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ABSTRACT In recent years, machine learning (ML) has become a pivotal tool for predicting and
diagnosing thyroid disease. While many studies have explored the use of individual ML models for thyroid
disease detection, the accuracy and robustness of these single-model approaches are often constrained
by data imbalance and inherent model biases. This study introduces a filter-based feature selection and
stacking-based ensemble ML framework, tailored specifically for thyroid disease detection. This framework
capitalizes on the collective strengths of multiple base models by aggregating their predictions, aiming
to surpass the predictive performance of individual models. Such an approach can also reduce screening
time and costs considering few clinical attributes are used for diagnosis. Through extensive experiments
conducted on a clinical thyroid disease dataset, the filter-based feature selection approach and the ensemble
learning method demonstrated superior discriminative ability, reflected by improved receiver operating
characteristic-area under the curve (ROC-AUC) scores of 99.9%. The proposed framework sheds light
on the complementary strengths of different base models, fostering a deeper understanding of their joint
predictive performance. Our findings underscore the potential of ensemble strategies to significantly improve
the efficacy of ML-based detection of thyroid diseases, marking a shift from reliance on single models to
more robust, collective approaches.

INDEX TERMS Artificial intelligence, healthcare, machine learning, filter-based stacking ensemble
learning, thyroid disease.
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I. INTRODUCTION

Approximately 40% of the global population suffers from
iodine deficiencies, leading to thyroid-related diseases that
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affect over 200 million people worldwide [1], [2], [3], [4].
The manifestation of thyroid diseases is largely influenced
by dietary iodine, an essential component of thyroid hor-
mones [1], [5], [6], [7], [8]. An imbalance in thyroid hormone
production can lead to various thyroid diseases, which
constitute a significant global health issue. These diseases
notably impair the physical and psychosocial well-being of
affected individuals, particularly during early life due to their
impact on cognition and growth. Common thyroid diseases,
including hypothyroidism, hyperthyroidism, thyroid nodules,
goiter, and thyroid cancer, which are all influenced by
hormonal imbalances [9], [10], [11], [12].

The incidence of thyroid cancer, the most prevalent
endocrine cancer globally, has seen a significant increase in
recent years [13]. Thyroid cancer develops in the thyroid
gland, a butterfly-shaped gland located at the front of the
neck (Figure 1). This type of cancer occurs when cells within
the gland begin to proliferate uncontrollably, leading to the
formation of tumors [14], [15], [16]. The thyroid is critical
to the endocrine system, producing hormones that regulate
metabolism, heart rate, and body temperature. Thyroid cancer
is staged from I to IV, with the stage indicating the tumor’s
aggressiveness and spread. Despite its increasing prevalence,
the mortality rate for thyroid cancer remains relatively
stable [17], [18], [19], [20], [21], [22]. In many Asian
countries, thyroid cancer is one of the top three contributors
to Disability-Adjusted Life Years (DALYs), a measure
reflecting the overall disease burden [13]. Nevertheless, with
timely diagnosis and proper treatment, a significant number
of patients can fully recover and lead healthy lives.

The quest for improved diagnostic methods for thyroid
diseases is driven by the recognition of the disease’s
healthcare challenges and the limitations of existing diag-
nostic approaches. Current research has highlighted both the
strengths andweaknesses of thesemethods, exploring various
imaging modalities, laboratory tests, and clinical assessments
in diagnosing thyroid diseases [24], [25], [26]. Presently,
diagnosis heavily depends on human assessment, such
as interpreting medical images and evaluating fine-needle
aspiration biopsies, which can be subjective and vary in
accuracy [27], [28], [29], [30]. Despite advancements in
medical technology, thyroid diseases pose significant chal-
lenges, including the differentiation of benign frommalignant
thyroid nodules, early detection of thyroid cancer, and timely
identification of thyroid dysfunction. Additionally, managing
thyroid diseases requires a well-balanced treatment approach,
where precise diagnosis and prognosis are essential for
customized patient care.

Machine Learning (ML), a key branch of artificial
intelligence (AI), employs a variety of algorithms to learn
from data, continuously improving its performance through
learning and adjustments [31], [32], [33], [34], [34], [35],
[36], [37], [38]. ML has shown effectiveness in numerous
fields, including healthcare, where it is primarily used for
disease diagnosis. Thyroid disease diagnosis, in particular,

has greatly benefited from ML advancements [39], [40],
[41], [42]. Other examples include employing artificial
neural networks (ANN) and other models as classifiers [43],
using selective features [44], applying random forest
(RF) models [45], [46], adopting decision tree ensemble
approaches [47], utilizing boosting ensemble methods [48],
employing feature selection methods alongside support
vector machines (SVM) [49], and integrating decision trees
and k-nearest neighbor (KNN) techniques [50].
In particular, Islam et al. [43] developed a predictive model

for thyroid disease using a range of ML algorithms and found
that the ANN classifier surpassed others in performance,
achieving an accuracy of 0.9587. This was closely followed
by the CatBoost and XGBoost classifiers, with accuracies
of 95.38% and 95.33%, respectively. Chaganti et al. [44]
applied feature engineering methods, such as forward,
backward, and bidirectional feature selection, alongside
ML and deep learning models. This approach aimed to
predict various types of thyroid conditions more accurately
and reliably. Their study suggested that careful feature
selection, combined with ML models, significantly improves
predictive capabilities for thyroid disease detection. Duggal
and Shukla [49] employed feature selection techniques,
including univariate selection, recursive feature elimination,
and tree-based feature selection, together with classification
techniques like Naïve Bayes, SVM, and RF for diagnosing
thyroid diseases. They discovered that the SVM, paired with
the recursive feature elimination method, achieved a notable
accuracy rate of 92.92%.

Alyas et al. [45] utilized various ML algorithms, including
decision trees, RF, K-NN, and ANN, to classify and
promptly detect thyroid diseases using ultrasound images.
The RF algorithm was particularly effective, highlighting
its potential for automating and enhancing the diagnostic
process in medical practice, especially for thyroid diseases.
In a similar vein, Sonuç et al. [46] employed the RF
model alongside other ML models to categorize thyroid
disease into hyperthyroidism, hypothyroidism, and normal.
Their study focused on a cohort of Iraqi individuals,
including those with overactive and underactive thyroid
glands. Mishra et al. [51] enhanced the RF model by adding
the sequential minimal optimization (SMO), decision table,
and K-star classifier, aiming to improve hypothyroidism
diagnosis. Chaubey et al. [50] experimented with algorithms
like logistic regression, decision trees, and K-NN for thyroid
disease prediction. Their findings suggested that the K-NN
classifier was the most effective in their specific study
context, offering a promising approach for thyroid disease
prediction.

Other studies have utilized ensemble learning techniques
for thyroid disease diagnosis. For example, Yadav and
Pal [47] proposed tree-based ensemble methods for the
early detection of thyroid diseases, including severe con-
ditions like thyroid cancer. Their study indicated that this
ensemble method could significantly improve thyroid disease
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FIGURE 1. Thyroid cancer originates from abnormal growth of cells in the thyroid,
a butterfly-shaped gland situated at the base of the neck, just beneath the Adam’s
apple [23].

prediction. Awujoola et al. [52] utilized the bagging ensemble
method, combining J48 and SimpleCart models, to enhance
the accuracy of thyroid disease prediction. This approach
leverages the strengths of both algorithms within a bagging
framework, aiming to enhance predictive accuracy for thyroid
conditions. Agilandeeswari et al. [53] developed a voting
ensemble technique that combines decisions from various
regression and classification algorithms to predict thyroid dis-
eases. Additionally, Akhtar et al. [54] extended homogeneous
ensembling, utilizing a layered ensemble approach combined
with multiple feature selection techniques to enhance thyroid
disorder detection. This method effectively integrates several
ensemblemodels, improving their collective predictive power
for more accurate thyroid case identification. Ciaburro [48]
explored AdaBoostM1, a boosting ensemble ML algorithm,
demonstrating its practical application and theoretical bene-
fits in diagnosing thyroid disease. Alshayeji [55] applied data
mining and ensemble strategies using Bayesian optimization
to enhance early diagnosis of thyroid diseases. This approach
aimed to improve the accuracy and efficiency of thyroid
disease detection by leveraging advanced optimization tech-
niques. Haitham [56] applied deep learning and ensemble
methods to elevate diagnostic accuracy and reliability in
thyroid nodule detection. This study emphasized integrating
advanced AI techniques with traditional medical practices,
potentially transforming how thyroid diseases are diagnosed
and managed.

In this study, a filter-based feature selection and
stacking-based ensemble framework is introduced, specifi-
cally designed for thyroid disease detection. By eliminating
features with minimal contributions, filter-based selection
strategies enhance the predictive accuracy of models. This
improvement occurs because the removal of noise and

irrelevant data helps prevent the model from learning
spurious patterns that do not generalize to unseen data,
thereby reducing the risk of overfitting. Through extensive
experiments conducted with a real-world thyroid disease
dataset, we consistently demonstrated the superior perfor-
mance of our ensemble approach across various metrics. Our
proposed framework not only enhances predictive accuracy
but also provides insightful revelations into the strengths of
different base models, thereby enriching our understanding
of their combined efficacy. These findings highlight the
importance of moving beyond single-model approaches and
adopting ensemble strategies, which significantly improve
the effectiveness of ML in thyroid disease detection. The
following are the contributions of the study:

1) The study introduces an improved ML technique for
thyroid disease detection, demonstrating the effective-
ness of filter-based strategies and ensemble methods.

2) The filter-based feature selection strategy, by removing
irrelevant or redundant features, plays a crucial role in
enhancing the overall effectiveness and efficiency of
machine learning models.

3) The stacked ensemble model facilitates a more person-
alized diagnostic approach by leveraging the strengths
of multiple model predictions, potentially identifying
unique or rare thyroid conditions that might be
overlooked by individual models.

4) The comparison of our study with existing approaches
underscores its effectiveness in thyroid disease
detection.

The remainder of this paper is structured as follows:
Section II explores related work in the field. Section III
describes the methodology employed in this study, while
Section IV details the experimental setup and procedures.
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Section V presents the findings of our research, and
Section VI thoroughly discusses the study and its implica-
tions. Lastly, Section VII summarizes the conclusions drawn
from this study and outlines potential directions for future
research.

II. BACKGROUND
A. DATASET
The dataset contains 1232 samples and 19 features, providing
demographic information on patients from between 2010 and
2012 [57]. Table 1 presents a detailed list of features
related to thyroid examinations, which are essential for
diagnosing and managing thyroid conditions. It includes
the age and gender of the patient, with age being a risk
factor for thyroid conditions and malignancies, and women
being diagnosed more frequently than men. The dataset also
measures levels of thyroid-related hormones and antibodies
such as Free Triiodothyronine (FT3), Free Thyroxine (FT4),
Thyroid Stimulating Hormone (TSH), Thyroid Peroxidase
Antibodies (TPO), and Thyroglobulin Antibodies (TGAb),
which are pivotal for assessing thyroid function and detecting
autoimmune thyroiditis. Additionally, it covers anatomical
and morphological details such as the site, size, shape,
and echogenicity patterns of the thyroid or nodules, which
can indicate the severity or nature of the condition, such
as the likelihood of malignancy based on patterns like
multifocality, irregular margins, specific calcifications, and
blood flow characteristics observed in ultrasound imaging.
Other attributes include echo strength, which refers to
the intensity of echogenicity, and composition, describing
whether a nodule is solid, cystic, or a mix of both. The table
also includes a designation of nodules as benign or malignant
(‘mal’) and whether changes are bilateral (‘multilateral’),
affecting both thyroid lobes.

Healthcare datasets frequently show an imbalance, char-
acterized by a substantial discrepancy in the distribution of
various classes or outcomes under investigation [58], [59],
[60]. Such imbalances present difficulties in creating precise
predictive models and performing effective data analysis in
the healthcare field.

B. MACHINE LEARNING MODELS
This section presents the ML models explored in this study,
namely LR, SVM, KNN, DT, and ANN.

1) LOGISTIC REGRESSION
Logistic regression (LR) models are used to investigate the
associations between risk factors and a target event [61],
[62], [63]. LR is versatile and finds application in a wide
range of classification and regression problems, including
binary and multi-class scenarios [64], [65]. As a statistical
tool, LR models the likelihood of specific outcomes based
on input variables. In medical research, LR has been pivotal
in predicting the onset of diseases, confirming or refuting
diagnoses based on symptoms and test results, gauging the

effectiveness of new treatments, identifying high-risk patients
for particular conditions, and classifying patients for tailored
care plans. The mathematical representation of LR is given
as:

σ (t) =
1

1 + e−t
(1)

In the context of logistic regression, this is the input to
the sigmoid function before transformation. t is the weighted
sum of the input features and the weights. Given in matrix
notation:

t = xTi W (2)

Expanding it out for d features:

t = w0 + w1xi,1 + w2xi,2 + . . . + wdxi,d (3)

where W is the weight vector, including the bias term w0.
xi is the feature vector for the i-th instance. xi,1, xi,2, . . . , xi,d
are the individual features of the i-th instance.w0,w1, . . . ,wd
are the weights corresponding to each feature, with w0 being
the bias term.

2) SUPPORT VECTOR MACHINE
Support Vector Machines (SVMs) are robust methods used
for classification and regression tasks [66], [67], [68]. The
fundamental concept behind SVMs is to distinguish between
classes by maximizing the margin between them, particularly
in the training set [69]. For a binary classification problem
with two classes, the SVM tries to find the optimal hyperplane
that maximizes the margin between the two classes. The
hyperplane can be described by the equation:

w · x + b = 0 (4)

where w is the weight vector, which is normal to the
hyperplane, x is an input vector, and b is the bias term.

3) K-NEAREST NEIGHBOR
The k-Nearest Neighbour (K-NN) algorithm is a non-
parametricmethod used for classification and regression [70],
[71]. K-NN classifies data points based on their proximity
to query points. A key feature of K-NN is its distance
metric used to determine the similarity between data points.
Commonly, the Euclidean distance is employed, but other
metrics like Manhattan, Minkowski, or Hamming distance
can be used depending on the nature of the data. For an
Euclidean distance for continuous variables:

d(xi, xj) =

√√√√ m∑
l=1

(xi,l − xj,l)2 (5)

where d(xi, xj) is the distance between points xi and xj. m is
the number of features. xi,l and xj,l are the l-th features of
points xi and xj, respectively.
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TABLE 1. Attributes and descriptions of thyroid dataset.

4) DECISION TREES
Decision trees (DTs) are non-parametric methods that use
a hierarchical, tree-like model of decisions composed of a
root node, branches, internal nodes, and leaf nodes [72],
[73], [74]. DTs employ a divide-and-conquer strategy to
identify optimal split points within the tree. Popular decision
tree algorithms, such as ID3, C4.5, and CART, are used
for both classification and regression tasks, determining
the best feature to split on at each step [75]. Building a
decision tree involves making decisions at each node. This
decision-making is based on choosing the best split among
all possible splits. The quality of a split is measured using
certain criteria:

Entropy of a set:

S : E(S) = −p+ log2(p+) − p− log2(p−) (6)

where p+ is the proportion of positive examples in S and p−

is the proportion of negative examples in S.

Information Gain based on a split feature:

Gain(S,F) = E(S) −

∑
v∈Values(F)

|Sv|
|S|

E(Sv) (7)

where Sv is the subset of S for which feature F has value v.
Here, S is the current dataset, F is the feature being

considered for the split, Values(F) are the possible values
of feature F , Sv is the subset of S for which feature F has
value v, |Sv| is the number of instances in subset Sv, |S|

is the total number of instances in dataset S, E(S) is the
entropy of dataset S, and E(Sv) is the entropy of subset Sv.
The information gain is calculated as the difference between
the entropy of the current dataset S and the weighted sum
of the entropies of the subsets after the split.

5) ARTIFICIAL NEURAL NETWORK
The Artificial Neural Network (ANN) is a widely used
neural network with the capability to perform function
estimation [76], [77], [78]. It is proficient in managing both
linear and non-linear data relationships. With its composition
of multiple layers of interconnected neurons, the ANN
acquires data representations by adjusting weights during the
training process. For a neuron k in the output layer:

p(y = k|x) =
ezk∑K
l=1 e

zl
(8)

where k is the number of output neurons (equal to the
number of classes in a classification task). p(y = k|x) is the
probability that input x belongs to class k . The ANN is trained
using backpropagation, which adjusts the weights and biases
to minimize the difference between the predicted outputs and
the actual labels, often employing the cross-entropy loss for
classification tasks [79].

These models were selected due to their distinct strengths
and complementary characteristics, which together offer a
robust approach to addressing the complexities of the dataset.
LR was chosen for its simplicity and interpretability, making
it ideal for establishing a baseline in binary classification
tasks. It provides clear probabilistic outputs, which are
valuable for understanding the impact of different features
on predictions. SVM was included for its effectiveness in
high-dimensional spaces and its capacity to model non-linear
decision boundaries through kernel functions. It is beneficial
for complex classification problems where the decision
surface is not readily apparent. DTs were selected for
their intuitive understanding and ability to handle non-linear
relationships. Their structure makes it easy to visualize and
interpret, which is beneficial for communicating findings
to stakeholders who may not have a technical background.
Thanks to their deep and flexible architecture, ANN provides
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exceptional modeling capabilities, especially in capturing
intricate patterns in large datasets. This makes them suitable
for more complex problems where other models might fail to
capture all the nuances in the data.

C. FILTER-BASED FEATURE SELECTION WITH
INFORMATION GAIN
Feature selection is an integral part of the data preprocessing
step. It involves selecting specific features from the dataset
for use in the training process of a learning algorithm. The
Information Gain (IG) filter-based feature selection method
is primarily used to measure the effectiveness of features in
classifying data in decision tree models [80], [81] and can
also be broadly applied in other contexts.

IG is based on the concept of entropy from information
theory, representing the impurity or uncertainty in a group
of examples. Mathematically, the IG between two variables
X and Y is formulated as the difference between the initial
entropy of X and the entropy of X after observing Y . This
can be expressed as:

IG(X |Y ) = H (X ) − H (X |Y ) (9)

where H (X ) is the entropy for variable X and H (X |Y )
represents the conditional entropy for X given Y . To compute
the IG value for an attribute, calculate the entropy of
the target variable for the entire dataset and subtract the
conditional entropies for every potential value of that
attribute. Furthermore, the entropy H (X ) and conditional
entropy H (X |Y ) are computed as:

H (X ) = −

∑
x∈X

P(x) log2(x) (10)

H (X |Y ) = −

∑
x∈X

P(x)
∑
y∈Y

P(x|y) log2(P(x|y)) (11)

Therefore, when considering two variables X and Z ,
a variable Y is deemed to have a stronger correlation with X
than with Z if IG(X |Y ) > IG(Z |Y ). Moreover, IG evaluates
each attribute independently and assesses its relevance to the
target variable.

D. THE STACKING ENSEMBLE TECHNIQUE
Ensemble learning is a technique that involves combining two
or more ML algorithms to create a more effective model [48],
[82], [83]. This approach utilizes the strengths and mitigates
the weaknesses of individual models, leading to improved
performance in various tasks. Ensemble methods can be
particularly beneficial in scenarios where a single algorithm
might struggle due to limitations like bias or variance. There
are several common types of ensemble methods, including
bagging, boosting, and stacking. Bagging, short for bootstrap
aggregating, involves training multiple models in parallel,
each on a random subset of the data, and then averaging
their predictions. Boosting, on the other hand, trains models
sequentially, with each new model focusing on the errors
made by the previous ones, thereby improving the overall
accuracy.

The stacking ensemble also referred to as ‘‘stacked gener-
alization,’’ is based on the concept where multiple models are
combined to produce a given prediction [84], [85], [86], [87].
A significant benefit of stacking ensembles is their ability to
improve the predictive accuracy of unbalanced datasets [88],
[89]. The stacking ensemble has been successfully applied
in various domains such as image classification, natural
language processing, and financial forecasting. One of the
key advantages of a stacking ensemble is its flexibility in
incorporating diverse base learners, ranging from simple
algorithms like decision trees to complex models like neural
networks [90], [91].

Moreover, stacking ensemble can effectively capture the
complementary strengths of different models, mitigating the
weaknesses of individual learners and leading to enhanced
overall performance [93]. Figure 2 illustrates the process
flow of the stacked ensemble method. This is achieved
through a meta-learner, which learns to combine the pre-
dictions of the base models, often yielding more robust
and accurate predictions than any single model alone [94].
Furthermore, the versatility of the stacking ensemble allows
for the integration of various feature engineering techniques,
model hyperparameters, and ensemble strategies, providing
ample room for experimentation and optimization [95]. This
adaptability makes the stacking ensemble a popular choice
among data scientists and machine learning practitioners for
tackling a wide range of prediction tasks [92], [96], [97].

III. METHODOLOGY
A. OUR PROPOSED APPROACH
In the stacking ensemble, each model acts as an individual
contributor, offering its unique perspective and prediction
based on the data (See Figure 3). These individual predictions
are then collected and used as inputs for a higher-level
model, often known as the meta-model. The role of the
meta-model is to synthesize these inputs, discern patterns
among the base models’ predictions, and produce a more
refined and potentially more accurate final prediction [37].
This layered approach allows for a deeper understanding of
the data, leveraging the strengths of each base model while
compensating for their weaknesses. As a result, stacking
ensemble methods can often outperform any single model
in the ensemble, especially when there is a diverse set
of base models providing varied insights into the data.
The implementation of the stacked ensemble classifier is
presented in Algorithm 1.

In Algorithm 1, the dataset comprises feature vectors
and corresponding labels as input. The dataset D undergoes
stratified K-fold cross-validation, a process that divides the
data into training sets Tk and validation sets Vk , ensuring
each fold is representative of the overall class distribution.
This approach enhances consistency and reliability during
validation. Base classifiers, each with a unique analytical
approach, are trained on the training set Tk . These classifiers,
encompassing various ML algorithms, enrich the learning
phase by capturing different patterns in the data. Their
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FIGURE 2. A stacked ensemble workflow [92].

Algorithm 1 Stacking Ensemble Classifier for Thyroid
Disease Diagnosis
1: Input: Thyroid disease dataset D, which consists of

feature vectors X = {x1, x2, . . . , xni} and corresponding
labels Y = {y1, y2, . . . , yni}.

2: Output: Predictions (P) from the ensemble classifier
Cstacked.

3: Step 1: Perform stratified K-fold cross-validation on D
to create training and validation sets.

4: for k = 1 to K do
5: Divide D into training set Tk and validation set Vk .
6: Step 2: Train base classifiers: LR, SVM, KNN, DT,

and ANN on Tk .
7: for each classifierCj in {LR, SVM,KNN, DT, ANN}

do
8: Train classifier Cj on Tk .
9: Make predictions on Vk to create features for
Dkmeta.

10: end for
11: Aggregate predictions from Dkmeta into Dmeta.
12: end for
13: Step 3: Train the meta-classifier (stacking ensemble

classifier) on aggregated Dmeta.
14: Step 4: Prepare a new, unseen dataset Dtest.
15: Step 5: Use the trained meta-classifier to obtain the final

predictions P by applying it to Dtest.
16: Step 6: return the ensemble predictions P.

predictions on the validation set Vk are then used as
meta-features for Dmeta. The meta-classifier, trained on these

meta-features, synthesizes these insights. It combines the
base classifiers’ predictions to yield the final predictions. This
methodology leverages the collective strengths of diverse
classifiers, thereby enhancing predictive accuracy.

B. PERFORMANCE METRICS
Performance metrics are used to measure the performance
of ML models [98], [99]. These metrics provide a deeper
understanding of various model attributes, including accu-
racy, precision, sensitivity, specificity, F1-score, and the area
under the Receiver Operating Characteristics (ROC) curve
(AUC), among others.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(12)

Precision =
TP

TP+ FP
(13)

Sensitivity =
TP

TP+ FN
(14)

Specificity =
TN

TN + FP
(15)

F1 measure = 2 ·
precision · recall
precision+ recall

(16)

Balanced Accuracy =
Sensitivity+ Specificity

2
(17)

where:

• True Positives (TP) represent the number of correctly
predicted positive instances.

• False Negatives (FN) represent the number of positive
instances incorrectly classified as negative.
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FIGURE 3. The stacked-based ensemble with IG process.

• True Negatives (TN) represent the number of correctly
predicted negative instances.

• False Positives (FP) represent the number of negative
instances incorrectly classified as positive.

In the context of diagnosing thyroid diseases, assessing
the effectiveness of ML models extends beyond mere
accuracy. While accuracy provides an overview of correct
predictions made by a model, it may not adequately capture
nuances, especially in imbalanced datasets with a higher
proportion of patients without the disease. Here, balanced
accuracy becomes essential, offering insights into themodel’s
performance in correctly identifying both the presence and
absence of the disease. Precision is also vital; an incorrect
positive diagnosis could subject a patient to unnecessary
treatments. Similarly, high sensitivity is paramount to avoid
missing a thyroid disease diagnosis, which can have serious
health implications. Specificity is equally important to ensure
that those without the disease are not falsely diagnosed,
thus preventing unnecessary treatments. The F1-score, which
balances precision and sensitivity, provides a comprehensive
view of a model’s performance, especially when the cost
of false positives and false negatives is high. Lastly, the

ROC-AUC metric is utilized to assess the discriminative
performance of the models. This metric is crucial in medical
diagnostics as it helps in effectively identifying true positives
(sensitivity) while minimizing false positives (specificity).

IV. EXPERIMENTAL ANALYSIS
In this study, the construction of the models was carried
out with rigor and methodical precision, ensuring that
every phase of the process was optimized for accuracy
and sensitivity, as depicted in Figure 3. In the initial
stages, the dataset underwent an information gain feature
extraction process and later on a scaling procedure. This
step ensured that each feature was standardized to the same
scale, a particularly significant aspect for models sensitive to
variations in feature scales, such as SVM and K-NN. The
goal was to both accelerate the convergence speed of the
algorithms and boost their overall performance.

We acknowledge the challenges presented by imbal-
anced datasets, which can introduce biases and potentially
lead to overfitting. To address this issue, the Synthetic
Minority Over-sampling Technique (SMOTE) [100], a well-
established method was utilized. SMOTE is valuable for
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TABLE 2. Hyperparameters for the classifiers.

its capability to generate synthetic samples, ensuring a
balanced representation of both minority and majority
classes. By employing SMOTE, our goal was to foster
the development of models that were more generalized
and robust. Another crucial component of our evaluation
process was hyperparameter tuning, as shown in Table 2.
For each model, the hyperparameter grids were defined
and a wide range of parameter combinations was explored.
This exhaustive approach enabled the identification and
selection of the best parameters to optimize the model’s
performance.

To enhance the robustness of the model evaluations, a strat-
ified k-fold cross-validation technique was employed. This
method ensured that each fold of the cross-validation con-
tained a proportion of samples from each class that mirrored
the complete dataset. A 10-fold stratified cross-validationwas
chosen, balancing computational efficiency with the need
for robust and reliable performance estimates. A distinctive
aspect of our methodology was integrating the stacked
ensemble model, wherein predictions from base models
served as input for another model, the meta-model, ultimately
producing the final prediction. LR was selected as the
meta-model, with an impressive maximum iteration limit of
1000 set to ensure the best fit for the data. The objectivewas to
leverage the distinct strengths of each model, aiming to create
an ensemble with the potential to exceed the performance of
any single model in terms of accuracy.

V. RESULTS
In the assessment of the models, varying levels of per-
formance were observed, as outlined in Table 4 and
Table 5. These results provide a comprehensive overview
of the models’ performance, essential for evaluating their
effectiveness in diagnosing the thyroid condition.

A. PERFORMANCE OF THE CLASSIFIERS WITHOUT
FEATURE SELECTION
For the task without the feature selection task, as shown in
Table 3, the Stacked Ensemble model outperformed others in
terms of accuracy, with a score of 84.9%. This model also
achieved the highest AUC value of 90%, sensitivity value of
81%, and specificity of 87%. This is followed closely by the
LR model at 80.2% with AUC of 84%, sensitivity at 80.3%,

FIGURE 4. AUC of the classifiers on the entire feature set.

and specificity at 83%. Interestingly, the K-NN model,
despite its accuracy of 78.4%, displayed commendable
precision, closely with the SVM, both scoring 84.1% and
84.4% respectively. The ANN and Stacked Ensemble models
exhibited a close match in terms of balanced accuracy,
precision, and specificity, with the latter slightly edging out
in most metrics. The classifiers’ AUC scores are shown in
Figure 4.

B. PERFORMANCE OF THE CLASSIFIERS AFTER FEATURE
SELECTION
In this section, the performance of the classifiers after the
feature selection task is presented. Table 4 shows the IG
feature ranking, where features are ranked from highest to
lowest IG value, suggesting the relative importance of each
feature in the model. The table reveals that the feature named
size holds the highest IG value at 0.173, placing it in the
10th position in terms of the ordering of the features, but it
ranks highest in terms of its information gain. This is followed
by calcification with an IG of 0.142, and age with an IG of
0.100, indicating their significant roles in the model. On the
other hand, features such as FT3, FT4, and TGAb have an
IG of 0.000, indicating that they contribute no informational
value to the outcome of the model according to the measure
used.

After computing the Information Gain (IG) values for var-
ious features in a dataset, the next step involves establishing
a benchmark for feature selection. The standard deviation
is calculated to serve as the threshold value for this task.
The standard deviation is widely used because it effectively
expresses the diversity of the IG value distribution [101].
The standard deviation of the IG values listed in the table is
0.0498. Of the 18 features, 7 features have IG values greater
than the threshold of 0.0498, and 11 features have IG values
less than the threshold. Consequently, features such as size,
calcification, age, multilateral, site, blood flow, and shape
have IG values above this threshold, indicating that they are
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TABLE 3. Performance evaluation of the models on the entire feature set.

TABLE 4. Information gain feature ranking.

particularly informative in the context of the dataset. This
suggests that these features are strong predictors or are highly
associated with the outcome being studied. Features such as
margin, composition, gender, echo pattern, and others that
fell below the threshold may be less critical in predicting the
condition of interest within this specific dataset. However,
this does not mean these features are clinically unimportant;
rather, they might not differentiate well between different
states or outcomes in this particular analysis.

The reduced feature set was used to train the models.
Table 5 presents the performance metrics of the reduced
feature set. SVM, LR, DT, ANN, and the Stacked Ensemble
all achieved improved accuracies. For instance, the Stacked
Ensemble exhibited exceptional performance across all
metrics, scoring 99.9% in accuracy, balanced accuracy,
precision, sensitivity, and 99.9% AUC, along with a 99.8%
specificity and a 99.7% F1 score. Following closely, the KNN
model demonstrated impressive performance, achieving an
89.0% accuracy and a higher AUC at 97%.DT also performed
well with an AUC of 94%, and ANN recorded an AUC of
93.0%. Finally, SVM also showed good performance with an
AUC of 90%.

The Stacked Ensemble consistently demonstrated superior
performance across both tasks, closely followed by the ANN,
SVM, and DT models (refer to Figure 4 and Figure 5).
The performance of the LR and K-NN models varied, high-
lighting their dataset-specific effectiveness. This comparison
underscores the strength and efficacy of ensemble methods,
particularly in contrast with single-model approaches. These
findings suggest that the Stacked Ensemble approach can
effectively integrate the strengths of individual models,

FIGURE 5. AUC of the classifiers on the reduced feature set.

leading to more robust and improved predictions. This
reinforces the value of ensemble methods in complex ML
tasks where single models may not consistently deliver
optimal results.

VI. DISCUSSION
Thyroid diseases are a major healthcare concern globally,
significantly affecting individuals’ quality of life and health.
The study applied an approach that combines the filter-based
feature selection method and the stacking ensemble method
to investigate thyroid diseases. The findings offer valuable
insights into thyroid disease detection for clinicians and
researchers. Traditional diagnostic methods for thyroid
diseases vary in precision and efficacy, influenced by several
factors. These include differences in physicians’ diagnostic
approaches, the challenges of consolidating diverse diagnos-
tic data from various healthcare providers for comprehensive
assessments, the importance of early diagnosis in slowing
the progression of thyroid cancer and reducing mortality
rates, and the difficulty in identifying rare thyroid cancer
subtypes with unique characteristics. These factors signifi-
cantly diminish the accuracy of thyroid disease diagnoses,
presenting obstacles to improving patient care and developing
tailored diagnostic and treatment options. Consequently,
there is a crucial need for data-driven approaches like ML
to enhance clinical decision-making [102], [103].

One of the distinctive strengths of our study was the appli-
cation of the stacking ensemble and filter-based method for
diagnosing thyroid diseases, incorporating predictions from
various ML models. This approach significantly improved
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TABLE 5. Performance evaluation of the models on the reduced feature set.

TABLE 6. Comparison with other existing studies.

the diagnosis of thyroid diseases, with the stacking ensemble
model demonstrating better performance. The technique
achieved accuracy, sensitivity, and specificity levels of
99.9%, 99.9%, and 99.8%, respectively, surpassing some
previous works in this domain, as detailed in Table 6. The
stacking ensemble model’s suitability for predicting thyroid
diseases is both consistent and promising. Our findings also
reveal that in cases of imbalanced datasets, the stacking
ensemble approach effectively enhances diagnostic accuracy,
as supported by Yan et al. [88]. Thus, our study suggests
that the stacked ensemble classifier is a superior method
compared to single models in addressing thyroid disease
classification challenges, maximizing diagnostic accuracy.
Additionally, the analysis of IG values within a dataset not
only aids in refining the focus of clinical investigations but
also enhances the efficiency and effectiveness of patient care.
By identifying which features are most and least predictive,
clinicians and researchers can develop more targeted diag-
nostic algorithms and treatment protocols, ultimately leading
to improved patient outcomes and more efficient use of
healthcare resources.

Our findings not only underscore the importance of
the size and calcification of thyroid nodules but also
highlight how these characteristics are critical indicators of
potential malignancy, aligning with observations in similar
studies [104], [105], [106]. Larger nodules are more likely
to be biopsied because their size often correlates with an
increased risk of cancer [107], [108]. Guidelines from various
thyroid associations suggest that nodules larger than a certain
threshold (often around 1 cm in diameter) warrant a finer
assessment, including ultrasound and possibly fine needle
aspiration, depending on other coexisting features [109],
[110]. This approach is aimed at early detection of thyroid
cancers, which are typically more treatable when identified
early. This approach is aimed at early detection of thyroid

cancers, which are typically more treatable when identified
early. The presence of calcifications, especially specific types
like microcalcifications or peripheral calcifications, enhances
the specificity of ultrasound in predicting malignancy.

While our study represents an advancement in thyroid dis-
ease research through the utilization of the stacking ensemble
method and filter-based feature selection strategy, it is crucial
to acknowledge its limitations. Variability in data quality
and availability may have introduced bias into our analyses.
Future research endeavors should prioritize the introduction
of other ensemble methods, such as boosting and bagging,
to ensure the robustness and generalizability of our findings.
The potential of ML, particularly when combined with
ensemble methods, holds immense promise for furthering our
understanding of thyroid diseases. Subsequent investigations
could explore the integration of genomic, proteomic, and
imaging data to unravel the intricate molecular underpinnings
of thyroid diseases. The development of predictive models
for patient prognosis and treatment response, grounded in
individualized data and driven by ensemble insights, may
herald a new era of precision medicine in thyroid disease
management.

VII. CONCLUSION AND FUTURE DIRECTION
In this study, methodological strategies for thyroid disease
classification and prediction have been provided. The per-
formance of five distinct machine-learning base learners and
their integration into a stacked ensemble were explored. This
approach sets our study apart from prior thyroid disease clas-
sification research usingML. The classifiers were applied to a
thyroid disease dataset, where the combined predictive power
of the base classifiers through the stacking method, together
with the filter-based method, consistently surpassed individ-
ual model predictions. Our findings highlight the stacking
ensemble model’s effectiveness in improving thyroid disease
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detection. However, the study has limitations due to its
reliance on secondary data, which constrains control over
data availability, quality, and the completeness of information
captured. Despite the stacked model’s performance, there is
room for further enhancement. Future research will explore
other approaches by utilizing diverse datasets to predict the
severity of thyroid disease conditions.
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