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ABSTRACT Heart transplantation is a life-saving procedure for children affected by end-stage heart
failure. However, despite recent improvements in long-term outcomes, 1-year post-transplantation mortality
has remained relatively high. Accurate prediction of post-transplantation mortality is crucial to evaluating
risks related to recipient-donor matches. Machine learning techniques can potentially improve the current
allocation system through the integration of a larger set of features. In this work, we improve 1-year
mortality prediction after pediatric heart transplantation using a new self-training approach, based on
generating artificial recipient-donor pairs as synthetic unlabeled observations. We tested and compared
our approach to several baselines using the cohort of pediatric patients in the UNOS database. Our study
suggests that augmenting the dataset with proper synthetic observations can improve the prediction of
1-year mortality after pediatric heart transplantation. Our findings have implications for the future of heart
transplantation in children, offering a potential path to refine recipient-donor matching and improve survival
rates. This study contributes to the growing field of advancedmachine learning techniques applied to medical
decision-making, specifically in the context of organ transplantation.

INDEX TERMS Heart transplantation, machine-learning, post-transplantation mortality, self-training,
synthetic observations.

I. INTRODUCTION
Heart transplantation (HTx) has become a life-saving pro-
cedure for children affected by end-stage heart failure.
Although pediatric HTx only represents roughly 10% of the
total number of HTx, their number has consistently grown
during the past decades with more than 450 transplantations
in 2020 in the U.S.. Despite the noticeable improve-
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ment in long-term outcomes after pediatric HTx, 1-year
post-transplantation recipient mortality has remained rela-
tively high [7]. In addition, waitlist mortality for pediatric
HTx still represents a crucial issue, especially due to the
limited organ supply, since many pediatric heart donors are
discarded. Efforts have been made to support physicians to
efficiently determine acceptable heart quality and ultimately
increase donor organ utilization, especially by investigating
factors related to the transplant outcome, as well as by
improving data visualization tools [4], [10]. It is worth
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mentioning that the decision-making process remains highly
variable and dependent on several variables. Thus, accurate
prediction of the post-transplantation outcome is central to
optimizing the organ allocation system and allowing for more
informed medical decision-making [19].

Prediction models for heart transplantation allocation are
already in use. One of the most commonly used models is
the Heart Transplantation Survival Score (HTSS), which was
developed by the United Network for Organ Sharing (UNOS)
in theUnited States [13]. TheHTSS takes into account several
factors, including the recipient’s age, diagnosis, functional
status, and the presence of other medical conditions, such
as diabetes or kidney disease. The model also considers
the donor’s age, cause of death, and whether the donor
and recipient have compatible blood types. Based on these
factors, the HTSS assigns each potential recipient a score
that reflects their predicted survival after a heart transplant.
Transplant centers use this score to help determine the priority
of patients on the waiting list. Another example of a model
developed for heart transplant allocation is the Eurotransplant
International Foundation’s Eurotransplant Donor Risk Index
(ET-DRI) [2]. Similarly to the previous one, this model
considers several donor and recipient factors to help guide
transplant allocation decisions.

Despite the potential usefulness of machine learning (ML)
in this context, most of the currently adopted strategies are
based on simpler strategies. The HTSS, for example, is based
on a statistical analysis of data collected from thousands of
heart transplant recipients in the United States. The model
uses a set of predetermined variables and weights to calculate
a recipient’s predicted survival after a transplant. Similarly,
the ET-DRI is based on a statistical analysis of data from heart
transplant recipients in Europe. The outcome of pediatric
HTx is affected by a large number of variables, related both
to the donor and recipient [8], making ML models a valid
alternative to multivariate regression techniques for HTx
outcome prediction, as they can handle a higher number of
variables as well as complex non-linear relationships between
them.MLmodels have already been applied, to both adult and
pediatric cohorts, and the recent literature suggests that ML
models are generally more accurate in predicting mortality
compared to standard regression techniques [15], [17].
However, the majority of applied retrospective validation
techniques do not take into account the time shift between
observations and population or policy changes, which likely
results in an overestimation of the performance, as shown
by [16]. Furthermore, the relatively small sample size of
pediatric cohorts compared to the adult cohort, quality of
data, and inter-center variability represent a limitation to
predictive performance and model generalizability [9].
In this paper, we aim to leverage techniques from

the semi-supervised learning domain to HTx outcome
prediction and validate the performance considering the time
shift between observations. We hypothesize that predictive
performance can be improved by enlarging the training
set with hypothetical donor-recipient matches. Thus, we

re-combine donors and recipients from the training set
and use them as unlabeled observations. Semi-supervised
learning (SSL) is a type of machine learning where a model
is trained using a combination of labeled and unlabeled
data. SSL can be particularly beneficial to improve a model
in case of scarce labeled observations or when unlabeled
observations contain additional relevant information [18].
SSL has already been applied in medicine in the context
of diagnosis prediction with promising results under precise
assumptions [6]. Self-training is a well-known SSL technique
that uses a first model trained exclusively on labeled data to
iteratively predict labels of unlabeled observations and add
the most confident predictions to the training set, to improve
predictive capabilities. To the best of our knowledge,
this technique has never been applied in the setting
of post-transplantation outcome prediction. In our work,
we exploit the artificially generated donor-recipient matches
as unlabeled observations in a self-training framework to
enhance 1-year post-transplantation mortality prediction in
a pediatric cohort. We evaluate our work on a real dataset of
around ten thousand patients.

II. MATERIALS AND METHODS
A. DATASET
We included pediatric patients (age < 18 years old) enrolled
in the United Network of Organ Sharing (UNOS) database [5]
between January 1994 and December 2016 who underwent
cardiac transplantation. Donor, recipient, and matching
variables included in the ML models were measured at the
time of listing or at the time of transplantation. This study
complied with the Declaration of Helsinki and the ISHLT
ethics statement and utilized publicly available data.

B. OUR FRAMEWORK
The original dataset consists of individual heart transplan-
tation events, with features falling into three categories:
donor features, recipient features, and donor-recipient match
features (such as weight ratio). The structure of the dataset
itself allows to build synthetic instances (or matches) by
merging donor features with different recipient features and
calculating the new match features. The outcome of interest
is the 1-year mortality for the recipient, and we assume
that it depends on all three feature categories. In our work,
we developed a two-step framework, which (1) generated
a set of plausible synthetic donor-recipient matches and
(2) employed self-training, depicted in Fig. 1, to improve
the predictive performance of the model. We evaluated the
framework’s performance by taking into account the temporal
shift in the dataset, by using rolling cross-validation and
therefore providing a more realistic evaluation.

1) OBTAINING SYNTHETIC OBSERVATIONS
An important assumption of SSL is the smoothness assump-
tion (if two samples x and x ′ are close in the input space,
their labels y and y′ should be the same) [18]. Including
such an assumption may reduce the possibility of generat-
ing clinically unreliable matches. Therefore, we populated
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FIGURE 1. Representation of the self-training step of the framework.

our unlabeled set of synthetic observations by creating
donor-recipient matches as similar as possible to the original
ones. Firstly, we used the K-Nearest Neighbor (K-NN)
algorithm to find, for each existing match, the nearest
neighbors (matches) in the dataset. Consequently, we built
the new matches by concatenating each donor with the
recipients of the nearest matches. We also calculated the
matching features relative to the new matches, such as height
and weight ratio, as they represent a valuable source of
information to determine the quality of a match (see Fig. 2).

2) FILTERING STEP
Additionally, we performed a ‘‘filtering’’ step to select a set of
more reliable synthetic observations. Specifically, we trained
a survival model on the labeled set, considering time-to-
death as the outcome, and we predicted the mortality for
the unlabeled set. Survival models consider not just whether
an event occurs, but also when it occurs. This approach
leverages the temporal dimension, providing a richer and
more informative analysis of the event’s occurrence over
time. The predicted mortality was then used to select two
types of artificial sets. In one setting, we used such value to
select those synthetic observations with the lowest predicted
chance of dying (observations whose mortality fell within
the 25th percentile of all the predictions), resulting in a set
of ‘‘negative’’ synthetic observations, in the sense that we
could assume they represented a population that would not
experience death. In the other setting, we performed the same
procedure to select the synthetic observations with the highest
chances of dying, resulting in a set of ‘‘positive’’ synthetic
observations.

3) SELF-TRAINING FRAMEWORK
In contrast to the conventional self-training approach, where
the unlabeled observations may belong to either class,
our framework assumes that the synthetic observations
are categorized as either positive (i.e., patients who died
within 1-year post-transplantation) or negative, and leverages
self-training to incorporate the most confident predictions.
In the initial iteration of our framework, we trained a binary
classifier exclusively on labeled observations. Subsequently,
the model predicted the probability of death for randomly
selected batches of synthetic negative or positive observations
in each iteration. The most reliable observations were then
incrementally incorporated into the training set. The number
of iterations was determined based on the performance on a
validation set, and the optimal iteration was selected. It is
worth mentioning that the synthetic observations were not
used to evaluate the model’s performance.

4) BASE LEARNERS
Our methodology relied on tree-based models, specifically
Random Survival Forest (RSF) [11] for the filtering step and
Random Forest Classifier (RF) [3] for the self-training. RSF
considers time-to-event information as the outcome, and the
splitting rule is based on the log-rank test which evaluates
how different are the estimated survival curves in the resulting
nodes. RF accepts a binary outcome and the splitting rule is
based on the Gini index. Tree-based models are capable of
handling complex non-linear relationships between variables
and provide state-of-the-art performance on tabular data.
Moreover, they have been shown to provide superior or
competitive predictive performance for post-transplantation
mortality, compared to alternative techniques [16].
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FIGURE 2. Illustration of the process generating the unlabeled set using K-NN. The left figure shows the structure of the data (cluster)
where M stands for the match features between the donor-recipient pair. Using K-NN, we find the best new donor-recipient pair after
which we calculate the new match features.

5) EVALUATION CRITERION
To select the most reliable observations and determine the
best iteration of our framework, we defined the performance
gain G at iteration i (with i = 1, 2, . . . ,N ) as follows:

Gi = AUPRi − AUPRi−1, (1)

with AUPR being the area under the precision-recall curve.Gi
was used at each iteration to decide whether to add or discard
the batch of synthetic observations, based on a threshold α,
indicating the minimum accepted gain. The best iteration
was selected based on the cumulative gain cGi between
iteration 0 and iteration i. The choice of AUPR to define the
gain was dictated by the unbalanced nature of the dataset
towards the observations free from the event, as AUPR is a
more appropriate measure than other evaluation metrics as
it is better suited to evaluate the model’s ability to identify
observations in the minority class.

6) ROLLING CROSS-VALIDATION
For evaluating the performance of our proposed framework,
we employed the temporal rolling cross-validation method
similar to [16], which is a technique specifically employed
when the data exhibit temporal or time-based characteristics.
In essence, this technique entails dividing the data into
multiple folds, where each fold comprises a contiguous subset
of the data. Themodel is trained on the first fold and evaluated
on the second fold, then trained on the first and second folds
and evaluated on the third fold, and so on, until all folds have
been utilized as the testing set once. Specifically in our study,
this approach involves treating each year of transplantation
as a distinct fold. For each fold, the training set comprises
past transplant data that occurred before the current year
under evaluation, whereas the test set represents future data
containing patients transplanted during the current year. As a
result, the models are trained on data from a different time
period than the test data. A validation set of one year after
the training set has also been used to select the best number
of iterations in the fold. The final outcome is determined by
combining the predictions for each test year and computing
the averaged AUROC and AUPR. By following this rolling
process, temporal rolling cross-validation guarantees that

the model is assessed on data that resembles the data
it will encounter in the future, thus providing a more
realistic estimate of the model’s predictive ability. The
stability of model performance is another valuable aspect
of temporal rolling cross-validation. It provides multiple
evaluation metrics across different periods, yielding a more
robust estimate of the model’s performance and helping to
identify any variations in predictive ability over time. Another
important advantage of this approach is the opportunity for
data-driven model updates. As new data becomes available,
the model can be retrained periodically to incorporate the
latest information, ensuring its continued relevance and
accuracy as the dataset expands. Furthermore, this technique
precludes the risk of data leakage from the future into the past,
which can lead to overly optimistic performance estimates
(Fig. 3).

III. EXPERIMENTAL SETUP
For the first iteration of the rolling cross-validation,
we employed the observations belonging to the first 10 years
of the dataset as the training set. At each iteration,
we obtained the synthetic set of observations by exclusively
using the training set. Subsequently, we run K-NN with
Euclidean distance and we set the number of neighbors
to four. We removed the censored observations (with a
follow-up lower than 365 days) from the train, validation, and
test set to train the RF classifier and evaluate the predictive
performance. We evaluated the AUPR at each iteration by
bootstrapping 1000 samples from the validation set. We used
the bootstrapped estimate of the performance to calculate
the gain, as defined in Equation 1. We chose a negative
α = −0.005 to avoid over-fitting on the validation set,
thus allowing for a small decrease in performance when
adding the batch of synthetic observations. We selected the
best iteration based on the highest cGi on the validation
set. We compared our framework (SSL_OUR) with several
baselines, the simplest being two models, Linear regression
and RF, trained without unlabeled observations (LR_NO_U
and RF_NO_U), and an RF trained on labeled and all
the synthetic observations added at once (RF_ALL_U).
We considered two different settings for our framework, the
first using the set of negative synthetic observations (referred
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FIGURE 3. To apply the rolling cross-validation approach, patients were added
incrementally to the training set according to their year of transplantation. The blue
block in the figure illustrates the initial training data. Subsequently, the data from the
following year was used as a validation set, represented by the grey block in the figure.
The test set, depicted by the red block in the figure, was collected two years after the
training set.

TABLE 1. Cohort characteristics by the outcome. The outcome was
defined as the patient’s status at one year after HTx. All values are
reported in the median and interquartile ranges unless specified. ECMO:
extracorporeal membrane oxygenation. *P-value < 0.001.

to as (N)) and the second using the positive one (referred to as
(P)). All experiments were performed in Python, version 3.8.
All models were fitted using the scikit-learn1 and scikit-
survival2 Python packages with default parameters.

IV. RESULTS AND DISCUSSION
A. COHORT CHARACTERISTICS
The original pediatric cohort included 9236 pediatric patients.
We excluded patients undergoing combined heart and lung
transplants (n=201), patients with missing information about
the outcome (n=146), and patients with less than 80 available
variables (n=90). This led to a final cohort of 8799 patients,
with approximately 11% of them dying within a year
post-HTx. The characteristics of our cohort are presented
in Table 1. The Kruskal-Wallis and Pearson’s chi-squared
test was used for non-parametric comparisons between
continuous and discrete variables, respectively.

B. PREDICTIVE PERFORMANCE
The outcomes of our methodology compared to the consid-
ered baselines are reported in Table 2. Our SSL_OUR (N)
framework exhibited better performance than the baselines
concerning AUROC and AUPR, with the highest improve-

1https://scikit-learn.org/stable/ (Accessed: 11/04/2023)
2https://scikit-survival.readthedocs.io/en/stable/ (Accessed: 11/04/2023)

TABLE 2. Performance evaluated by rolling cross-validation. Reported
values indicate the mean, with the best values in bold.

ment observed in the AUROC metric. Additionally, our
approach outperformed the method of adding all synthetic
observations simultaneously, as our self-training process
inherently selects the most dependable observations to be
incorporated into the training set, discarding noisy ones.
The performance reported for our methodology surpasses
that of all models documented in [16], where the authors
utilized a similar pre-processing approach and the same
rolling cross-validation technique. Fig. 4 illustrates the key
statistics obtained from the rolling cross-validation process.
The top-left panel shows the optimal iteration of the SSL
framework. In contrast, the top-right panel displays the size
of the training set at the best iteration compared to the size of
the training set without synthetic observations. The bottom
panel presents the AUROC and AUPR metrics computed on
the test set for the best iteration model and the model trained
without synthetic observations. The decline in performance,
particularly towards the final iteration, can be attributed to
two primary factors. Firstly, the number of 1-year post-
transplant deaths recorded in the dataset gradually decreases
over the years, from 70 (31.4%) in 1994 to only 34 in
2016 (4.6%). Secondly, several changes to the pediatric heart
allocation policy were introduced in 2016.3 Fig. 5 reports the
execution of our framework taken from two different steps of
the rolling cross-validation. The top figures regard step #2,
whereas the bottom ones regard step #9. In the first scenario,
the best iteration is the 27th, when roughly 500 synthetic
observations were added to the training set. The gain in
AUPR for the test set is roughly 6% and the best gain for
the validation set corresponds to the best gain for the test

3https://optn.transplant.hrsa.gov/professionals/by-organ/heart-
lung/pediatric-heart-allocation/ (Accessed: 11/04/2023)
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FIGURE 4. From the top-left. Best iteration, training shape, test AUROC, and test AUPR, for each of the rolling cross-validation steps.

set. On the other hand, in the second scenario, the best gain
is reached at the 5th iteration, with roughly 400 synthetic
observations added. In this case, the gain in AUPR on the test
set is more modest. However, in both scenarios, we observe
that the best iteration according to the AUPR calculated on
the validation set, corresponds to the best iteration also on the
test set, indicating that the framework is effective in adding
reliable synthetic observations.

C. FEATURE IMPORTANCE
We extracted the 20 most important features of Logistic
Regression and Random Forest without unlabelled observa-
tions, and compared them with the outcome of our proposed
model, by using SHAP values [14]. The results of this
comparison are illustrated in Fig. 6. Important features
identified by all models include both donor and recipient
features (e.g., height, weight, and age). On the other hand,
matching features were identified as important only by RF
models. Features identified as important exclusively by our
model are sex match and donor creatinine. Additionally,
we report the SHAP summary plot (Fig. 7) of our model,
to better visualize the impact of the variables on the model’s
predictions.

D. PRIOR RESEARCH IN PEDIATRIC HEART TRANSPLANT
PREDICTION
It is essential to contextualize our findings within the broader
landscape of machine learning applications in pediatric
heart transplantation prediction. Our study aligns well with

the recent work by [12], in which they ventured into
machine learning to forecast what unfolds after pediatric
heart transplantation. Their focus on innovative approaches
to improve pediatric care resonates with our own efforts.
Additionally, [1] took a deep dive into predicting one-year
mortality using machine learning, emphasizing factors such
as total serum bilirubin, BMI, and Sgpt. Our findings
complement theirs, shedding light on the multifaceted factors
that influence post-transplantation outcomes.Moreover, renal
insufficiency markers (such as creatinine), recipient BMI,
recipient total bilirubin, and diagnosis before transplantation
are known as important factors in determining patients’
survival after pediatric heart transplant [8]. Finally, our
approach is consistent with the exploration carried out
by [15], which investigated the utility of machine learning
in predicting mortality after pediatric heart transplantation.
While they encountered some sensitivity challenges, our
methodology takes a step forward in enhancing predictive
accuracy. Overall, these studies illustrate the growing interest
in employing machine learning for risk assessment and
outcome prediction in pediatric heart transplantation. This
trend holds promise for refining patient stratification and
enhancing post-transplant care within the field.

V. LIMITATIONS
In our study, we exclusively focus on the pediatric cohort
from the UNOS database, and an interesting direction
would be to repeat the procedure on the adult cohort to
further validate the results. The potential differences between
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FIGURE 5. Performance and training set size across self-training iterations. Two cases are depicted: the top figures regard step #2 of the rolling
cross-validation, whereas the bottom figures regard step #9.

FIGURE 6. Models’ most important features. PWC Physical Work Capacity, PRA Panel Reactive Antibody
calculated, PA Pulmonary Artery diastolic pressure, PVR Pulmonary Vascular Resistance, BMI Body Mass
Index, Sgot Serum Glutamic-Oxaloacetic Transaminase, Sgpt Serum Glutamic Pyruvic Transaminase.

pediatric and adult populations could offer valuable insights
into the generalizability of our approach across different age
groups.

Moreover, we exclusively focused on tree-based models,
as the previous literature supported their state-of-the-art

performance in this application. While tree-based models
have shown promising results, future research could explore
the performance of other machine learning algorithms to
compare their predictive capabilities for pediatric heart
transplantation outcomes.
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FIGURE 7. SHAP value of Random Forest model output. Each point
represents a variable together with an observation. As demonstrated by
the color bar, higher values are shown in red, whereas lower values are
shown in blue.

Furthermore, it is essential to acknowledge that the dataset
used in this study is from the United Network of Organ
Sharing (UNOS) database and covers patients enrolled
between January 1994 and December 2016. As of now,
this is the most recent UNOS data that we have access to.
Unfortunately, we do not have access to more recent data
beyond 2016. The availability of more recent data could have
provided additional insights into the evolving landscape of
pediatric heart transplantation outcomes.

Additionally, we did not perform extensive parameter
tuning for the models but rather referred to the default
settings from the scikit-learn library. While the default
settings are commonly used as a starting point, fine-tuning the
model’s hyperparameters could potentially further optimize
the predictive performance.

Another limitation of our study is that we have not
specifically investigated the model’s performance for longer-
term survival, such as 5-year survival, in the context of pedi-
atric heart transplantation. Whereas predicting longer-term
survival outcomes is of great importance in the field of heart
transplantation, it introduces complexities due to potential
changes in patient characteristics, treatment protocols over
time, and the availability of long-term follow-up data.
Therefore, our study focused primarily on improving the
prediction of 1-year mortality, which is a critical period for
post-transplant monitoring and interventions. We hope that
by incorporating more extended and updated datasets, as well
as advanced survival analysis techniques, our study will help
to improve the understanding of post-transplant outcomes in
pediatric heart transplantation through future investigations.

VI. CONCLUSION
We proposed a novel semi-supervised learning approach
to enhance the accuracy of 1-year mortality prediction
following pediatric heart transplantation. To ensure clinical
reliability, we generated synthetic instances by pairing
donors and recipients that closely resembled real-world
cases. Our study demonstrates that incorporating appropriate
unlabeled data into a self-training framework improves
prediction performance. In future research, we plan to
explore various parameters, such as the gain definition (α)
and the base learner type for self-training, to further
optimize our approach. Furthermore, we aim to investigate
alternative clustering techniques to generate the synthetic set
of observations, as this is a critical step in improving the
performance of semi-supervised learning techniques.
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