repositories as
the pcm-dpc repositories. They are publicly available on

7Presidenza del Consiglio dei Ministri https://www.governo.it.
8Dipartimento della Protezione Civile https://www.protezionecivile.it.
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GitHub9 and contain official data, including digital scans of
documents with legal value. Sharing these repositories while
protecting their authenticity is fundamental to guaranteeing
a high level of trust and security. At the time of writing,
GitHub offers only weak mechanisms for authenticity
protection that are much less secure than those provided by
traditional notarization services. More specifically, GitHub
allows associating the repositories of one organization to a
website domain and can verify whether that organization
controls that domain. Since the identity of (https) websites
is certified, this association provides a weak form of authen-
ticity verification.10 In particular, pcm-dpc repositories are
associated with the Civil Protection Department domain:
https://www.protezionecivile.it. But there is no security
mechanism against retroactive attacks by corrupted officers
or hackers who have gained access to GitHub. Indeed, the
authenticity protection is bound to the GitHub website, and
there is no way to verify the authenticity of one or more files
in a local repository. Moreover, attackers who gain ownership
of repositories can spoof their metadata [65], [66], including
the history of old commits [67], [68], [69]. In summary, the
authenticity protection is weak and centralized, whereas we
want strong and decentralized protection.

We have cloned two pcm-dpc repositories from GitHub
to our local machine, which we will refer to as the CTS
repository11 and the Pandemic Monitoring repository (PM
repository, for short).12 The former contains the official
reports of the Scientific Technical Committee (Comitato
Tecnico Scientifico, CTS for short), whereas the latter mainly
contains monitoring data about the infection diffusion on a
national, regional, and provincial basis. Examples of data are
the number of positive subjects, the number of deaths, the
number of hospitalizations, the number of tampons, and so
on. A CTS report is published (approximatively) 45 days
after the correspondingmeeting, since 5 February 2020, when
the committee was established. For each report, two PDF
files are stored: a shorter version with selectable text (called
‘‘accessibile’’, i.e., ‘‘accessible’’ in English) and without any
attachment, and a scanned version of a print of it including all
the attachments. The last CTS meeting was held on 30 March
2022, after which the committee was disbanded, due to the
end of the Covid-19 state of emergency. Instead, the PM
repository is still regularly updated. Initially, DPC officers
published data daily, but since 28 October 2022 the repository
is updated weekly (typically on Friday afternoon).

As a local machine, we used a VM Lubuntu v1CPU 8GB
RAM, on VirtualBox on Windows 11, running on a Lenovo
ThinkPad E15, with a 10th Gen. Intel®Core™ i7-10510U
processor, 16GB LPDDR5 RAM, and a 512GB PCLe NVMe
x2 solid-state hard drive.

9pcm-dpc repositories are available at https://github.com/pcm-dpc.
10GitHub for organizations - Website domain verification or

approval https://docs.github.com/organizations/managing-organization-
settings/verifying-or-approving-a-domain-for-your-organization.

11https://github.com/pcm-dpc/COVID-19-Verbali-CTS
12https://github.com/pcm-dpc/COVID-19

In our case study, we have simulated the data sharing
process carried out by the Civil Protection Department
using PineSU, while adding some blockchain registrations
to increase security. For a more realistic test, we connected
PineSU to the Ethereum Mainnet13: the public Ethereum
network where actual-value transactions take place. For each
transaction, the sender and the recipient addresses were as
follows:
From: 0xc7bb2808c959be4b9b76533601a1c60b147674a0

To: 0x55e3b8ffea6c77ec880297e7185a924e20b8b920

both addresses were assumed to be public and securely
associated with the owners of the two SUs. Below we give
the main phases of our case study.
(i) On Friday, 30 June 2023, at around 1:35 pm (UTC

time), we cloned the CTS and the PM repositories from
GitHub to our local machine.
The CTS repository contained 490 resources, 26 direc-
tories and 464 files, mostly digital scans in PDF format
of CTS meeting paper reports, for a total of 5.56GB.
The PM repository contained 5139 resources, 22 direc-
tories and 5117 files, including recent updates and
resources added by DPC officers, just around 12 pm of
the same day. The repository was made up from files in
CSV, JSON and PDF format, for a total of 2.4GB.
We then created two PineSU storage units, one for
each repository. It took less than 20 seconds for
the PM repository, and less than 85 seconds for the
CTS repository. The .pinesu.json descriptor files of
the CTS and PM storage units were 57580 and
665478 characters long, respectively.

(ii) At around 3:00 pm, we staged the two SUs and
performed a single blockchain registration by using the
synclose command; the registration comprised a syn-
chronization and a closing of the PM and CTS storage
units, respectively. We have decided to close the CTS
storage unit because the last commit on GitHub was
on May 17, 2022. Details of the Ethereum transaction
associated with this registration are shown in Table 3.
The transaction was included in the block with height
17592893 and a timestamp Jun-30-2023 03:09:47

pm UTC. Within 10 minutes the transaction was con-
firmed and the block was Unfinalized, after other
8 minutes the status of the block was Unfinalized
(Safe) and, finally, after other 8 minutes, the status
was Finalized. PineSU has consistently updated
the descriptor files .pinesu.json and .regpinesu.json of
both SUs. In particular, both the .regpinesu.json files
included the attributes of block 17592893, and the
value of the mkcalroot key was equal to the input data
of the transaction.

(iii) After one week, on Friday, July 7, around 12:15
pm (UTC time), we modified the PM repository by
reproducing the same changes as those performed by
the DPC officers on the original version. We then

13https://ethereum.org/en/developers/docs/networks/
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TABLE 3. Details of the Ethereum transaction associated with the first blockchain registration (triggered by the synclose command) on June 30, 2023.

TABLE 4. Details of the Ethereum transaction associated with the second blockchain registration (triggered by the sync command) on July 7, 2023.

updated and staged the PM storage unit. The update
operation took less than 80 seconds as before. Finally,
we synchronized the PM storage unit with the
blockchain using the sync command. Table 4
shows details of the transaction associated with
this synchronization. The height of the transaction
block is 17641910, with timestamp Jul-07-2023

12:25:11 pm UTC. After about 15 minutes, the
status of the block was set to Finalized, and
files .pinesu.json and .regpinesu.json were updated
accordingly; in particular, file .regpinesu.json was
updated after a copy of it was saved in folder
.pinesureghistory/ under the name .regpinesu-2023-06-
30T15-09-47Z.json.

A. ATTACK MODEL
On Saturday, July 8, the following attacks by Trudy (a fancy
name) were simulated, assuming that she gained access to the
pcm-dpc repositories on GitHub. We accomplished this by
cloning the two repositories from the original GitHub location
to a personal GitLab account.14,15

• Trudy cloned the CTS repository to her local machine.
Then, she crafted a fake report to be added to folder
2022-03/, between the penultimate (report 64) and
the last (report 65), specifying March 18, 2022, as the
date. She numbered the fake report as 65, which shifted
the last one to 66. An illustration of folder 2022-03/,
before and after the attack, is shown below.
... [before the attack]
covid-19-cts-verbale-063-20220304.pdf

covid-19-cts-verbale-064-20220311.pdf

covid-19-cts-verbale-065-20220330.pdf

14https://gitlab.com/rfjp6hn181/COVID-19-Verbali-CTS
15https://gitlab.com/rfjp6hn181/covid-19

covid-19-cts-verbale-accessibile-063-20220304.pdf

covid-19-cts-verbale-accessibile-064-20220311.pdf

covid-19-cts-verbale-accessibile-065-20220330.pdf

... [after the attack]
covid-19-cts-verbale-063-20220304.pdf

covid-19-cts-verbale-064-20220311.pdf

covid-19-cts-verbale-065-20220318.pdf

covid-19-cts-verbale-066-20220330.pdf

covid-19-cts-verbale-accessibile-063-20220304.pdf

covid-19-cts-verbale-accessibile-064-20220311.pdf

covid-19-cts-verbale-accessibile-065-20220318.pdf

covid-19-cts-verbale-accessibile-066-20220330.pdf

Therefore, the attack involved four PDF files. The two
red files did not exist before the attack, whereas the
orange ones are a slightlymodified version of the old last
report (the file name and its numbering were changed).
To make the attack detection more complex, Trudy
managed it by preserving the date of the last commit.
In particular, she acted as follows. She undid all the
changes of the last legitimate commit (performed on
May 17, 2022) by executing a git reset. This operation
removed both PDF files of the last original report (old
number 65). Then, she added the two PDF files of the
fake report (numbered 65) and ran a first commit. Next,
she re-added the two slightly modified versions of the
last original report (now number 66) and ran a second
commit; an illustration of the Git commit graph is shown
in Fig. 12a.
Of course, Trudy named the fake files according to
the CTS numbering and naming convention. Moreover,
to conceal the attack, she suitably altered the commit
metadata, using, where possible, the same metadata as
the repository version just before the reset operation.
In particular, she spoofed the timestamps of her first and
second commit as May-02-2022 05:25:17 pm UTC
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FIGURE 12. Git commit graph of Trudy’s attacks on (a) CTS and (b) PM repositories. The blue color represents the
remote branch on GitLab, whereas the red color represents local branch on Trudy’s machine. Overwritten timestamps
are crossed out, and corresponding spoofed values are shown beneath.

and May-17-2022 09:36:00 am UTC, respectively.
After that, Trudy pushed toGitLab her two commits with
spoofed metadata.

• With a similar attack, Trudy tampered with a CSV
file uploaded to the PM repository on June 16, 2023.
In particular, she cloned the PM repository and undid
all the changes of the last two legitimate commits, until
the commit of June 23, 2023. Then, she modified the
file dati-regioni/dpc-covid19-ita-regioni-20230614.csv

that was uploaded on June 16. Next, she re-added all
the documents changed on the commit of June 30 and
ran a first Git commit. After that, she re-applied all the
changes of the last legitimate commit of July 7 and ran a
second commit. Finally, she spoofed the timestamps of
commits tomake the attack difficult to detect and pushed
her changes to GitLab (see Fig. 12b for an illustration of
the Git commit graph).

Attacks of this type can be very challenging to detect
using only the integrity protection mechanisms of Git and
GitHub/GitLab. Also, even if someone had a correct local
copy of a poisoned repository, they would be unable to prove
it, which could lead to costly disputes to resolve.

B. ATTACK DETECTION
We now show how the previous attack on the CTS and PM
repositories can be easily detected by using PineSU.
CTS Repository Poisoning Detection. Let Alice be any

non-owner user of the CTS repository who knows that
the block with height 17592893 is the block of the last
registration involving this repository. In other words, the
security hypothesis H3 holds.

On Tuesday, 11 July 2023, i.e., after the attack, Alice
cloned (or pulled) the CTS repository from GitLab to her
local machine. To verify the repository integrity against the
blockchain, she ran the checkbc command of PineSU. In less
than two minutes, PineSU returned false in output. Indeed,

the hash of the actual SU content differed from that of the
last legitimate commit. This inconsistency propagates to the
MerkleCalendar root hash computed using the metadata in
the .regpinesu.json file of the local repository copy. Hereafter
we report the CTS storage unit hash and the MerkleCalendar
root hash immediately before and after the attack.

... [before the attack]
CTS-SU-hash: 0× 6f0a746be4015cb5ee...2f4df909870b550e86

Mkcalroot-hash: 0× 4b177cb88642c6d132...3dc5d7cfbd56a1836a

... [after the attack]
CTS-SU-hash: 0× 7cc7de57c69cd3b998...448ee8976973c44133

Mkcalroot-hash: 0xee37162c5403e1a6be...38a9f04f8a4a340a60

Eventually, PineSU returned false because the computed
MerkleCalendar root hash differed from that stored in the
blockchain.
PM Repository Poisoning Detection. Consider a non-

owner user, say Bob, of the PM repository. Bob cloned the
PM repository from GitLab to his computer on Wednes-
day 12 July. Suppose that Bob knows that the block with
height 17641910 is the block of the last registration.
As above, we give the hashes of the PM storage unit and the
root of the MerkleCalendar, both before and after the attack.

... [before the attack]
CTS-SU-hash: 0× 7ac8e949f017b99c5e...82a0ad1eace71b98b2

Mkcalroot-hash: 0 × 99b145504bcf826d76...293d8b3cc5e052f6e2

... [after the attack]
CTS-SU-hash: 0× 2d81b955385a7277c1...9820f00ccbcf339bbd

Mkcalroot-hash: 0 × 070fd499afa6317bbd...4d5fd33b4e635905e4

By running the checkbc command, which took less than
one minute, Bob easily detected the integrity attack.

In both cases, Alice and Bob have verifiable proof that
the repositories on GitLab are not authentic. Also, if some
other user has a copy of a repository just before the attack,
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they have verifiable proof that their copy is authentic.
Of course, this can be very helpful for recovering corrupted
repositories.

X. PERFORMANCE EVALUATION
In this section, we provide a performance evaluation of
PineSU, expressed in terms of memory and time consump-
tion, for storage units of varying sizes and structures. The
aim is to show how PineSU scales well, under assumptions
that are very common in practice. We limit our analysis
to the create and update operations, which are the most
critical, since they require the creation/update of the whole
file .pinesu.json. (Observe that the registration operations
may take a longer time, but this is due to the latency of the
blockchain and not to PineSU.) In particular, we evaluated
the length of the .pinesu.json file, expressed as the number
of characters, and the time needed for its creation/update,
in milliseconds. As dataset, we considered a collection of
repositories described by three integer attributes: b, n and
c. These attributes take values in the sets Db, Dn and
Dc, respectively, where Db = {105, 106, 107}, Dn =

{5, 10, 25, 50, 100, 250, 500, 103, 104, 105, 106} and Dc =

{1, 2, 5, 10, 25, 50, 100}. For each triple (b, n, c), there is a
repository R(b, n, c) that satisfies the following conditions.
(i) each file consists of a pseudo-randomly generated

sequence of b bytes;
(ii) each file name has a length of 60 characters;
(iii) each folder name has a length of 30 characters;
(iv) there are exactly n files (folders are not considered

files);
(v) there are no empty folders;
(vi) every folder can contain at most 2c children, with at

most c files and, in suborder, with at most c sub-folders
(we will refer to c as the children threshold);

(vii) the hierarchical structure of a repository has the
minimum depth among those compatible with n and c.

The last three conditions are inspired by behavioral rules that
users usually adopt when archiving their files. For example,
the triple (b, n, c) = (106, 110, 10) describes repositories
with 110 files of 1 MB each, such that the root folder
contains 10 files and 10 sub-folders, and each sub-folder
contains exactly 10 files. Observe that c affects the depth
of the repository, i.e., the higher the c the lower the depth.
Also, for c > 1 the repositories have a well-balanced
hierarchical structure, since a folder can have two or more
sub-folders. Instead, for c = 1, the repositories are strongly
unbalanced.

A. LENGTH OF THE .PINESU.JSON DESCRIPTOR FILE
Let L denote the length of the descriptor file .pinesu.json
expressed as total number of characters. Apart from a
constant contribution, L increases as the number of files in
the repository and the length of their relative paths increase.
Therefore, taking into account that files in deeper folders
have longer relative paths, we expect L to increase with n
but decrease with c. Note that the parameter b is irrelevant,

FIGURE 13. Length L of the descriptor file .pinesu.json, expressed as
number of characters, with respect to the number of files n ∈ Dn, for
different children thresholds c ∈ Dc . The line colors encode the different
values of c , whereas the line styles encode the maximum length of the
resources’ relative paths: solid, dashed and dotted lines correspond to
normal, long and very long lengths, respectively.

since fingerprints of files have a fixed length, irrespective
their memory occupation.

We performed a simulation to estimate how much L varies
with n ∈ Dn, for each value of c ∈ Dc. Fig. 13 shows the
simulation results as a log-log plot (raw data are given in
the Appendix, in Table 6). Each line shows L as a function
of n, for a fixed value of c (encoded by the line color). The
line style represents the maximum length l of the resources’
relative paths, according to the following scale: solid line for
normal length (l ≤ 260 characters), dashed line for long
length (260 < l ≤ 1000) and dotted line for very long
length (l > 1000). We use the labels > and ≫ to denote
repositories whose parameter l is, respectively, long and very
long.

We recall that equations of the form y = αxe correspond to
straight-line segments in a log-log plot, where the exponent e
determines the slope and the factor α represents the intercept
on the vertical axis. Also, considering that the x- and y-axes
have different scales, in particular, a same variation1x = 1y
is twice longer along the x-axis than the y-axis, we can draw
the following considerations:

• for any fixed c ≥ 2, L grows linearly with n, as the
corresponding lines have approximately slope 0.5 (i.e.,
26.6◦);

• for c = 1, L grows (approximately) as a quadratic
function of n, indeed, the corresponding line has slope
1 (i.e., 45◦);

• for c = 1, there is an increasing number of resources
with very long relative paths (dotted red line), but in
practice this cannot happen because modern operating
systems do not accept file names so long.
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• though L decreases as c increases (for a fixed n), for c >

5, higher values of c lead to relative low decrements of
L;

• for c ≥ 5, L is less than 107 (black horizontal line) for
repositories with up to tens of thousands of files, and
only for n > 104 there are resources with a long relative
path.

To summarize, PineSU adds only a lightweight overhead to
the memory consumption, in all practical situations, which
scales linearly with the number of files.

B. TIME FOR COMPUTING/UPDATING THE .PINESU.JSON
DESCRIPTOR FILE
Let T denote the time (in milliseconds) needed for creat-
ing/updating the .pinesu.json file. Of course, T increases as
the size b and the number n of files increase, whereas it does
not appreciably change with the children threshold c.

We developed a simple mathematical model to estimate
T , which does not require the execution of the create and
update operations nor the execution of cryptographic hash
algorithms on files in the dataset. According to our model, T
is the sum of four contributions:

• Tlf : the time needed for computing the list of fingerprints
of all the SU resources;

• Tmr : the time spent for computing the hash of theMerkle
tree root built on top of the list of fingerprints;

• Thh: the time taken to compute the header of the
.pinesu.json file and its hash;

• Twd : the time needed towrite the .pinesu.jsonfile to disk.
The contributions Tlf , Tmr and Thh exploit a simple linear
function to estimate the running time th of SHA-256 on a file
or string: th = mh · size + th0. For a file in the dataset, size
coincides with b; whereas, for a generic string, we assume
an encoding where each character takes an average of one
byte. Similarly, we use a linear function tw = mw · size+ tw0
to estimate Twd , where size represents the number of bytes
of the .pinesu.json file. By performing a few pilot tests on
our hardware, the parameters mh, mw, th0 and tw0 were set as
follows:

• mh = 3 nanoseconds per byte;
• mw = 5 nanoseconds per byte;
• th0 = 340 microseconds;
• tw0 = 2750 microseconds.

In Fig. 14, the lines with a circle point type show the
simulation results of our model in a log-log plot, for c = 10.
As the x- and y-axes have the same scale, thus a slope
1 represents a linear function, it follows that the running
time T grows approximately linearly in the number of files.
For repositories with up to 1000 files, we experimentally
validated our model, by measuring the running time of the
create/update operations on our hardware. The results are
shown by lines with a triangle point type in the log-log plot
of Fig. 14. Both simulated and experimental results show that
even the running time of PineSU scales linearly with the size
of repositories. In particular, the running time is less than

FIGURE 14. Experimental and simulated execution time of the
create/update operations of PineSU. Each line chart represents how the
time T grows with the number of files n ∈ Dn, for a fixed file size b ∈ Db
and for c = 10. The line charts of simulated (resp., experimental) results
have a circle (resp., triangle) as point glyph and are identified by an ‘s’
(resp. ‘x’) prefix in the legend labels. The experimental tests were
performed on the repositories with up to 1000 files of our dataset, for
c = 10.

1 minute for repositories with up to 1000 files with size at
most 10 MB each, and less than 10 minutes for repositories
with up to 10 thousands of files.

XI. DISCUSSION
As already mentioned in Section III, several approaches have
been proposed for secure and trusted data sharing. In this
section, we provide a qualitative comparison of PineSU with
known methodologies or systems. We remark that a rigorous
quantitative analysis should embrace several metrics, which
would require a whole paper. Therefore, we consider a simple
attribute-based comparison.We identified the following set of
attributes that are categorized into three groups: Security, File
Sharing Functionality, and Cost (see Table 5). The attributes
are defined so that their possession represents a positive
feature.

A. SECURITY
• no trusted third party: the security does not require any
trusted third party or central authorization entity.

• no fully trusted source: the security does not require fully
trusted data sources (i.e., data owners) since there are
securitymechanisms to prevent or, at least, detect attacks
by malicious sources.

• no data owner-consumer secure channel: the security
does not require sending a verification code through a
secure channel between the data owner and the data
consumer.
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TABLE 5. Qualitative attribute-based comparative analysis of PineSU with known methodologies or systems.

• prevention of retroactive alteration: there are secu-
rity mechanisms that prevent attackers, including
the data owners themselves, from modifying pre-
viously shared data without deleting them (i.e.,
deleting previously shared data remains a possible
attack).

• detection of retroactive attacks: there are security
mechanisms to quickly detect any change to previously
shared data, including alteration and deletion by data
owners.

• immutability of verification codes: no attacker (includ-
ing data owners) can modify the integrity verification
codes once issued without being detected.

• Interminability of verification codes: the integrity veri-
fication codes are stored on some public permissionless
ledger forever; no one can delete them.

B. FILE SHARING FUNCTIONALITY
• version support: there are mechanisms to track all
changes to shared files over time.

• folder support: there is support for managing both single
files and whole file system folders at once.

• Git or (distributed) VCS integration: the proposed
approach for trusted data sharing can be easily integrated
with Git or any (distributed) VCS software.

• IPFS integration: the proposed approach stores files on
IPFS.

• decentralized multi-user collaboration: the content of
shared files is determined through a proposal and
approval process involving distinct users.

C. COST
• computational practicability: each operation of the
proposed solution requires a reasonable computational
cost (expressed in terms of memory consumption and
CPU usage). Therefore, the solution may be suitable for
many practical applications.

• admin-less: the proposed solution does not need any
administrator user to work appropriately.

• cost-effective blockchain interaction: the cost of a single
blockchain state-changing interaction is comparable to
that of a regular transaction (i.e., a transaction to transfer
ETH from one wallet to another).

• batching: the proposed approach allows multiple inde-
pendent data-sharing operations by performing a single
blockchain transaction or database transaction.

Table 5 summarizes the qualitative comparison of PineSU
against a selection of existing approaches. Columns in
gray indicate that the corresponding solutions are mainly
theoretical or illustrate very abstract approaches, i.e., they
do not describe any implemented system nor focus on
some specific application scenario. Due to the breadth and
heterogeneity of the ‘‘trusted data sharing’’ topic, we did our
best to investigate whether existing solutions were adaptable
to protect the integrity and authenticity of VCS repositories.
In particular, the check mark symbol indicates that the
corresponding solution, identified by the column, exhibits the
feature identified by the intersecting row. A full (resp. empty)
circle means that the solution does not explicitly possess the
corresponding feature but can be adapted to have it with a
limited (resp. significant) effort. It turns out that PineSU is the
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TABLE 6. Length of the descriptor file .pinesu.json expressed as number of characters (L) with respect to the number of files n of a repository, for
different children thresholds c .

only solution that tracks the changes and synchronizes with
the blockchain a whole file system folder (i.e., a repository) at
once. All the other solutions only work on one file at a time.
Furthermore, it possesses almost all security features and is
one of the most cost-effective.

XII. LIMITATIONS
Although PineSU has proven to be very effective in protecting
the integrity and authenticity of Git repositories, there are
some limitations to be aware of, which are listed below.

• Denial Of Service attacks: as with all the blockchain-
based solutions, only the verification codes are stored
in the ledger, while the actual content of repositories
is stored off-chain. It means that DoS attacks aimed at
deleting or encrypting files may irremediably lead to a
loss of information unless correct copies of corrupted
repositories are securely stored elsewhere.

• Correct data recovery: while PineSU can easily detect
attacks on the integrity of Git repositories, it does not
include built-in mechanisms to recover the correct data
version. To guarantee such a security requirement too,
the owners of repositories should take care of securely
storing copies of them. A good practice could be to store
on-premise a copy of each publicly shared repository.

• Real-time applications: PineSU has evident limitations
in protecting real-time application data. Specifically,
if the authenticity of data, including the corresponding
timestamp, needs to be verified every minute or less,
then the number of blockchain transactions (and thus
fees) would significantly increase. Furthermore, the
attacks described in Section VIII would be feasible,
which reduces the system’s security.

XIII. CONCLUSION AND OPEN PROBLEMS
We presented PineSU, a lightweight software system that
adds strong integrity and authenticity protection to Git
repositories, by leveraging the security of the Ethereum

blockchain. PineSU wraps Git repositories into storage
units, through suitable hidden files that are stored in the
corresponding working directories. At any time, users can
store the state of a group of their storage units into the
blockchain, by performing a regular transaction that includes
the root hash of a calendar-based cryptographic accumulator.
This accumulator efficiently combines and keeps track of
storage units fingerprints for each blockchain registration
date. Non-owner users can clone storage units and verify the
integrity against the blockchain, by using only their PineSU-
specific hidden files, which has a very little overhead. From
a scientific perspective, the contribution of our research is to
show how to combine known ingredients like cryptographic
accumulators, trees data structures with chronologically-
ordered nodes, and blockchain technologies to design a
lightweight software that is very effective in protecting
the authenticity of VCS repositories under a few security
hypotheses that are easy to guarantee in many circumstances.
However, there is still room for improvements, and we plan to
enhance the system by extending its functionality as follows.

• Multi-ownership. Currently, every storage unit has a sin-
gle owner, who is the only party authorized to perform
registrations on the blockchain. To enable distinct users,
or a group of users, to perform registrations of a same
storage unit, a multi-ownershipmodel should be adopted
by suitably using multi-signature schemes, which are
supported by many blockchains.

• Multi-paradigm. The detection mode is the security
paradigm adopted by PineSU, which cannot prevent
(at blockchain level) invalid registration operations like
closing an already closed storage unit. The security
of PineSU can be strengthened by adopting even the
prevention mode, which requires the development of a
smart contract that implements a suitable access control
logic.

• Storage Unit Composability. PineSU enables users to
export their storage units or subsets of them (i.e.,
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bundles). However, there is no mechanism to include
a reference to one or more external SUs within an
SU, whereas Git does provide a feature like that for
repositories (the submodules).

APPENDIX
In Table 6, we report the exact values of the line charts
depicted in Figure 13 that represent the length L of the
descriptor file .pinesu.json expressed as the total number of
characters w.r.t. the number of files n of a repository (for
different children thresholds c).
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