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ABSTRACT In recent years, ‘‘Artificial Intelligence (AI)’’ has become a focal point of discussion. AI music
composition, an interdisciplinary field blending computer science and musicology, has emerged as a promi-
nent area of research. Despite rapid advancements in AI music creation technology, there remains a dearth
of comprehensive surveys addressing the core technologies within this domain. To address this gap, this
study conducted a comprehensive search across multiple databases spanning a 23-year period (2000–2023)
on the topic of ‘‘AI music composition.’’ Following the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) standard for literature screening, the study systematically organized the
development status, frontier hotspots, and technical evaluations of the field. Drawing from literature data,
the study verified Price’s Law, Lotka’s Law, and Bradford’s Law—three scientific productivity laws—while
summarizing the current landscape from four perspectives: authors, organizations, countries, and journals.
Subsequently, utilizing VOSviewer and CiteSpace, two technical software tools, the study conducted an
in-depth analysis consisting of four steps: clustering, time zone, burst words, and high-frequency referenced
literature. The study presented the evolution trajectory of frontiers and hotspots through visualization maps.
Finally, building upon quantitative statistical insights, the study qualitatively expanded research efforts by
organizing and evaluating the latest AI music generation algorithm technologies. The systematic literature
analysis, both quantitative and qualitative, aims to furnish researchers and practitioners in related fields with
systematic references.

INDEX TERMS Artificial intelligence, automatic music composition, bibliometrics, PRISMA.

I. INTRODUCTION
In the early 21st century, the advancement of science and
technology ushered in a new era symbolizing the maturation
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of AI technology, characterized by automated productiv-
ity and intelligent creativity [1]. The emergence of the
global ‘‘Industry 4.0’’ wave in 2013, with AI as its cor-
nerstone, further accelerated the development of AI. By the
end of 2022, the disruptive global popularity of OpenAI’s
chatbot model ‘‘ChatGPT’’ garnered widespread attention,
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showcasing AI’s cross-disciplinary achievements. The con-
vergence of AI with diverse disciplines and fields, such as
AI music therapy [2], AI intangible cultural heritage [3],
and AI metaverse concerts [4], has garnered global interest.
Among these intersections, AI Music Composition emerges
as a fundamental technology, effectively expanding the realm
of music composition to encompass music generation and
application [5].

The fundamental principle of AI Music Composition lies
in utilizing computer language to delineate the framework
of music theory, establishing diverse libraries of musical
phrase materials, training corresponding music style models
through machine learning, and ultimately generating novel
digital music content [6]. This research avenue has per-
sisted for over four decades [7], predominantly from the
standpoint of computer science, with a focus on topics like
algorithm models, system design, and industrial applica-
tions. For instance, endeavors include spatial model training
for drum rhythms [8], the development of a song genera-
tion system based on lyrics [9], and the creation of an AI
music generation system tailored for automotive safety [10],
typically employing case analysis and empirical research
methodologies.

However, there remains a scarcity of studies conduct-
ing bibliometric analyses from a statistical perspective.
Despite a few review studies [11], [12], there is still a
gap in systematically evaluating the technology. Given the
interdisciplinary nature of AI Music Composition, diverse
interdisciplinary research is crucial for its development [13].
Quantitative analysis and qualitative evaluation of relevant
publications [14] can aid researchers in discerning the field’s
primary developmental trajectory and technical frontiers
amidst its complexity [15]. Therefore, this paper undertakes
a systematic bibliometric analysis of the AI Music Com-
position field, encompassing its overall development status,
frontier hotspots, and technical evaluation. The main research
questions (RQs) addressed in this article are:

• RQ1: About development status. Who are the main
authors of papers in this field? What are their affiliated
organizations and countries? Which journals feature
these research papers prominently?

• RQ2: About frontier hotspots. What are the most fre-
quent keyword hotspots in this field’s papers? What are
some notable research papers? What temporal distribu-
tion and development trends do they exhibit?

• RQ3: About technical evaluation. What are the main-
stream algorithm technologies in this field? How can
they be categorized? What are some representative case
studies?

II. METHODS
A. RESEARCH METHODOLIGY
1) ABOUT BIBLIOMETRIC
Bibliometrics serves as a widely utilized quantitative research
method for literature analysis, focusing on the quantitative

examination of information such as authors, keywords,
affiliated journals, and references, thereby offering a compre-
hensive overview of the research landscape through specific
data [16]. Additionally, presenting data results through visual
charts offers the advantage of clarity and ease of understand-
ing [17]. Leveraging distinctive algorithm modules such as
‘‘clustering,’’ ‘‘time zone,’’ and ‘‘burst’’ [14], [18], this study
swiftly presents various literature data in complex analyses,
providing crucial data references for the quantitative anal-
ysis process [19]. Hence, this study employs bibliometric
visualization maps to conduct an analysis of the AI music
composition field.

2) BIBLIOMETRIC TOOLS
In bibliometric research, the crafting of visualization
maps necessitates the use of specialized software tools.
VOSviewer [20] and CiteSpace [21] stand as the primary
visualization tools in bibliometric research [22], capable of
directly importing data from databases such as Web of Sci-
ence (WOS), Scopus, IEEEXplore, among others, to generate
visualization maps [23].

VOSviewer relies on probabilistic methods, featuring
Multi-Dimensional Scaling (MDS) and Random Walk (RW)
algorithms at its core. It particularly excels in key author col-
laboration network analysis, key journal distribution analysis,
and co-word clustering analysis, showcasing a prominent
advantage in these areas [24].

On the other hand, CiteSpace operates on set theory
methods, incorporating Latent Semantic Indexing (LSI), Log-
Likelihood Ratio (LLR), and Mutual Information (MI) algo-
rithms. These algorithms are highly advantageous in conduct-
ing topic evolution analysis, keyword burst intensity analysis,
and literature co-citation network analysis [25], [26].

Leveraging the distinctive strengths of each software tool,
they are employed collaboratively to provide a comprehen-
sive analytical perspective. Therefore, this study utilizes both
VOSviewer and CiteSpace to generate quantitative visual-
ization maps of information such as authors, keywords, and
co-citations within the literature. To ensure standardized map
presentations, this study also employs Microsoft Excel [27],
Adobe Photoshop [28], Scimago Graphica [29], and RAW
Graphs [30] for visual adjustments.

3) PRISMA GUIDELINES
The data source for visual bibliometric analysis necessitates
rigorous screening. Directly conducting visual bibliometric
analysis with search data entails certain errors, and the vary-
ing quality of literature can lead to inaccuracies in keyword
extraction and co-citation analysis by software tools. Hence,
further precise screening of the search data is essential [18].
In light of this, this study adopts the Preferred Reporting

Items for Systematic Reviews andMeta-Analyses (PRISMA)
statement to systematically complete the literature screen-
ing process, gradually identifying effective literature [31].
PRISMA serves as an authoritative reporting standard for
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systematic literature reviews, with the latest 2020 statement
providing detailed explanations and reporting recommenda-
tions for 27 checklist items [32]. Particularly in the literature
screening phase of the database, PRISMA offers a stan-
dardized process and clearly delineates the inclusion and
exclusion criteria for literature [33], ensuring the complete-
ness and accuracy of literature statistics.

Consequently, the research methodology of this paper is
as follows: Utilize databases to search for literature in the
AI Music Composition field since the 21st century, adher-
ing to PRISMA systematic literature screening standards for
data screening. Report the development status by organizing
information such as authors, publications, institutions, and
countries. Delineate frontier hotspots through clustering anal-
ysis of co-occurring keywords, co-cited literature, etc. Present
technical evaluations by selecting representative AI music
generation algorithm cases.

B. DATA RETRIEVAL
1) DATA SOURCES
This study selects Web of Science (WOS), IEEE Xplore,
ACM Digital Library, and Scopus as the data sources. These
databases are widely recognized by experts and scholars
as the most suitable high-quality digital literature resource
databases for bibliometric analysis [22]. They offer a range
of data including literature titles, authors, references, citation
counts, impact factors, etc. [34].

To ensure a more accurate grasp of the high-quality
research context, the scope of indexed articles in this study
first focuses on the core collection of Web of Science. This
database predominantly hostsmany of the highly cited quality
research articles. However, given the interdisciplinary nature
of AI Music Composition, this study also incorporates IEEE
Xplore, ACM Digital Library, and Scopus databases in the
search plan [35]. Therefore, selecting these four high-quality
databases as the data source is reasonable, as it enables the
retrieval of a large number of high-quality articles for screen-
ing and analysis.

2) SEARCH STRING
This study references several published journals to establish
the keyword search criteria. Ultimately, three keywords were
selected for indexing in combination: ‘‘Music,’’ ‘‘Genera-
tion,’’ and ‘‘AI’’ [11], [36], [37]. Considering the diversity
of keywords, this study also incorporates alternative terms.
These derivative terms primarily focus on the AI and Gener-
ation aspects: ‘‘artificial intelligence,’’ ‘‘machine learning,’’
‘‘deep learning,’’ ‘‘algorithm,’’ and ‘‘automatic.’’ These five
sets of vocabulary collectively form the derivative expres-
sions for the ‘‘AI’’ component. Additionally, the truncated
spelling of the two words ‘‘generation’’ and ‘‘composition’’
constitute the derivative expressions for the ‘‘Generation’’
component. The search content in each database remains
consistent, with slight adjustments made according to the

characteristics of each database. The specific search strategy
used in WOS is:

TS = ((‘‘Music’’) AND (‘‘Generat∗’’ OR ‘‘Compos∗’’)
AND (‘‘Artificial Intelligence’’ OR ‘‘Deep learning’’ OR
‘‘Machine Learning’’ OR ‘‘Algorithmic’’ OR ‘‘Automatic’’))

3) INCLUSION/EXCLUSION CRITERIA
To ensure the generation of high-standard bibliometric statis-
tics results, this study has delineated detailed inclusion
criteria for articles across three aspects: ‘‘search period,’’
‘‘search language,’’ and ‘‘document type.’’ Given that the piv-
otal developmental period of artificial intelligence spans the
21st century, this study selects January 1, 2000, as the starting
date for the literature search, with the end date set as the time
of data organization for this study, i.e., December 31, 2023.
In screening for high-quality journal articles, this study limits
the document type to Articles and Review Articles, which
necessitate peer review. Additionally, the search language
for the literature is confined to English. The specific search
details are outlined in Table 1.

TABLE 1. Summary of Inclusion/exclusion criteria.

4) ARTICLE SCREENING RESULTS
A total of 1519 documents (comprising 1467 papers and
52 review papers) were retrieved through the search, with the
search results from the four databases detailed in Table 2.

TABLE 2. Search results.

In order to obtain more accurate and high-quality literature
data, this study adheres to the PRISMA standard and conducts
literature screening. The screening process is illustrated in
Figure 1. Zotero literature management software [38] was
utilized for four rounds of excluding retrieved literature data.
Three authors independently reviewed the papers based on
the title, abstract, and full-text content, with papers under dis-
pute being reviewed by the team and consulted with relevant
experts to determine whether they should be eliminated. The
screening process comprises four parts: initial processing via
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FIGURE 1. PRISMA article screening methodology.

literature management software, preliminary screening based
on weak relevance of keywords, screening for effective liter-
ature retrieval, and thorough evaluation of full-text relevance.

5) DATA ABSTRACTS
To maintain consistency and rectify potential discrepancies
in the data from the selected articles, we adopted a standard-
ized data processing approach. Special attention was directed
towards ambiguities arising from non-standard information
in areas such as author names, country designations, and
keywords. Pursuant to this, the following corrective measures
were undertaken:

• Author Name Verification: Our approach took into
account various nuances, including identical names, pre-
viously used names, abbreviations, and other relevant
variations.

• Standardization of Country Designations: To ensure
consistency, we unified China’s three Special Adminis-
trative Regions into a single ‘‘China’’ designation. Addi-
tionally, we grouped the four Commonwealth nations
under the ‘‘UK’’ label. Additionally, we adopted con-
sistent abbreviations for all countries.

• Keyword Standardization: We streamlined the repre-
sentation of keywords by combining similar terms,
balancing keyword lengths, and categorizing both high
and low-frequency keywords appropriately.

Following a thorough analysis of a carefully curated selection
of papers, a wealth of valuable data was uncovered (see
Table 3 ).

C. LIMITATIONS
This study has three main limitations. Firstly, while the
four mainstream databases utilized in this study generally
cover a wide range of research literature, there are inherent
limitations. Despite WOS, IEEE, and other databases being

TABLE 3. Data abstracts of screening articles.

high-quality sources that encompass much of the research
on AI music generation, the possibility of missing articles
remains. Secondly, the study is constrained by the inclu-
sion criterion restricting articles to English language only.
Although the search identified some high-quality articles
in other languages (such as Chinese, Korean, or Spanish),
they were excluded based on the language criterion. Thirdly,
despite employing a combination of quantitative and qual-
itative analysis methods, the review is still limited by
the statistical measurement capabilities of VOSviewer and
CiteSpace, two analysis software tools. While these tools
are representative statistical instruments, there is room for
improvement in terms of information comprehensiveness
and algorithm consistency. Hence, future researchers may
consider incorporating multiple quantitative and qualitative
indicators to augment this aspect.

III. RESULT VERIFICATION
Referring to the laws of scientific productivity aids in
interpreting research results [39]. This study utilized two
analytical software tools, VOSviewer and CiteSpace, to con-
duct a quantitative analysis of all the literature’s authors,
organizations, countries, and journal data, and described the
field’s development status in accordance with Price’s Law,
Lotka’s Law, and Bradford’s Law.

A. PUBLICATION OVERVIEW
The annual distribution of journal numbers serves as a reflec-
tion of the research level and development degree of this
academic field. Figure 2 illustrates the temporal distribution
of 291 papers in the AI Music Composition research field.
Overall, the number of publications in this field has expe-
rienced a sharp rise over the past decade. Prior to 2016,
the annual publication number remained at a very low level,
averaging about 3 papers per year, with no relevant papers
published in 2000 and 2002. However, post-2016, there has
been a rapid increase in the annual publication number, with
last year witnessing explosive growth, reaching 94 papers
annually. This trend indicates that the research field has
entered a mature development stage.

B. AUTHOR STATUS
Quantitative analysis of paper authors serves as the primary
reporting indicator for describing the current status. The
study employed Price’s Law to verify the retrieved paper
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FIGURE 2. Distribution of publications from 2000 to 2023.

author data, aiming to ascertain whether a scientifically stable
author collaboration group has emerged in the AI Music
Composition field and to identify the current development
status.

The distinguished scholar Price observed that within the
same subject, half of the papers are authored by a group of
highly productive authors, and the total number of papers
produced by this core group of authors is approximately equal
to the square root of the total number of papers [40]. If these
numbers are indeed equal, it demonstrates the formation of
a scientifically stable author collaboration group. The for-
mula is: ∑I

m+1
n (x) =

√
N (1)

• ‘‘N’’ represents the total number of papers published on
the subject.

• ‘‘n(x)’’ represents the cumulative number of papers by
authors who have published ‘‘x’’ papers.

• ‘‘m+1’’ is the initial value of the cumulative sum.
• ‘‘I’’ is the final value of the cumulative sum.
Determining ‘‘m+1’’ and ‘‘I’’ facilitates the verification

of the formula. Within this calculation framework, ‘‘I’’ is
synonymous with ‘‘n’’, both representing the number of
papers by the most prolific author in the field. According to
the statistics from VOSviewer, the most prolific author has
published 7 papers, thus I = 7. ‘‘m’’ denotes the threshold
value for the number of papers published by core authors.
Price, drawing on Lotka’s Law [41], outlined the minimum
number of papers ‘‘m’’ published by core authors.

m = 0.749 ×
√
nmax (2)

After calculation, the threshold value of the number of
papers published by core authors in this study is approxi-
mately 1.98. Hence, authors who have published 2 or more
papers (including 2) are classified as core authors in this
field. Substituting the aforementioned values into the for-
mula, a total of 66 core authors have published 162 papers,
constituting 75% of the total number of papers. This figure
meets Price’s standard of half of the papers (50%). Conse-
quently, it can be inferred that the AI Music Composition
research field has already established a relatively scientific
and stable author collaboration group, indicating that the
research is in a relatively mature development stage.

C. ORGANIZATION STATUS
The quantitative analysis data of authors’ institutions serves
as the second reporting indicator for describing the current
status. The relationship between authors and their institutions
is integral, with 285 institutions from various countries con-
tributing to the AI music composition research field. Table 4
outlines the top ten institutions based on the number of papers
published. Primarily, these institutions consist of professional
departments within universities.

TABLE 4. Top 10 organizations in the AI music composition field.

Dongguk University of Seoul (Korea, Seoul) leads in
the number of papers published in this research field,
with 7 papers, notably attributed to the Yunsick Sun and
Shuyu Li team mentioned earlier. Additionally, among the
top ten institutions, there are 3 from Spain and the UK each,
and 2 fromChina, all demonstrating high citation counts. This
trend indicates, to some extent, that institutions in Europe
and Asia hold prominent positions in this field. Particularly
noteworthy is the University of Malaga in Spain, with the
highest number of citations (152 papers) and the highest
average number of citations per paper (38 times), closely
associated with Professor Francisco Jose Vico Vela and his
Melomics automatic music creation system. Furthermore,
the institution with the second-highest average number of
citations (29.5 times) is the Singapore University of Technol-
ogy and Design, where Professor Dorien Herremans and his
AMAAI laboratory have made significant contributions.

D. COUNTRY STATUS
Regional analysis data constitutes the third reporting indica-
tor for the current status description. By assessing the country
of origin across 39 countries, the number of publications is
measured to analyze the contribution of different countries to
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research in the field of AI Music Composition. Price’s Law
can be leveraged not only to analyze core authors in a field
but also to determine the threshold value of the number of
papers published by high-yield countries [42]. According to
statistics from VOSviewer, the highest number of papers in
the field is 57. By substituting this value into the previously
mentioned formula (2), the minimum number of papers for
high-yield countries can be calculated as: m ≈ 6. Conse-
quently, countries with a publication volume of⩾6 papers are
classified as high-yield countries in this field, and the results
are depicted in Figure 3.

FIGURE 3. Geographic distribution and cooperation intensity map of
high-yielding countries.

In Figure 3, the size of the circles corresponds to the num-
ber of publications, while the thickness of the lines reflects
the strength of cooperation between countries in terms of
publications. From the figure, it’s evident that the distribution
of publishing countries in this field is not balanced, with
a significant top-heavy effect. The majority of papers are
authored by scholars from a few countries, such as China,
the UK, Spain, and the USA, predominantly located in Asia,
Europe, and North America. This observation aligns with
the conclusions drawn from the analysis of key institutions
mentioned earlier.

E. JOURNAL STATUS
The quantitative analysis data of the journals hosting the
articles serves as the fourth reporting indicator for describing
the current status. Utilizing Bradford’s Law, the 99 journals
obtained from the search are categorized into zones to inves-
tigate whether the AI Music Composition field adheres to
the scientific distribution pattern of the number of articles
published in journals and to ascertain whether the field has
established a stable system of journals hosting articles.

Bradford’s Law facilitates the division of journals obtained
from the search into zones. Bradford observed that in
a disordered collection of scientific literature, the distri-
bution of literature and corresponding journals is highly
asymmetrical or skewed, and this distribution follows a cer-
tain quantitative relationship [43]. By ranking journals in
descending order based on the number of papers published

in a specific discipline, it’s possible to delineate the core
area and subsequent continuous zones. The number of papers
published in each zone follows a ratio of 1 : a : a2 : . . .

According to Bradford’s Law, papers and journals are cat-
egorized into three levels of zones, as depicted in Table 5.
The First Zone comprises journals with a publication volume
of ⩾6 papers, totaling 8 journals with 74 papers published.
The Second Zone includes journals with a publication volume
of 2 to 5 papers, totaling 29 journals with 80 papers published.
The Third Zone consists of journals with a publication vol-
ume of 1 paper, totaling 62 journals with 62 papers published.
The number of papers in the three zones fluctuates around 72,
and the ratio of the number of journals is approximately
1 : 3 : 32. This suggests that research papers in the AI
Music Composition field generally adhere to the scientific
distribution pattern of the number of articles published in
journals.

TABLE 5. Data abstracts of screening articles.

The journal zoning in this field is visualized through a heat
map. Figure 4 demonstrates the regional distribution of the
99 journal nodes, categorized by publication volume, offering
a clear depiction of the three-tiered zoning of journals. Each
journal is distinguished by font size, reflecting its publication
volume. The deep color cluster in the central area represents
the First Zone, while the outer ring of the seven-color cluster
area represents the Second Zone. The outermost area, char-
acterized by weak connections and light color, signifies the
Third Zone. The results derived from Bradford’s Law regard-
ing the distribution of the number of publications in journals,
coupled with the comprehensive analysis of the visualization
map, indicate that the field has indeed established a stable
system of journals hosting articles.

FIGURE 4. Regional distribution map of papers and journals.

In summary, this study has conducted a comprehensive
analysis of literature data across four dimensions: authors,
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organizations, countries, and journals, presenting the research
status through data results. Firstly, an analysis of 556 authors
was conducted, verifying the author data of the papers using
Price’s Law, which revealed the formation of a scientifi-
cally stable author collaboration group within the field. Next,
an analysis of 285 organizations was performed, indicating
that these institutions are predominantly professional depart-
ments of universities, with collaboration between institutions
being common. Subsequently, an analysis of 39 countries
revealed that Europe and Asia are the main contribut-
ing regions, with representative countries including Spain,
the UK, China, and South Korea. Finally, an analysis of
99 journals was conducted, and it was verified using Brad-
ford’s Law that the field adheres to a scientific distribution
pattern in terms of the number of articles published in jour-
nals, thereby indicating the establishment of a stable system
of journals hosting articles.

IV. HOTSPOT ANALYSIS
A. ANALYSIS OF CO-OCCURRENCE KEYWORDS
Keywords serve as highly condensed representations of
the core essence of papers. Analyzing co-occurring key-
words enables a depiction of the broader context within the
research field and offers insights into research hotspots. Co-
occurring keyword analysis primarily focuses on clustering
high-frequency keywords [44]. In this study, Price’s Law was
employed to analyze core authors and prolific countries, and
this method can also be used to determine the threshold for
the number of high-frequency keywords [42]. According to
VOSviewer statistics, there are 41 keywords with the high-
est frequency. By applying this value to formula (2), the
threshold value for the number of high-frequency keywords,
referred to as ‘‘m,’’ is approximately 4.8. Consequently, key-
words with a frequency of ⩾5 are deemed high-frequency
keywords in this field, totaling 32. Visual co-occurrence
networkmaps for these high-frequency keywordswere gener-
ated using VOSviewer, resulting in Figure 5, which illustrates
32 nodes (high-frequency keywords) divided into 3 clusters
(keyword clusters).

FIGURE 5. The cluster map of co-occurrence keywords.

Analyzing keyword clusters enables researchers to
gain deeper insights into the main research trends in a

specific field, aiding in understanding the specific aspects of
each trend. In the figure, the node size reflects the frequency
of occurrence of the keywords; larger nodes indicate higher
frequencies. The thickness of the connecting lines between
nodes indicates the strength of their correlation; thicker lines
suggest more frequent co-occurrences in the same document.
Different colors of clusters represent distinct research topics.
As depicted in Table 6, this study summarized the vocabulary
of the three clusters based on their occurrence frequency.
Subsequently, we will analyze these three keyword clusters
individually.

TABLE 6. Cluster of keywords in the AI music composition field.

• Cluster 1: The green cluster of keywords centers on
overall system design. Within this cluster, the design
of composition systems is a significant research area,
encompassing studies on structured music sequence
design [45], music creativity mining [46], and the
application of genetic algorithms [47]. Algorithm opti-
mization for composition is also crucial, with topics
like multi-objective optimization model design [48],
evolutionary computing [49], and adaptive music clas-
sification [50] gaining popularity.

• Cluster 2: The blue cluster of keywords focuses on
machine learning algorithms. Here, the Markov chain
probability model holds a pivotal role as a clas-
sic algorithm model for music generation in machine
learning, with its transition probabilities forming the
core of its research technique [51]. Markov chains
are continuously optimized through research, with
topics like non-homogeneous Markov chains [52],
hidden Markov chains [53], and Markov decision pro-
cesses (MDPs) [54] gradually emerging as focal points,
predominantly applied in automatic harmony arrange-
ment. Hidden Markov chains also witness significant
developments in the realm of deep learning. Style
transfer for personalized music performance [55] is
another vital research direction in this area, aiming to
achieve highly realistic simulation of AI-generated tra-
ditional music, covering instrument sounds to overall
note performance [56]. Instrument soundmodeling [57],
[58], [59], vocal synthesis [60], emotional recogni-
tion perception [61], and related topics represent active
research areas in this domain.
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FIGURE 6. The time-zone view of keywords.

• Cluster 3: The red cluster of keywords delves into
deep learning neural networks. Here, traditional
neural networks remain significant, including Con-
volutional Neural Network (CNN) [62], Recurrent
Neural Network (RNN) [63], Temporal Convolu-
tional Network (TCN) [64], Long Short-Term Mem-
ory (LSTM) [65], Generative Adversarial Network
(GAN) [66], [67], largely applied in melody and har-
mony prediction [68], [69], [70]. New neural network
models play an essential role in this cluster, such
as the Groove2Groove style transfer neural network
model [55], the GenoMus artificial music creativ-
ity model [71], and the Least Squares SeqGAN
(LS-SeqGAN) automatic music generation model [72].
The neural networks studied within this cluster can
be broadly categorized as Artificial Neural Networks
(ANN) [73], primarily employed for modeling and
training [74] in music data programming, tagging, clas-
sification, etc. [75].

Further refinement of the content of the above clusters
reveals an overview of research hotspots in this field. These
three cluster themes demonstrate that while grounded in the
theoretical knowledge of music composition, research in this
area predominantly leans towards computer science. From the
visualization graph, it’s evident that the themes of ‘‘machine
learning algorithms’’ (Cluster 2) and ‘‘deep learning neural
networks’’ (Cluster 3) exist in parallel, both serving as crucial
technical supports for the theme of ‘‘overall system design’’
(Cluster 1).

B. TIME-ZONE ANALYSIS OF CLUSTERS
The co-occurrence analysis of keywords serves to illuminate
research themes, while their temporal analysis can further
elucidate the developmental stages of research topics within

the field. In this study, CiteSpace was utilized to gener-
ate a temporal map of keywords (Figure 6), facilitating an
evolutionary analysis spanning from 2000 to 2023. The back-
ground bars in the temporal map denote the years, with the
size of keywords indicating their frequency level of occur-
rence. Lines between keywords represent their co-occurrence
relationships. Below the graph, the number of publications
is listed by year, while above, corresponding analyses of the
distribution of the three cluster themes over the years and the
distribution of the three developmental stages in this section
are provided.

With the assistance of temporal maps, research topics
can be positioned within their corresponding developmental
stages. From Figure 6, it’s evident that the field can be cate-
gorized into three developmental stages: the primary stage,
transitional period, and mature stage, based on the distri-
bution of high-frequency keywords across different years.
These stages align with the three cluster themes discussed
earlier. Cluster 1 (Figure 5) represents a consistent research
theme across all stages, manifesting in various synonyms
such as algorithmic composition [76], automatic music com-
position [77], and music generation [78]. Despite variations
in keyword presentation over time, the focal point remains on
‘‘AI music composition system development.’’ After filtering
out keywords related to this constant theme, it’s observed
that the majority of keywords are technical in nature, with
research transitioning from machine learning (Cluster 2 in
Figure 5) to deep learning (Cluster 3 in Figure 5).The devel-
opmental stages are outlined as follows:

• Primary Period (2001–2015): Machine learning takes
center stage during this period, with a particular empha-
sis on algorithmic research. Initially, research focused
on developing auxiliary system tools for music perfor-
mance [79], gradually shifting towards the creation of
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virtual performers to replace human performances [80].
Rhythm and melody generation remained continuous
topics, with genetic algorithms [81] and probability
models [82] serving as representatives, though they are
no longer at the forefront of research.

• Transitional Period (2016–2019): The focus gradually
transitions from machine learning to deep learning.
Artificial neural networks, which are part of machine
learning and central to deep learning [83], are prominent
during this period, blurring the distinction between the
two. Notable keywords during this period include style
transfer [55] and optimization models [48].

• Mature Period (2020–2023): Deep learning emerges
as the primary focus during this period, with research
concentrating on neural network training, including
RNN [84], Training[67], Transformer[85], etc. This
period also corresponds to the findings in the previous
section regarding the current state of research.

C. ANALYSIS OF BURST KEYWORDS
The burst analysis of keywords can refine and pinpoint new
trends in research during a certain period in the field, and
to some extent, it can also illustrate the evolutionary path of
frontier hotspots. Figure 7 displays the top 10 keywords by
burst strength, and based on the burst strength and the time
series, these burst keywords can be classified into the three
periods discussed in the previous section:

FIGURE 7. Top 10 keywords with the strongest citation bursts.

• Primary Period: This period represents the foundational
phase of keywords. It can be observed from the relatively
low burst strength of ‘‘music performance’’ that during
this time, AI composition mainly involved the presenta-
tion of electronic music works, falling within the scope
of Electronic music and Computer music research [86].
AI technology was in a supportive role for composition
and performance.

• Transitional Period: This period signifies a rapid devel-
opment phase for keywords. Most keywords in the graph
appeared after 2016, indicating the rapid development
of the field of AI composition post-2016. Analysis of
keyword content reveals that it mainly revolves around
the transition from machine learning to deep learning
technologies, with burst strengths not particularly high,
indicating rapid iteration from ‘‘machine learning’’ to
‘‘deep learning.’’

• Mature Period: This period marks a period of significant
increase in high-quality burst keywords. The keyword
with the highest burst strength is ‘‘deep learning,’’ with
a burst strength of 6.85, once again confirming its recent
research popularity. Other burst keywords in the past
three years include ‘‘neural network’’ and ‘‘task anal-
ysis,’’ further confirming the frontier hotspot themes
summarized in the previous section.

D. ANALYSIS OF HIGH-CITED REFERENCES
High-cited references serve as concrete indicators of the
research trends within a particular discipline. Table 7
provides an overview of the top 10 most cited refer-
ences. Notably, ‘‘MuseGAN’’ by Hao-Wen Dong and col-
leagues [87] emerges as the most frequently cited study.
This research exemplifies technical exploration, employ-
ing deep learning-based interference, composer, and hybrid
models to generate multi-track music within a generative
adversarial network framework. Delving into the highly
cited articles, it becomes evident that they predominantly
explore four research avenues: the ‘‘construction of com-
position models’’ [70], [87], [88], [89], [90], the ‘‘design
of system approaches’’ [78], [91], ‘‘music performance ren-
dering’’ [92], and the ‘‘investigation of music generation’’
[12], [93]. Upon scrutinizing the journals associated with
these references, it becomes apparent that conference papers
constitute a significant portion, with ACM and AAAI con-
ferences being particularly prominent. This underscores the
leading role of computer technology at the forefront of
research in this field.

Overall, this study has systematically identified frontiers
and hotspots through four steps: cluster analysis, tempo-
ral analysis, burst analysis, and analysis of highly cited
references. Firstly, high-frequency co-occurring keywords
underwent cluster analysis, leading to the identification of
three frontier thematic backgrounds. Next, the temporal
distribution of keyword themes was examined to position
themwithin three developmental periods. Subsequently, burst
words were quantitatively analyzed and categorized into three
partitions, further refining the themes and hotspots of each
period. Finally, through the analysis of highly cited refer-
ences, four categories of frontier research directions were
outlined. Through this comprehensive approach, the study
has clearly delineated the evolutionary trajectory of frontiers
and hotspots in this field.

V. COMMENTARY OF DEEP LEARNING
COMPOSITION ALGORITHMS
After reviewing the frontiers and hotspots in the field of
AI music composition, the focus shifts to the domain of
deep learning algorithms. Next, qualitative evaluations and
introductions of mainstream algorithm technologies will be
conducted based on case studies found in the literature.While
numerous algorithms are utilized inAImusic generation, they
can be categorized into several main classes. The subdivision
criteria used in this study are organized based on previous
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TABLE 7. Top 10 articles with the highest citations.

comprehensive reviews [12], [67], [94] and are divided into
three categories: Neural Networks (NNs), Variational Auto-
Encoder (VAE), and Transformer.

A. NEURAL NETWORKS
In the field of music generation, Convolutional neural net-
works (CNN), Recurrent Neural Networks (RNN), Long
Short-Term Memory (LSTM), Generative Adversarial Net-
works (GAN), and other mainstream artificial neural net-
works are the core technologies.

1) CNN
CNNs are primarily utilized for processing image data, but
in music generation, they can be employed to discern local

patterns and features within musical signals. Currently, there
are relatively few music generation models based on CNNs,
as processing music data with temporal sequence characteris-
tics presents challenges. WaveNet [95], developed by Google
DeepMind, stands out as an advanced audio generationmodel
that forecasts the probability distribution of audio data using
dilated causal convolutions (Dilated Casual Convolutions)
to produce high-fidelity music clips. Despite WaveNet’s
adeptness in handling long-span temporal dependencies, the
music it generates often lacks significant repetitive struc-
tures andmusicality. Furthermore,WaveNet finds application
in other music generation tasks, such as TimbreTron [96],
which achieves timbre style transfer in the log-CQT domain
by integrating the WaveNet encoder and decoder for audio
reconstruction and timbre transformation.

2) RNN AND LSTM
RNNs demonstrate excellent performance in handling time-
series data like music segments, but they face challenges
with long-term dependencies, often leading to issues like
vanishing or exploding gradients. LSTM networks, as an
improvement over RNNs, significantly enhance their ability
to handle long-term dependencies through unique cell states
and gate mechanisms. Both have become the mainstay in
music generation systems and are widely applied to gen-
erate melodies and polyphonic music. For example, Song
From PI [97] employs a hierarchical RNN model to generate
melodies, drums, and chords, while Jambot [98] combines
chord LSTM and polyphonic LSTM to generate poly-
phonic music. Other systems like Anticipation-RNN [99],
DeepBach [88], and Performance RNN [92] showcase the
diversity and effectiveness of RNNs and LSTMs in music
generation.

3) GAN
GANs leverage a generator and discriminator to achieve
the goal of generating high-quality music through adver-
sarial training. Despite facing challenges in time-series
processing, multi-track music generation, and style trans-
fer, researchers have enhanced the quality and diversity of
music generation by innovating models such as C-RNN-
GAN [100]. This is achieved by effectively utilizing RNNs
and conditional generation mechanisms. MuseGAN [87] and
BinaryMuseGAN [101], with their improved generator archi-
tectures, produce highly correlated multi-track music, while
LeadSheetGAN [102] utilizes functional lead sheets as con-
ditional inputs to generate piano rolls with rich information.
In terms of style transfer and audio generation, models like
CycleGAN [103] and CycleBEGAN [104] achieve effective
music style conversion and efficient audio signal synthesis
through innovative loss functions and generation strategies.
However, GANs encounter challenges in training difficulty
and lack interpretability in modeling text data or musical
scores, which are issues requiring further resolution in current
research.

VOLUME 12, 2024 89461



W. Yang et al.: Development Status, Frontier Hotspots, and Technical Evaluations

B. VAE
VAE, as a compression algorithm, has been successfully
applied to analyze and generate pitch dynamics and instru-
ment performance information in polyphonic music, primar-
ily addressing music restructuring and prediction problems.
Faced with the challenge of processing multimodal data,
VAE combined with a hybrid encoding model of Recur-
rent Neural Networks (RNNs) demonstrates its powerful
capabilities in music style transfer and sequence model-
ing. For instance, MIDI-VAE [105] utilizes triple-stacked
encoders and decoders for music style transfer, while Music-
VAE [89] employs hierarchical decoders and bidirectional
RNN encoders, optimizing the modeling of long-sequence
music.

Derived models from VAE show strong potential.
MG-VAE [106] focuses on separating style and content
latent spaces for generating Eastern folk songs. MIDI-
Sandwich2 [107] achieves breakthroughs in polyphonic
music simulation and multi-track music generation through
conditional VAE and RNN-based multimodal fusion VAE
networks. MuseAE [108], by introducing adversarial autoen-
coders, provides greater flexibility in selecting the prior
distribution of latent variables for music generation. These
advancements underscore the broad application prospects of
VAE and its derivative models in music generation, although
further exploration is needed to ensure training stability and
a deeper understanding of generation mechanisms.

C. TRANSFORMER
Google’s Transformer architecture has revolutionized music
generation with its attention mechanism. Compared to tradi-
tional CNNs or RNNs, it efficiently handles long-term depen-
dencies, supports data parallelism, and provides self-attention
visualization capabilities. While Transformers face chal-
lenges with high spatial complexity in music generation,
the introduction of Multitrack Music Transformer [109]
significantly reduces this complexity, enhancing its suit-
ability for music composition. LakhNES [110] leverages
Transformer-XL for transfer learning, generating complex
multi-instrument music compositions from a small database.

Transformer-based music generation frameworks promise
high-quality improvements. Transformer VAE [111] com-
bines Transformer with VAE to overcome VAE’s limitations
in handling time-series structures. MusIAC [112], employing
multi-level control, enhances scalability and controllability
to improve music’s structural integrity and expressiveness.
The Transformer-based frameworkMELONS [113] produces
high-quality multi-bar melodies using structure generation
and melody generation networks, enhancing music style
fidelity, melody richness, and sequence generation efficiency.
These studies offer new possibilities and tools for music com-
position, significantly elevating music style fidelity, melody
richness, and sequence generation efficiency.

In summary, the three categories of deep learning algo-
rithms used for music generation serve as the technological

foundation for the current hotspots in the field. The evolv-
ing relationship of current hotspots indicates that ‘‘deep
learning neural networks’’ remain an absolute frontier topic,
while technologies such as ‘‘GAN,’’ ‘‘Transformer,’’ and
‘‘VAE’’ [66], [67] continue to evolve in recent years. These
discussions on such technological directions supplement the
qualitative research on popular themes summarized earlier.

VI. CONCLUSION
AI music composition is part of the emerging interdisci-
plinary field of computational musicology, which has been
evolving rapidly in recent years due to ongoing innova-
tions in computer technology. In this study, we utilized
VOSviewer and CiteSpace to conduct a bibliometric anal-
ysis of 291 documents in the AI Music Composition
field spanning from 2000 to 2023. This analysis encom-
passed quantitative statistics and qualitative evaluations of
556 authors, 285 organizations, 39 countries, 99 journals,
784 co-occurring keywords, and 7266 co-cited references.

• Development Status (RQ1, Section III): While validat-
ing Price’s Law, Lotka’s Law, and Bradford’s Law, this
section provides a summary of literature data from four
perspectives: authors, organizations, countries, and jour-
nals. Presently, the field of AI music composition has
established a scientific journal publishing system and
a stable network of author collaborations. Authors are
predominantly affiliated with academic departments in
universities, and there is a noticeable trend towards inter-
national collaboration among author teams, with Europe
and Asia emerging as the primary contributing regions.

• Frontier Hotspots (RQ2, Section IV): Leveraging the
VOSviewer and CiteSpace software, this section sys-
tematically identifies frontiers and hotspots through
four analytical steps: cluster analysis, temporal analysis,
burst analysis, and examination of highly cited refer-
ences. The evolutionary trajectory is visually depicted
through maps. Currently, neural network algorithms and
models related to deep learning dominate the main-
stream topics.

• Technical Evaluation (RQ3, Section V): The qualita-
tive assessment based on technical directions presented
in this study complements the preceding quantitative
statistics. Neural Networks (NNs), Variational Auto-
Encoder (VAE), and Transformer represent three key
types of deep learning algorithms employed in music
generation, serving as the technical cornerstone for
current hotspots. Integration of various algorithms is
ongoing, and both big data models and small data
algorithms are avenues for continuous technological
advancement.

AI music composition, as an emerging field, possesses
significant potential despite certain research gaps. This study,
initiated from bibliometrics, systematically reviews and orga-
nizes the domain, offering substantial value. Its goal is to aid
scholars in delineating research areas, identifying hotspots
and frontiers, and tackling technical hurdles. It is anticipated
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that AI music composition, being a youthful interdisciplinary
domain, can craft splendid melodies amidst the ongoing tech-
nological evolution.
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