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ABSTRACT The precise alignment of 3D echocardiographic images taken from different views has been
shown to enhance image quality and increase the field of view. This study proposes a novel sequential
Monte Carlo (SMC) algorithm for the 3D-3D rigid registration of echocardiographic images with significant
overlap that is robust to the noise present in ultrasound images. The algorithm estimates the translational
and rotational components of the rigid transform through an iterative process and requires an initial
approximation of the rotation and translation limits that depend on the dimension of the image and the initial
overlap between images. The registration is performed in two ways: the same transform approach applies
the transform computed for the end diastolic frame to all frames of the cardiac cycle, whereas the unique
transform approach registers each frame independently. The proposed SMC and exhaustive search algorithms
were evaluated for 3D transthoracic echocardiographic volumes recorded from 3 patients and 3 volunteers
who participated in two different research studies conducted at the Mazankowski Alberta Heart Institute. The
evaluations demonstrate that the same transform approach yielded a Dice score value of 0.716 & 0.041 for the
left ventricle and required less computational time than the unique transform approach or exhaustive search.
It was found that the SMC algorithm performs better than the exhaustive search at the 0.05 significance
level using the paired t test. The accuracy was improved further using the Simple Elastix non-rigid
registration algorithm to fix misalignments due to movement and breathing, with an overall Dice score value
of 0.787 &+ 0.038.

INDEX TERMS Sequential Monte Carlo, particle filter, 3D-3D rigid registration, echocardiographic images.

I. INTRODUCTION

According to the World Health Organization, heart disease
is a major challenge for healthcare systems [1], and it is the
second leading cause of death in Canada [2]. An accurate
and timely diagnosis of cardiac disease is essential for a
healthy life. Cardiac images are analyzed by healthcare
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practitioners for clinical diagnosis, prognosis, planning
and guiding treatment, monitoring disease progression, and
other follow-up processes, as well as scientific purposes.
Ultrasound (US) is widely used to obtain cardiac images
compared to magnetic resonance imaging (MRI), computed
tomography (CT), cone beam CT (CBCT) and positron
emission tomography (PET) to analyze the structure and
function of the heart due to its high temporal resolution,
portability, accessibility, and affordability. In addition, the
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US uses non-ionizing examinations compared to CT, CBCT,
and PET modalities. Although it provides real-time images,
analyzing raw ultrasound images is not easy because of the
low imaging quality due to the noise level and presence
of artifacts, the high dependence on operator/diagnostician
experience, and the high variability across different US
manufacturers’ systems [3], [4], [5].

Despite its widespread use, ultrasound imaging of the heart
suffers from a limited field of view, and only a portion
of the heart is often imaged in a single scan due to this
limitation. Although three dimensional (3D) ultrasound scans
offer a better field of view than two-dimensional (2D)
ultrasound scans that image only a slice of the heart, it is
not possible to scan the entire heart in a single 3D scan
most of the time. The field of view limitation could be
overcome by acquiring images from different positions that
require an approach to precisely align images for clinical
tasks. In addition, image segmentation and fusion may require
image registration as a preprocessing step. The performance
of a registration algorithm is critical for using aligned 3D
datasets for diagnostic purposes.

Image registration is the process of aligning two or
more images into the same geometric coordinate system to
determine the feature or intensity correspondence between
images. It is required to precisely align the images for clinical
tasks that use computer systems to visualize overlapped
images [6], as these images are taken at different times
from different views using the same or different modalities.
Techniques used to register images differ depending on input
image modalities, dimensions, region of interest, nature of the
information, required transform type, optimization methods,
and interaction level [7], [8].

Rigid registration uses translation and rotation to transform
one image into another, and it can be used as a global preregis-
tration of images for non-rigid registration. The rigid registra-
tion can be used for the alignment of intrapatient images and
the registration of multimodal images when considering its
application to medical images [8]. A 2D echocardiographic
image has limited details compared to a 3D image which is
considered a sequence of 2D images with great depth of view
from any spatial point. 3D transthoracic echocardiographic
(3DE) imaging with its advanced probes and image acqui-
sition techniques helps to overcome the issues in analyzing
2D images with geometric assumptions [9]. There are various
classical and modern image registration techniques that are
used to align images, which support parallel processing with
Graphical Processing Unit (GPU) hardware, and they are
more computationally efficient compared to non-parallel or
CPU based implementations [10].

Classical image registration algorithms use energy func-
tions to calculate the transform model, and single pairwise
image registration can be performed using these algorithms
in an iterative manner with limited computing resources [11].
The particle filter (PF) approach is a technique for imple-
menting a recursive Bayesian filter by Monte Carlo (MC)
sampling, which represents posterior density by a set of
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random particles with associated weights. The advantage of
using the Bayesian filtering framework for image registration
is its ability to handle outliers and local minima convergence
while being robust to noise [12]. The PF is a nonlinear
and non-Gaussian filter that processes data sequentially. The
basic steps of the PF approach are to generate a bunch
of random particles, predict the next state of particles,
update particle weights, resample particles, and compute
estimates [13]. The last four steps will be followed repeatedly
until the required accuracy is achieved while overcoming
the challenges of PF which are particle degeneracy, sample
impoverishment, particle divergence, selecting importance
density, and real time execution [14], [15].

There has been limited research conducted using MC
based approaches for both 2D and 3D multi-modality medical
images [12], [16], [17], [18], [19], [20] and parallel architec-
ture support for these algorithms is being explored now. The
number of experimental studies [13], [14], [15], [21] showing
the use of MC algorithms for image registration suggests
that this new area is worth exploring. Wong [16] proposed
a method to use an adaptive MC method for registering
2D multimodality images (T1-T2 MRI and T1 MRI-PET)
using non-parallel hardware. In another study [17], the
affine transform was performed using the particle filter
algorithm to register 2D and 3D non-US multimodality
images such as MRI, CT, proton density (PD), and PET
in a non-parallel architecture. The particle flow filter [12]
was used for rigid registration of 2D MRI images and
2D-2D and 2D-3D non-medical images using non-parallel
hardware. Other studies [18] and [19] proposed non-rigid
registration algorithms for 2D CT and MRI images using the
particle filter and particle swarm optimization approaches,
respectively. The particle swarm optimization approach uses
particles with velocities, which is fundamentally different
from the particle filter or sequential MC approach proposed
for the image registration problem in this study. A stochastic
gradient Markov Chain MC approach [20] was used to
align 3D brain MRI data using a non-rigid registration
algorithm and the performance was evaluated in both parallel
and non-parallel architectures against variation inference
and the voxelmorph [22] approach. A recent study [23]
proposed landmark based rigid registration approach for
3D-3D echocardiographic images as monomodality using
reinforcement learning. To the best of the authors’ knowl-
edge, there has been no method proposed to register 3D-3D
echocardiographic images as mono/multimodality using MC
methods. This study proposes a sequential MC approach
to register the temporal sequence of echocardiographic
volumes with significant overlap using intensity based rigid
registration.

Il. METHODOLOGY

A. PROBLEM FORMULATION

Accurate alignment of 3DE images, captured from various
views and at different time points, is crucial for whole
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heart clinical analysis. The intensity based rigid registration
algorithm proposed in this study for 3DE images of different
views is significant, as there are no algorithms available
now for either the CPU or GPU architecture. With the
combination of a novel rigid registration algorithm and a non-
rigid algorithm, better performance can be achieved with less
computational time for 3DE images.

3DE images are acquired in the parasternal long axis,
parasternal short axis, and apical planes in general to perform
volume analysis of heart chambers, calculate ejection fraction
(EF), and assess the functions of the heart valves [9], [24],
[25]. The apical view of 3DE provides better visualization
of four chambers compared to other views [9], [26] and this
study focuses on full volume images acquired on the apical
plane. The apical standard and non-standard images are used
to calculate the volume of the left ventricle (LV) and EF, and
analyze effective orifice area [27].

The sequential MC approach is a new concept to explore
with 3D image registration as it is widely used for state
estimation in 2D. The PF algorithm proposed in this research
for 3DE image registration using non-parallel architecture
was designed and developed from scratch and is an innovative
approach.

B. REGISTRATION

The rigid registration is performed on 3DE images with sig-
nificant overlap using the PF algorithm. The apical standard
and non-standard images of the same patient are considered
images with significant overlap to perform registration with
translation and rotation. The voxel intensity is considered
alone to perform the task without using landmarks or features.
The objective of the registration algorithm is to find the best
transform (43) that minimizes the dissimilarity value between
source (S) and target (7') images when applying transform ¢.

A

¢ = aIgHgHED U1, Is(#)) ey

The PF estimates the rigid transform required to align
the source image to the target image using weighted
particles over iterations using the transform as state and the
dissimilarity value between the source and the target image as
measurement. A bunch of particles (V) are generated using a
uniform distribution with rotation (7y, ry, r;) and translation
(tx, ty, t;) values in the x, y, and z axes within a given
interval [min, max]. The state represented by each particle
x' is defined as (rx, Fy, Iz, Iy, 1y, t;) denoting the six degrees
of freedom for 3D-3D rigid registration. Each parameter
(p) of the transform for a particle can be defined as in (2)
for initialization with minimum and maximum thresholds a
and b. The state at time k is defined as (3) where I isthe 6 x 6
identity matrix and vx_; is an independent and identically
distributed (i.i.d) process noise sequence composed of six
parameters of a 3D rigid transform approximated by Gaussian
distribution. The measurement (z) at time & is defined as (4)
where H, is the function that calculates the dissimilarity value
between the source image at time k and the target image, and
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Vg is 1.1.d measurement noise.

p~ Ula, b) )
X = Ixp—1 + vi—1 3)
2k = Hyxp + ng 4

The prediction, update, resampling, and estimation steps
of PF are performed iteratively once the state space is
initialized with a uniform distribution and a minimum
dissimilarity value of —1 as the initial measurement as shown
in Figure 1. The prediction step finds the state at time k£ with
measurements available up to time k — 1 using the prior
probability density function (pdf) (5) where §(.) is the Dirac
delta measure and w};: «_1 (6) is the conditional probability of
the state given measurements up to time k — 1. The weight
of particle i at time k is denoted as wf( and the weights
are normalized such that >N | wi = 1. The weights of the
particles are updated using the new measurement z; and the
posterior state is defined (7) during the update step where w}'{: X
value is defined as (8).

N

Pk | 2km1) A D Why 8 (xk _x(i):k) ®)

i=1

N
Wiuc—l £ wac—uk—lp (xllc |x;<—1) (©6)

j=1

N
p (k| z1) = ZW;{;JJS (xk - x(i):k) 0
i=1
i oA W5<|1<—1P (Zk |xll<)
Wk‘k = N N X (8)
2= W§<|k—1p (Zk | x/]c)
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PO | zia) ~ D wi (Xk - xi) ©
i=1
N . .
ix=1

To avoid particle degeneracy, the particles are resampled as
the next step using systematic resampling (9), where particles
with lower weights are replaced by particles with higher
weights if the number of effective particles falls below a
threshold value, and results in a new particle set {x,’(*}ivzl
with each particle having the same weight as 1/N. In the
last step of the iteration, the components of the transform
are estimated as the mean value of states represented by
weighted particles (10). The accuracy of the registration
algorithm is evaluated using a similarity metric and an overlap
score because the similarity metric alone is not sufficient to
estimate the accuracy of the algorithm [28].

C. DATASET

The 3D transthoracic echocardiography dataset was obtained
as part of two research studies conducted at the Mazankowski
Alberta Heart Institute and both studies were approved by
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FIGURE 1. The 3D-3D rigid registration using PF algorithm where the state of the system is represented by N particles (xf)
and its associated weights (w’) are highlighted along with the measurement values (z') after prediction, update,
resampling, and estimation steps. The estimated transform by the PF algorithm is used to register the source image with
the target image. The same transform is used to calculate the Dice score value between the LV masks of the source and
target images. The similarity metric value between the source and the target is used as the measurement value when
updating the weights in the next iteration.

the Health Research Ethics Board of the University of probe and a Philips EPIQ 7C scanner (Philips Healthcare,
Alberta. As part of the first research study, images were Eindhoven, The Netherlands). There were 7 image pairs from
obtained manually by a sonographer using a Philips X5-1 3 patients (gender ratio: 2 female and 1 male; age range: 19
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to 32) considered to evaluate the registration algorithm using
210 frames with an average frame rate of 25.13. To increase
the number of source and target image pairs, the images
were swapped between them to get 14 image pairs over
420 frames. The second research study used a robotic arm
to obtain images in a controlled manner with less strain
on the sonographer using the same ultrasound probe and
machine [29]. There were 30 image pairs from 3 volunteers
(gender ratio: 3 male, age range: above 18) considered to
evaluate the algorithm using 503 frames with an average
rate of 19.75. The details of image acquisition and volume
metadata are listed in Table 1. The second image of the
third patient was resized to 272 x 176 x 206 voxel size with
resampling. There were 310, 52, and 58 frames considered
from each patient while 189, 188, and 126 frames were for
each volunteer. The binary masks of the left ventricle (LV)
area were annotated by a sonographer and used after the
registration to validate the performance of the algorithm by
applying the transform to the mask of the source image to be
considered as the registered mask to calculate the overlapping
score after each iteration as shown in Figure 1.

D. IMPLEMENTATION DETAILS

The PF algorithm was implemented using the Python (3.9.6)
language with the ITK (5.2.1) v4 framework. Normalized
cross-correlation (NCC) (11) was used to assess the similarity
between the source and target images. The Euler 3D
transform was used to find the rigid transform (1) that
calculates new image coordinates after applying the rigid
transform (ry, 7y, 7, tx, ty, I;) as defined in (12), as shown at
the bottom of the next page. The source image was aligned
with the target image using trilinear interpolation to find
voxel values at non-grid positions, reducing dissimilarity
between the images recursively.

(O (T; = T) (Si—5))?
Zi‘vzl (Ti - T)z Z?]:I (Si - 3)2

There were two approaches followed to perform the
registration: the unique transform approach and the same
transform approach as shown in Figure 2. When considering
the unique transform approach, each frame of the source
and target images is registered independently over a cardiac
cycle. The same transform approach finds the rigid transform
to register end-diastolic (ED) frames and applies the same
transform to all the other frames in the cardiac cycle.

The number of particles (V) used for the algorithm was
defined as 1000 to represent the 3D state space, while
the translation and rotation limits were defined as (—5, 5)
mm and (—60, 60) degrees considering the image size and
initial overlap between the source and target images. The
state process noise in (3) was approximated by a Gaussian
distribution with a mean of 0 and rotation and translation
standard deviations of 1 degree and 2 mm, respectively.
The weights of particles were approximated by a Gaussian
distribution, with the measurement as the mean and the

NCC(T, S) = (1)
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weight standard deviation of 0.1. The threshold for effective
particles is set to N /2 for the resampling step. Since the
non-parallel version of the PF algorithm is used in this study
for rigid registration, the number of iterations is limited to
10 while reporting the results here.

The nonrigid Simple Elastix (SE) [30] registration was
implemented using Simple ITK 2.2.1 for the same Python
version to improve the registration accuracy after performing
rigid registration. The advanced normalized correlation and
transformed bending energy penalty were used as metrics
to perform multi-metric, multi-resolution registration using
a recursive image pyramid. The registration was performed
for 100 iterations for each of the 5 levels of resolution.

E. BASELINE AND EVALUATION METRICS
The accuracy of registration is evaluated using the NCC as the
similarity metric and the Dice score (DSC) as the overlapping
score. The similarity between images is measured on a scale
from O to 1, where 1 indicates a high correlation between
voxel intensities and proper alignment. The DSC between
the 3D binary masks of the source and target images S and
T is defined as (13) where a value of 0 indicates that there
is no overlap between the corresponding images and a value
of 1 indicates that the images are perfectly aligned.
. 2% |SNT|
Dice score(S,T) = ——— (13)
IS|+1T|

The exhaustive search (ES) method is used as a baseline
method to compare the accuracy of the PF algorithm and
was implemented using the ITK (5.2.1) v4 framework’s
exhaustive optimizer [31] for the same Python version. The
step size of the ES was defined as 2 in all three dimensions
while keeping rotation scaling at 0.05 and translation scaling
at 1.0 with an optimizer step length of 1. The registration
was initialized using the centroid transform initializer. These
values were defined to obtain better performance over
reasonable computation time compared to the PF algorithm,
and the ES method used 15625 iterations while PF used
10 iterations to register images. Both the unique and the same
transform approaches were used to evaluate the accuracy of
the PF and ES algorithms.

IIl. RESULTS

The average similarity metric (NCC) and the overlapping
score (DSC) changes before and after the registration are
listed in Table 2 for the unique and the same transform
approaches of both the PF and ES algorithms for 420 frames
of the patient dataset. Figure 3 shows the DSC values
for both methods that are summarized in Table 3 for the
minimum, 25%, 50%, 75%, and maximum DSC values.
The student paired t test was performed to evaluate the
significance of the PF and ES algorithms, and it was found
that PF results are significant compared to ES, with a
p value of 0.00023 at the 0.05 significance level. This
shows that the PF method outperforms the ES in terms of
registration accuracy evaluated using DSC. Furthermore, the
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TABLE 1. The metadata of image sequences of 3 patients (P1, P2, P3) and 3 volunteers (V1, V2, V3).

Participant ID No. of 4D sequence Acquisition type Frame rate Volume size (voxel) Volume resolution (mm)
P1 5 HMQ 22 272 x 176 x 208 0.73 x 1.13 x 0.73
P2 2 4Q 35 272 x 176 x 208 0.77 x 1.21 x 0.78
P3 1 4Q 34 272 x 176 x 208 0.77 x 1.21 x 0.78
P3 1 4Q 32 288 x 176 x 208 0.82 x 1.28 x 0.82
V1 6 HMQ 22 224 x 176 x 208 0.87 x 1.08 x 0.73
V2 7 HMQ 20 224 x 176 x 208 0.98 x 1.21 x 0.82
V3 6 HMQ 16 224 x 208 x 208 1.09 x 1.30 x 0.92
Source Image Registered Image with unique TABLE 2. The similarity metric (NCC) and overlapping score (DSC)
fransform approach changes before and after rigid registration for patient dataset. The best
Framen Framen results are highlighted for rigid registration.
: > > .
ramez : amez Metric Method Value
Frame 1 : E'—I_ Frame 1
- 1 . NCC Initial 0.647 + 0.020
>
> B PF,, 0.693 £ 0.029
ES. 0.601 £ 0.011
O o s PF, 0.698 £ 0.012
Framen ESs 0.589 £ 0.011
” PF; + Simple Elastix 0.720 + 0.009
o DSC Initial 0.677 £ 0.037
Lgatl]
e PF, 0.744 £+ 0.043
ES. 0.700 £ 0.048
PFs 0.743 £ 0.041
FIGURE 2. The unique vs. same transform approach followed to register n ESs 0.669 £ 0.051
frames of a temporal sequence using the PF algorithm. T;, T, up to T, . .
denote the transforms estimated recursively by the algorithm. PF; + Simple Elastix 0.791 £ 0.042
. 1
same transform approach performs better than the unique
transform approach when registering a sequence of 3D frames — T

(temporal frames) for a cardiac cycle using rigid registration,
considering the time taken to register images by the unique
transform approach was approximately n times that of the
same transform approach, where 7 is the number of frames
in a cardiac cycle. The computational time of both the PF
and ES algorithms is presented at the end of this section. The
deformation of frames within the cardiac cycle of the source
and the target images due to patient movement and respiration
cannot be aligned using rigid registration and a non-rigid
registration is required for that purpose. We used Simple
Elastix registration after rigid registration to improve the
accuracy for PF with the same transform approach results and
obtained improved results as listed in Table 2 and Figure 3.
The average NCC changes for the unique and the same
transform approaches are shown in Figure 4. The NCC value
increases over iterations even though there was a drop at
the first iteration because the algorithm uses the uniform
distribution of particles with equal weights as the state
initialization. Further, the correlation between the similarity

0.8 - : . ’
: ‘ ! . : %
0.6 . O o

04

DSC
}7

0.2

Initial PF, ES. PFs ESs
Method

PFs + SE

FIGURE 3. The 3D-3D rigid registration results using the PF and ES
algorithms for the patient dataset. The figure shows the DSC before
registration (initial) and after registration using unique (u) vs. same

(s) transform approaches for the PF and ES algorithms. The DSC after rigid
and non-rigid registration for PF with the same transform approach and
Simple Elastix (SE) registration is shown as the last plot.

metric (NCC) and overlapping score (DSC) was analyzed.
Figure 5 shows DSC changes over iterations, and it is found
that the average DSC value drops for the first iteration similar

x’ 1 0 0 cosry, 0sinr, || cosr; —sinr; 0 | | x Iy
¥y | = | 0cosre —sinry 0 0 sinr, cosr, 0 yI|+1|4 (12)
7 0 sinry cosry —sinry 0 cosry 0 0 1 z t,
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TABLE 3. The rigid registration results for image pairs of patient data using mean DSC for minimum, maximum, and percentile values. The best results are

highlighted for each category.

Method Min Q1(25%) Q2 (50%) Q3(75%) Max
Initial DSC 0.425 0.606 0.669 0.822 0.845
PF, 0.537 0.698 0.743 0.828 0.890
ES, 0.593 0.617 0.652 0.819 0.890
PF, 0.526 0.694 0.745 0.834 0.897
ES¢ 0.547 0.641 0.663 0.699 0.823
PF; + Simple Elastix 0.664 0.745 0.778 0.880 0.897
0.8 1.0 T
Initial
e PFu @
e ESu
0.7 b 081 e PR e
'/./«/"’"' e ES. of o
s o L4
\ ./'/‘ e PF.+SE A o K
0.6 A 0.6 °8°
Q O °
8] %)
4 a
0.5 /} 0.4
0.4 g 0.2
—8— Averageu
Averages
0.3 t 0.0
0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8 1.0

Iteration

FIGURE 4. The average similarity metric value over iterations for PF using
unique (u) vs. same (s) transform approaches. Iteration 0 shows the NCC
value before registration.

0.8
g\i’ﬂ/‘~
|, ——"
0.7
|
0.6 \-/
Q
%)
a
0.5
0.4
—8— Averageu
Averages
0.3 T
0 2 4 6 8 10
Iteration

FIGURE 5. The overlapping score (DSC) value over iterations for PF using
unique (u) vs. same (s) transform approaches. Iteration 0 shows the DSC
value before registration.

to Figure 4 for the same reason. The NCC and DSC value
changes over iteration for the ES method are not considered
because of the high number of iterations. The correlation
between DSC and NCC for approaches listed in Table 2 is

VOLUME 12, 2024

NCC

FIGURE 6. The correlation between overlapping score (DSC) and
similarity metric (NCC) of PF, ES, and PF + SE methods for patient data.

TABLE 4. The similarity metric (NCC) and overlapping score (DSC)
changes before and after rigid registration for patient and volunteer
dataset. The best results are highlighted for rigid registration.

Metric Method Value

NCC Initial 0.657 £ 0.015
PF, 0.681 + 0.011
ESs 0.612 £ 0.010
PF; + Simple Elastix 0.741 + 0.010

DSC Initial 0.641 £ 0.041
PF, 0.716 + 0.041
ES, 0.660 £ 0.048
PF; + Simple Elastix 0.787 + 0.038

shown in Figure 6, and it is found that the correlation value
between DSC and NCC is 0.84.

The PF algorithm with the same transform approach was
evaluated further using the volunteer dataset against the
baseline method and the results for 3 patients and 3 volunteers
are listed in Table 4. Figure 7 shows the DSC values
for both methods that are summarized in Table 5 for the
minimum, 25%, 50%, 75%, and maximum DSC values. The
images before and after registration using PF, ES and PF +
SE methods for the pairs listed in Table 5 are shown in
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TABLE 5. The rigid and non-rigid registration results for image pairs of patient and volunteer data using mean DSC for minimum, maximum, and

percentile values. The best results are highlighted for each category.

Method Min Q1(25%) Q2 (50%) Q3(75%) Max
Initial DSC 0.425 0.535 0.631 0.699 0.845
PFg 0.526 0.661 0.696 0.777 0.897
ESs 0.529 0.587 0.668 0.741 0.823
PF; + Simple Elastix 0.657 0.748 0.787 0.818 0.897

S

0.8

=

T

0.6

DSC

0.4

0.2

Initial PFs ESs PFs + SE
Method

FIGURE 7. The 3D-3D rigid registration results using the PF and ES
algorithms for patient and volunteer dataset for 44 image pairs. The
figure shows the DSC before registration (initial) and after registration
using the same (s) transform approach for the PF and ES algorithms. The
DSC after rigid and non-rigid registration for PF with the same transform
approach and Simple Elastix (SE) registration is shown as the last plot.

TABLE 6. The average computational time taken for 3D-3D rigid
registration of images on AMD EPYC 7532 processor.

Dataset Method Time (Minutes)
Patient PF, 496

ESw 809

PFg 16

ES¢ 27
Patient + Volunteer PF, 15

ESs 26

Figures 8, 9, and 10 for axial, coronal, and sagittal views.
The student paired t test was performed to evaluate the
significance of the PF and ES algorithms using both patient
and volunteer dataset, and it was found that PF results are
significant compared to ES with a p value of 0.00002 at the
0.05 significance level. The correlation between DSC and
NCC for approaches listed in Table 4 is shown in Figure 11
and it is found that the correlation value between DSC and
NCC is 0.73. The average computational time of the PF and
ES algorithms to perform 3D-3D rigid registration of images
on AMD EPYC 7532 processor is reported in Table 6.

IV. DISCUSSION

This section compares the sequential MC algorithm proposed
in this study with existing MC based approaches for medical
image registration, the limitations of its application, and
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future directions. In addition, rigid registration approaches
proposed for 3DE images are also discussed. One application
of the MC algorithm is the multimodal affine registration
using the adaptive MC approach [16] proposed for 2D non-
US medical images, where 150 test cases were obtained
by applying 30 randomly generated affine transforms to
5 original aligned image sets. The adaptive sampling scheme
was used, where the initial sampling density function was
refined over iterations to generate more relevant solution
candidates and reduce computational performance with multi
resolution (scales: 1/4, 1/2, 1) approach to register images.
Since the ground truth transforms were known for all 150 test
cases, root mean square error (RMSE) was used to evaluate
the accuracy of the method by 30 trials. Each trial used
100 iterations where the best transform solution was selected
from 100 different candidates introduced in each iteration
using Pearson type-VII error between phase moments of the
images as an objective function. The accuracy of the method
was reported as the minimum, mean, and maximum RMSE
values, reporting low values compared to other baseline
methods. The efficiency of the algorithm was evaluated by
distorting images with 30 affine transforms over 12 ranges.
The method performed well with a small number of solution
candidates when there was a large misregistration and little
or no region overlap between images. Compared to this
approach, the sequential MC approach proposed in our
study is quite challenging and novel because of the noise
level and artifacts present in US images, the higher image
dimension, and the evaluation of the accuracy when ground
truth transforms are not known. The other advantage of the
sequential MC approach is that it considers the weighted
mean of all states instead of selecting one solution candidate
to account for the nonlinearity of 3D image domain, even
though the adaptive sampling approach helps to generate
more relevant candidates over iterations.

In another MC based approach [17], affine registration was
performed on 2D-2D and 3D-3D non-US images, ignoring
the shear transform. A 256 x 256 T1 MRI brain image was
registered with 16 different T2 MRI images obtained by
applying different known random affine transforms to the
original T2 image that was perfectly aligned with the T1
image. 200 particles were used to represent the state, and
registration was performed over 100 iterations with mutual
information (MI) as the likelihood function. The mean value
of states was considered as the final transform at the end
of each iteration similar to our approach. The accuracy
was tested over 100 trials using true relative mean error
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FIGURE 8. Rigid (PF, ES) and non-rigid (SE) registration results of the first frame of image pairs for minimum (0%), Q1 (25%), Q2 (50%), Q3 (75%) and
maximum (100%) DSC values of axial view, respectively. The source and target images are shown in green and purple colors.

(TRME). They performed multimodal 3D registration as claiming that values were less than the maximum axis
three experiments that considered 10 volumes for each image resolution. The first two experiments considered registering
pair and evaluated the accuracy using target registration the CT and PET volumes of a patient with different types
error (TRE) with the minimum, mean, and maximum values of MRI images (CT-MRI and PET-MRI), and the last
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FIGURE 9. Rigid (PF, ES) and non-rigid (SE) registration results of the first frame of image pairs for min (0%), Q1 (25%), Q2 (50%), Q3 (75%) and
max(100%) DSC values of coronal view, respectively. The source and target images are shown in green and purple colors.

experiment considered the CT-MRI volume registration of
7 patients. We are not able to evaluate our approach using
TRE because of an unknown ground truth. The similarity
metric they used was Ml as it was a multimodality registration
that is NCC for our approach for monomodality registration.

The particle flow filter (PFF) used in a recent study [12]
for 2D and 3D rigid registration of non-medical images
and 2D brain images claims to be more efficient than the
PF due to fewer processing steps and a smaller number of
particles. When considering the 2D-2D brain MRI image
registration, the source image was generated synthetically
by applying a random transform generated using 100 trials
to the target image. The images were registered by adding
three levels of noise (no noise, medium, and high) and
then converting the intensity images to point clouds using
the Matlab edge detection function. The authors claimed
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that the PFF performed well compared to the PF for all
three levels of noise. Since our algorithm aligns 3D-3D
real echocardiographic images with their inherent noise and
artifacts, we are not able to make a direct comparison to
their method and they used sum of squared distance (SSD)
for 2D images while we are using NCC, which is more
appropriate for intensity based image registration of 3D
images to consider the intensity changes in neighborhood
voxels without using one to one relationships between voxels.

We implemented the PF and the ES algorithms and
tested for 2D-2D registration first and then extended to
3D-3D registration considering the complexity of state
space representation and algorithm parameters such as the
number of particles, rotation and translation limit for the PF
algorithm, and step size, scaling of rotation and translation,
and optimizer step length for the ES. These parameters
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FIGURE 10. Rigid (PF, ES) and non-rigid (SE) registration results of the first frame of image pairs for min (0%), Q1 (25%), Q2 (50%), Q3
(75%) and max(100%) DSC values of sagittal view, respectively. The source and target images are shown in green and purple colors.
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FIGURE 11. The correlation between overlapping score (DSC) and
similarity metric (NCC) of PF, ES, and PF + SE methods for patient and
volunteer data.

remain the same for both 2D and 3D images. The best
parameters were found using the grid search approach over
the entire dataset. If these algorithms need to be applied
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to a new data set, these parameters need to be fine tuned
to get better performance. The results of the PF and ES
algorithms show that the sequential MC approach is more
efficient compared to the ES, considering NCC and Dice
score metric values.

All the MC based algorithms, including the one proposed
by us, have not been implemented for parallel architecture
or non-rigid registration yet, and there is great potential
for it as a future work. A recent study [23] proposed
a combination of rigid and non-rigid algorithms for 3D-
3D echocardiographic image registration, where landmark
based rigid registration was performed using a reinforcement
learning model. Compared to that approach, the SMC based
rigid registration proposed in this study is a training free,
pairwise registration approach that uses image intensity
instead of landmarks.

V. CONCLUSION
The proposed intensity based 3D-3D rigid registration of
echocardiographic images with significant overlap using a
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sequential Monte Carlo algorithm performs well compared
to the exhaustive search algorithm in terms of accuracy.
Moreover, registering images using the same transform gives
the overall best performance in terms of computational time
against the unique transform approach while offering very
similar alignment accuracy measured in terms of the Dice
score for the left ventricle. The parallel version of the
algorithm is being implemented, and it will be used to align
3D images in future work.
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