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ABSTRACT In this paper, we propose the design, operation, and implementation of an Internet of Things-
based hybrid structural health monitoring. This innovative system leverages the capabilities of both fog and
cloud layers in computing andmonitoring. The system architecture consists of leaf nodes deployed on a target
structure. These nodes, synchronously, collect acceleration signals from accelerometers attached directly to
the structure and transmit the data to an on-site central node via a short-range communication protocol. At the
fog layer, the central node, applies damage detection algorithms on the collected data. If a damage is detected,
it forwards the acceleration signals to a cloud-based monitoring server using cellular internet connectivity,
where more complex algorithms are used to identify and locate the damage. We provide detailed information
about the design of the different system nodes, the implementation of damage detection algorithms, and
the architecture of the monitoring server. To evaluate the effectiveness of the proposed system, several
practical experiments were conducted. The results demonstrate that the hybrid system presented in this paper
provides an efficient, reliable and cost-effective approach to damage detection and identification in civil
infrastructures.

INDEX TERMS Internet of Things, fog computing, cloud computing, hybrid IoT solutions, structural health
monitoring system, synchronized sampling, cellular internet.

I. INTRODUCTION
Urban and essential infrastructures (e.g., airports, bridges
etc.) are considered one of the main pillars of any economy.
However, these infrastructure systems are susceptible to
damage caused by various factors, including excess loading
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beyond the capacity of the structure, changes in operation,
and age deterioration resulting from wear and tear, exposure
to environmental elements, and insufficient maintenance.
Earthquakes can also trigger other infrastructure damage
mechanisms at different levels, ranging from minor cosmetic
damage, such as cracking of walls and floors, to severe
damage, such as total structural collapse. The location of the
damage can also vary, with the beam-column joints being

89628

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-6949-9266
https://orcid.org/0000-0003-1278-6373
https://orcid.org/0000-0002-8489-5491
https://orcid.org/0000-0002-5447-2068
https://orcid.org/0000-0002-3539-0649
https://orcid.org/0000-0002-9079-868X
https://orcid.org/0000-0003-4868-5726


M. Hassan et al.: Optimizing Structural Health Monitoring Systems

particularly vulnerable. The intensity and duration of an
earthquake can significantly impact the extent and severity
of the damage.

The capability to assess the status of the infrastructures by
detecting and identifying any damage is crucial in order to
prevent total collapse and protect the lives of the citizens.

Structural Health Monitoring (SHM) involves the process
of observing and critically evaluating the target structure [1].
SHM systems can determine the type and location of
failures or deterioration in a structure, as well as estimate
the remaining lifespan of the infrastructure. These systems
typically provide different levels of monitoring as follows [2]:
1) Level I: Detecting the presence of deterioration in the

structure.
2) Level II: Pinpointing the location of deterioration.
3) Level III: Evaluating the severity of deterioration.
4) Level IV: Assessing the remaining lifetime of the

structure.
SHM systems can be used to characterize the building’s

response before, during and after seismic events by detecting
any presence of a damage. Structural deterioration causes
changes in the physical properties of a structure, including
stiffness, damping, and mass. These changes can affect
the dynamic characteristics (natural frequencies, modal
damping, and mode shapes) of the structure [3]. Based on the
modal analysis, it becomes feasible to identify the structural
properties that have been impacted and necessitate remedial
measures to mitigate potential risks.

In the past decades visual inspection was the common
approach used to monitor the condition of structures. This
approach is of high cost, time consuming nature, and has
uncertainty particularly for large structures. Alternatively,
wired-based systems (each sensor connected to a data-logger
through cables) are used to assess structural health [4].
However, this method has several drawbacks including large
installation and maintenance efforts. The rapid develop-
ment in the wireless and sensing technologies allows for
developing monitoring systems containing data processing
unit (microcontroller), sensors (accelerometers), wireless
communication modules, and structural health assessment
mathematical models [5], [6]. Additionally, the Internet of
Things (IoT) technology [7] allows devices and objects
to connect to the internet and exchange data that can be
accessed remotely. By incorporating IoT technology into
SHM systems, the performance and efficiency of these
systems can be improved by sending the measured data to
cloud platforms or remote centers for further analysis and
evaluation [8], [9].

Monitoring and assessing the seismic behaviour are
often based on deploying a substantial number of sensor
nodes on the structure, including displacement transducers,
strain gauges, and accelerometers, which can record the
structure’s dynamic properties [10]. In this regard, highly
customized sensing technologies, such as transducer devices
(accelerometers and geophones), are essential parts for
creating a continuous recording system. However, the cost of

these sensors should be considered duo to the large number
of sensors that may be deployed. Micro-Electro-Mechanical
System (MEMS) technology is now being used in several
applications, particularly for accelerometer manufacturing,
which has contributed to reducing both the costs and size of
the stations while also improving sensor reliability [11].

The measurement of structural responses of large struc-
tures requires a dense array of sensor nodes that collect
huge amounts of data during long-term monitoring. For a
high performance SHM system, an efficient data analysis
and management platform is used for extracting useful
information from the structural responses and assessing the
structural health. Our previous work [12], [13] presented the
design and implementation of a cloud-based, synchronized
IoT-Based SHM system. This system consists of a group of
leaf nodes, a central node, and a cloud monitoring server.
The leaf nodes acquire the acceleration signals from different
locations in the structure via MEMS accelerometers and then
transmit these signals to the central node via short-range
communication protocol (WiFi). The data acquisition process
is timely synchronized among the different leaf nodes
by using the Global Positioning System (GPS) Pulse Per
Second (PPS) timing signal. The central node continuously
collects the acceleration signals received from the leaf nodes,
then forwards them to the remote server over the internet
using cellular service, eliminating the fixed infrastructure
requirements. The central node does not contribute in the
damage detection and identification process; it only relays
the received data to the remote server. On the remote server,
a number of algorithms are implemented to detect and
identify any damage presented in the monitored structure.
Nonetheless, this system involves the incessant transmission
of data from the central node to the remote server, which
is deemed unfavorable for SHM systems due to multiple
reasons. Firstly, long-range communication is facilitated
through the cellular internet, which does not necessitate
a fixed infrastructure but incurs monetary charges for
data transfer volume. Secondly, the substantial amount of
data transferred from central nodes poses a computational
challenge for monitoring servers that are responsible for
overseeing multiple infrastructure.

An alternative approach is by utilizing a hybrid fog-cloud
SHM system. This system involves executing the damage
detection algorithm on the processor of the central node
in the fog layer and transmitting the data solely when the
algorithm identifies structural damage to the remote server
(cloud layer). The monitoring server employs more complex
algorithms for identifying and locating this damage.

The proposed system operates as follows: Leaf nodes syn-
chronously gather the accelerometers’ acceleration signals.
Then, they transmit the collected signals to a central node via
aWiFi connection. After receiving the leaf nodes’ signals, the
central node performs real-time damage detection to assess
the structure’s condition. If damage is detected, the signals are
relayed to the cloud-based monitoring server over the internet
using cellular communication. Finally, the received data is
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FIGURE 1. Two stages IoT SHM system. In the first stage the damage detection algorithm runs on the central node. If a
damage is detected, the data is transmitted to the monitoring station where the second stage is activated by running a
damage identification algorithm.

stored by the monitoring system, which employs damage
identification algorithms to determine the precise location of
the damage. Figure 1 depicts a general view of the presented
system highlighting different layers and components.

The contribution of this paper can be summarized in the
following points:

1) We present the hardware and power-efficient firmware
design of different IoT nodes (central node and leaf
nodes)

2) We developed a computationally-efficient implementa-
tion of the damage detection algorithms on the central
node microcontroller.

3) We designed a cloud based monitoring server with a
web interface implementing the damage identification
algorithm to visualize the structure data. Also, the
administrator can control and tune the system through
the server dashboard.

4) We present the operation of the overall system through
the different layers.

5) We evaluate the performance of the system using a series
of practical experiments.

Paper Organization –The rest of the paper is organized
as follows: Section II presents a review of the theoretical
background for SHM algorithms, including the modal
parameter estimation methods and the different algorithms
used for damage detection and identification. Section III
describes the main components of the proposed system.
Section IV discusses the practical implementation of different
algorithms on the IoT nodes. Section V introduces the

different practical experiments carried out to evaluate the
proposed system. Section VI discusses the proposed system’s
results. Finally, the paper is concluded in Section VII.

II. SHM THEORETICAL BACKGROUND
In this section, we will present the theoretical background
for SHM algorithms used in this research. We started with
discussion about feature extraction, quantitative analysis, and
decision-making. Then we introduce the methods used for
the estimation of the natural frequency and mode shapes of
the monitored structure. After that, we present the different
algorithms used for damage detection and identification.

A. FEATURE EXTRACTION AND DECISION-MAKING
Feature extraction is essential in structural health monitoring
as it allows precise information to be extracted from the
raw data collected by numerous sensors mounted on the
structure. These features can be categorized as local and
global features. Gathering and analyzing data from critical
areas within a structure to identify subtle changes or damages
is referred to as local feature extraction. This method is
vital for identifying localized phenomena such as stress
concentration, cracks, corrosion, or elements debonding
which could potentially compromise the entire structure if
undetected [8], [14]. Advanced sensing technologies like
piezoelectric transducers, fiber optic sensors, and capacitance
sensors are typically employed for this purpose [15], [16],
providing high-resolution data specific to the areas where
they are installed. On the other hand, global features refer
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to characteristics or measurements that represent the overall
behavior or condition of the entire structure. These features
are typically derived from data collected from multiple
points across the structure, providing a comprehensive view
of its health. Techniques such as time-domain, frequency-
domain, and modal analysis are commonly used to extract
meaningful features from sensor data. These features, includ-
ing frequency domain characteristics and modal parameters
(natural frequencies, mode shapes and damping ratios),
provide valuable insights into structural behavior and health
status [8], [17]. These features are extracted from real-time
signals acquired using different types of sensors including
accelerometers, strain gauges, and piezoelectric sensors.
In SHM systems, global fusion techniques combine data
from various sensors to enhance the accuracy and relia-
bility of health assessments. Quantitative analysis in SHM
involves the systematic evaluation of extracted features to
assess structural status using different techniques such as
baseline comparison that compares current feature values
with baseline (undamaged) values to detect anomalies [8]
using natural frequency drop, and variation in mode shapes.
Also, quantitative analysis involves damage identification
techniques such as mode shape curvature method or the
flexibility method, and machine learning models that can
be used to assess the severity of damage and predict the
remaining useful life of the structure based on current health
metrics. Techniques such as regression, Neural Networks
(NN), or Principal Component Analysis (PCA) and Support
Vector Machine (SVM) are used to find patterns and cate-
gorize structural states using sensor data and can be trained
on historical data to make predictions [18], [19]. However,
these methods need a large amount of data for different
structure conditions to properly train the model which may
not be feasible to generalize and apply on real structures.
The integration of wide data analysis approaches that support
real-time strategies significantly improves decision-making
processes in SHM systems. IoT technology can provide
continuous monitoring and instantaneous feedback, which is
critical for early assessment of structural health and prompt
implementation of corrective actions. Furthermore, integrat-
ing predictive analytics into SHM enables the prediction
of future problems based on statistical analysis, informing
maintenance decisions and resource allocation in advance.
This strategic integration increases operational efficiency
and considerably decreases the expenses associated with
unscheduled repairs and structural failures [8].

B. STRUCTURE PARAMETER ESTIMATION
Changes in physical parameters such as mode shapes,
damping, and natural frequencies can indicate alterations
in a structure’s behavior, allowing for the identification
of damage. These physical parameters can be obtained by
measuring the ambient or forced structural response. While
experimental (forced) modal analysis needs information
about the input excitation, operational (ambient) modal
analysis only needs information about the output and depends

FIGURE 2. Averaged PSD spectrum for N acceleration samples, one
channel.

on the input being generated by the surrounding environment,
such as earthquakes, passing vehicles, or wind [20].

Frequency Domain Decomposition (FDD) is one of the
Operational Model Analysis (OMA) vibration-based tech-
niques that are used for SHM thanks to its ability to precisely
identify natural frequencies and mode shapes that are closely
spaced [21]. The FDD method is based on analyzing
the acceleration data in the frequency domain through
estimating the Power Spectral Density (PSD) of ambient
response that reveals dynamic amplification in the signal
near the structure’s natural frequencies, making it useful for
studyingmodes or general frequency characteristics [22]. The
averaged PSD can be calculated using theWelch periodogram
method, which allows data segments to overlap by applying a
windowing function to each data segment before computing
the periodogram. This results in a reduction in variance and a
more accurate estimate of the PSD [23].

For a single channel (sensor) time history, PSD can be
estimated by dividing the data into M equal length and
overlapped frames (segments), and then the PSD for each
segment is calculated based on the Fast Fourier transform
(FFT) as shown in Fig. 2. Where N is the total number of
samples, Nov is the number of overlapped samples in the
proposed system (50% overlapped samples are used), and
NF is the number of samples in each frame.
In case of a Multi Degree of Freedom (M-DOF), i.e.

multi-channels, system the dynamic amplification (peaks)
in the averaged PSD spectrum represents the distribution
of signal frequency components, many of which cannot be
associated with known vibrational modes. For example, three
PSD (three channels) with a peak at the same frequency may
not necessarily indicate three modes [20]. The number of
modes (peaks) can be determined by plotting the eigenvalues
of the power spectral density matrix’s real values versus
frequency. The number of modes within a certain band can
be determined by the number of lines (eigenvalues) that
are significantly higher than the others. This plot is called
the ‘‘singular value (SV) spectrum.’’ that comes from the
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singular value decomposition process applied to any complex
rectangular matrix.

Recently, various singular value decomposition algorithms
that guarantee good performance in most applications have
been developed to solve singular value decomposition (SVD),
such as Golub Reisch [24], Demmel-Kahan [25], Jacobi
rotation [26], one-sided Jacobi rotation [27], and divide
and conquer [28] algorithms. Also, there were a number
of attempts for developing and implementing different tech-
niques of SVD algorithms in embedded processors [29] tak-
ing into consideration the processing capabilities limitation of
these platforms. In [30] the authors presented a comparative
analysis of these techniques, which were implemented on a
high-performance embedded processor (Cortex-M4). Also,
the authors concluded that one-sided Jacobi rotation is the
best algorithm for the SVD that surpasses the other SVD
algorithms in terms of speed, precision, and energy efficiency.
The singular value spectrum produced from the averaged
sample power spectral density, has certain properties related
to the contributing modes within the resonance band [20].
In the case that there is only one dominant mode in the band,
the largest eigenvalue represents the dynamic amplification
factor. The eigenvector of the largest eigenvalue corresponds
to the partial mode shape near the natural frequency.

After calculating the eigenvalues and eigenvectors, a peak-
picking algorithm is applied to extract the mode shape
and natural frequency. One of the powerful peak-picking
approaches is the Scale-Space Peak Picking (SSPP) algo-
rithm that is based on Scale-Space theory and involves
smoothing the data at multiple scales [31]. The main
benefit of this algorithm is that it defines and detects peaks
based on their stability over iterative smoothing, rather than
relying on local derivative assumptions. This allows for the
identification of peaks in a global manner, since it emphasizes
the detection of existing peaks at multiple scales in the data.

The procedure of OMA algorithm for extracting modal
parameters of specificM-DOF system can be summarized as:

1) Selecting the suitable window, the appropriate number
of overlapped samples Nov, number of samples/frame
NF and number of frames M , for the given time history
data

{
yj

}N−1
j=0 (n× 1), where n is the number of channels

and N is the number of samples/channel.
2) Dividing the data

{
yj

}N−1
j=0 into M overlapped frames

and multiplying each frame with the selected window;
calculating the scaled FFT and the PSD for each frame.

3) Calculating the (averaged) PSD matrix {PSD}
NF−1
K=0

4) Determining the singular values and singular vectors.
5) Peak picking of the singular values and singular

vectors to estimate the natural frequencies f and mode
shapes ψ .

C. DAMAGE DETECTION AND IDENTIFICATION
ALGORITHMS
After estimating and calculating the natural frequency f
and mode shapes ψ of the target structure as discussed in

Section II-B, different vibration-based techniques can be
used to identify the structure status. Below, we provide
the theoretical background of the techniques used in this
research. Later in Sections IV and III-D, we will present the
implementation of these algorithms in the processing node
and the remote server, respectively.

1) Variation in the mode shape:
The Modal Assurance Criterion (MAC) [32] is a
statistical parameter used to measure the correlation or
similarity between two mode shapes, one corresponding
to the structure healthy state and the other corresponding
to the mode shape of a structure test state. The value
of the MAC ranges between 0 and 1, with a value
of 1 indicating a perfect correlation between the two
mode shapes and a value of 0 indicating no correlation.
The MAC can be calculated as:

MACj,k =

(∑n
i=1 [ψ]

u
i,j ∗ [ψ]di,k

)2
∑n

i=1

(
[ψ]ui,j

)2
∗

(
[ψ]di,k

)2 , (1)

where MACj, k quantifies the correlation level between
the jth and kth mode, The numerical value of j ranges
between 1 and N ′, where N ′ is the mode shape number
of the structure in the healthy state, and the value of k
ranges from 1 toM ′, whereM ′ is themode shape number
for the damaged (test) state. The elements of the mode
shape matrix of the damaged and healthy structures
are represented by [ψ]di,k and [ψ]ui,j respectively. The
symbols d and u represent the damaged and healthy
states, respectively, and n indicates the total number of
sensor nodes.
In practical applications, the MAC values between two
corresponding mode shapes of a system are slightly less
than 1 due to errors from numerical calculations and
uncertainty resulting from conditions surrounding the
experiment [33]. So, a MAC value greater than 80%
is considered to be a strong indication of a healthy
structure, while a value less than 80% suggests the
presence of damage. However, this method can only
indicate the presence of damage with no indication of
its location, and it also requires higher order modes for
detection [34].

2) Natural frequency drop:
Damage to a structure causes changes in its physical
and modal properties, notably a decrease in its natural
frequency. The natural frequency is highly sensitive
to damage, with more severe damage resulting in
a significant decrease in the natural frequency. The
differences in natural frequencies can be calculated
by (2) [35]

1f = f uj − f dj , (2)

The notation f represents the natural frequency, j denotes
the jth mode, u stands for undamaged, and d repre-
sents the damaged status. The natural frequency value
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may slightly decline even in the absence of damage
due to variations in the surrounding experimental
conditions. Therefore, damage is considered to have
occurred when there is a shift of more than 5% in
the frequencies [36]. Similar to the MAC method,
this approach can only detect the damage but cannot
pinpoint its location. On the other hand, this technique
requires fewer modes if compared to the MAC-based
technique.

3) Mode shape curvature damage indicator:
The curvature at the jth measured DOF of the mode
shape-based deflections can be estimated by using
equation (3) with measurement points evenly spaced
apart by a distance of 1h:

ψ ′′
i,j =

ψi+1,j − 2ψi,j + ψi−1,j

1h2
, (3)

where ψ ′′
i,j represents the element of the mode shape

curvature matrix and it is computed for both the healthy
and damaged structure states. Also, the mode shape
component is represented by ψ i,j where it refers to the
ith coordinate or measurement point (such as a sensor)
at the jth mode. A constant distance, represented by1h,
separates each two consecutive nodes.
The Curvature Damage Indicator (CDI) method is a way
to detect and locate damage in a structure by analyzing
the relationship between the flexural stiffness1 of the
structure and the shape of its bending (mode shape).
When a damage is present, the structure stiffness
decreases, leading to an increase in the value of the
CDI. By comparing the CDI values of a healthy and
damaged structure, the location of the damage can
be identified [37]. To calculate the CDI value, the
curvature of the structure’s mode shape is calculated
using a specific formula called the central difference
formula [37].
The CDI vector is obtained by taking the average of
the mode shape curvature matrices for both damaged
and healthy states at a particular sensor or coordinate
point, using the given number of modes N . An increase
in the CDI value at a specific sensor or node indicates
the presence of damage at that location.

Ci =

∑N
j=1

∣∣∣ψ ′′u
i,j − ψ ′′d

i,j

∣∣∣
N

, (4)

where the ith coordinate (node/sensor) at the jth mode
has mode shape curvature matrices for both healthy
and damaged states, denoted by ψ ′′u

i,j and ψ ′′d
i,j , respec-

tively. The CDI vector has a length equal to the
number of sensor nodes, with each element represented
by Ci.
If a system is undamaged (in a test state), the mode
shape curvature matrix values should closely resemble

1Flexural stiffness refers to the structural resistance exhibited by a
structure when subjected to bending forces.

those of the initial (healthy) state’smode shape curvature
matrix. However, if there is damage present at a specific
location, there is a significant difference in the mode
shape curvature values at that location compared to the
healthy state, which can be used to identify the location
of the damage.

4) Flexibility method: When damage occurs, it leads to a
decrease in stiffness and an increase in flexibility. As a
result, tracking the flexibility matrix can be used as a
way to identify damage. In case of normalized mode
shape mass

(
ψMψ t

= 1
)
, the flexibility matrix can

calculated using the mode shapes and eigenfrequencies
as follows [38]:

F =

N∑
i=1

1

ω2
i

ψiψ
t
i (5)

The primary goal is to compare the flexibility matrices
of the undamaged and damaged states.

1F = Fu − Fd (6)

where ψi represents the ith vector of mode shape,
ωi corresponds to the natural frequency of the ith mode,
and N denotes the total number of modes. Due
to the inverse proportionality between the flexibil-
ity matrix and the square of the eigenfrequencies,
the matrix tends to approach a stable value more
rapidly for lower modes. Therefore, the flexibility
matrix can be accurately estimated using only a
few lower modes. Typically, the first two modes are
sufficient [39].
In the matrix 1F , each column represents a specific
measurement location. The location of the damage is
determined by finding the maximum absolute value in
each column γj. with j denoting the measuring point
coordinate.

γj = max
i

∣∣1Fij∣∣ (7)

When a system is tested and remains undamaged, the
flexibility matrix values should closely resemble those of its
initial (healthy) state. On the other hand, if there is damage
at a specific location, the flexibility values at that location
significantly differ from those of the healthy state, thus
indicating the damaged location.

III. THE PROPOSED IOT-BASED SHM SYSTEM
In this section we present and discuss, in detail, the different
parts of the system. This includes the design of the leaf
and central nodes and the function and operation of each of
their components. Also, we detail the two network models
used between the leaf and central nodes and between the
central node and the cloud-based server. At each model
we justify and detail the used transmission technique used.
At the end we describe the architecture of the cloud-based
server and highlight the operation of each different
part.
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FIGURE 3. The hardware implementation of the proposed system nodes (a) The leaf (sensor) node (b) The central node.

A. LEAF NODES
The proposed system consists of five number of leaf nodes2

with a design depicted in Fig.3 (a) the main role of each
leaf node is to synchronously collect the acceleration signals,
collected by the attached accelerometer, of the target structure
and then transmit them to the central node. The following
components make up the Leaf node:
1) Processing/communication Unit: ESP32, a Microcon-

troller (MCU) with built in WiFi 802.11 b/g/n (2.4GHz)
speed up to 150Mbpsmodule with three main functions.
The first role involves gathering the accelerometer’s
acceleration signals. The second role is signal filtering
through the Kalman filter and saving them to an Secure
Digital Card (SD-Card), and then adapting them to
the required format. The third function is sending the
collected data to the central node.

2) GPS Module: The GPS module, which is typically
used for location identification is used in our system
for another very crucial function which is to achieve
perfect sampling synchronization, which is importance
to achieve accurate signal analysis collected from more
than one source, among the different leaf nodes without
direct communication between them. Synchronizing the
sampling procedure of multiple nodes is performed
using the GY-NEO6MV2 with a u-blox 6 GPS mod-
ule [40]. This GPS module receives accurate Pulse Per
Second (PPS) signals, every exactly one second, sent
from the GPS satellite network. These signals serve
as starting points for the sampling procedure for all
leaf nodes. Also, the PPS signals serve the purpose of
restricting synchronization errors within a one-second,
thus preventing the accumulation of errors [41].

3) Battery:
A 2600 mAh lithium-ion battery with a voltage of
3.7V powers the device. The battery is installed on a
charger. This makes it possible to charge the battery

2In this study the number of leaf node is set to 5 to be suitalbe for the
lab-scale structure used.

with a 10 Watt solar panel connected to it using USB
connector. The efficient design of the leaf node enable it
to run on the used battery for time up to 15 hours before
need to be charged.

4) External memory (SD-Card):
The system has a high availability and redundancy
feature through saving the collected samples by each
leaf node on an external SD-card. If there is a
transmission failure between a leaf node and the central
node, the stored samples can be re-transmitted from the
SD-card to the central node.

5) Accelerometer Sensor:
The digital 3-axis MEMS accelerometer ADXL355
is used to measure the acceleration. It is a minimal
noise, drift, and power with its own internal 20-bit
Sigma-Delta ADC. It has the ability to capture
3-axis acceleration signals at various output data rates
ranging from 3.9 Hz to 4 KHz. The bandwidth of the
ADXL355 is constrained to roughly 1.5 KHz by an
built-in analogue low-pass filter. In order to lessen the
noise, it also offers additional digital filtering options,
including a high-pass filter with a cut off frequency
set at 1.94 Hz and a low-pass digital decimation filter
with a frequency adjustment to 31.25Hz with a sampling
rate equals to 125 samples/sec. The accelerometer board
connects to the ESP32 using the Serial Peripheral
Interface (SPI) protocol with the SPI clock configured
to 10 MHz based on the bus clock and baud rate
prescaler of the ESP32. As illustrated in Section II C,
our system is based on tracking relative shifts in natural
frequencies rather than measuring absolute magnitudes
of vibrations. This indicates that for our system, the
initial baseline measurements are sufficient to detect
changes in the structural behavior over time. By estab-
lishing a reliable baseline, we can effectively monitor
and identify any deviations that may indicate potential
issues or changes in the structural integrity without any
additional calibration [42]. Our methodology involves
attaching the accelerometers at the required points
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on the structure, recording baseline data under stable
conditions, and continuously monitoring the data for
any relative changes. This process allows us to detect
trends and anomalies with high sensitivity, ensuring that
any shifts in the natural frequencies or amplitudes are
accurately captured.

B. CENTRAL NODE
The central node is a key component of the damage detection
system as it receives the collected acceleration signals from
the leaf nodes, stores them in the SDRAM, and implements
the real-time damage detection algorithms discussed in
Section II. In the presence of any damage, the central node
aggregates the data and sends it to the remote server using
the cellular internet. The central node, depicted in Fig.3 (b),
comprises the following components.

1) The STM32F429 microcontroller [43] is a powerful
ARM architectur 32-bit microcontroller with a clock
speed of 180MHz and features a Floating Point Unit
(FPU). The FPU enhances the microcontroller’s capa-
bilities to perform complex floating-point arithmetic
operations with high precision and speed which is
crucial to perform the damage detection algorithms
discussed in Section II.

2) ESP32 Wi-Fi module. This module is identical to their
leaf node counterpart which from the hub in a WiFi star
network with the leaf nodes and is responsible for the
short range communication between the leaf and central
nodes.

3) The Quectel EC25 [44] module is a fourth generation
(A.K.A Long Term Evolution (LTE)) cellular commu-
nication device that facilitates internet connectivity for
the central node. It is responsible for establishing and
maintaining the internet connection between the central
node and the monitoring server.

4) Secure Digital Card (SD-Card) is employed for tem-
porary storage of data when the internet service in
unavailable. The central node sends the saved data once
the internet connection has been re-established.

C. WIRELESS COMMUNICATION PROTOCOLS
The proposed system depends on using two different
communication protocols. The first communication protocol
involves short-range wireless transmission between the leaf
and central nodes, utilizing the ESP-NOW protocol. The
second protocol uses cellular internet for long-distance
communication between the central node and the monitoring
sever based on the TCP/IP protocol.

1) COMMUNICATION PROTOCOL BETWEEN SENSOR AND
FOG LAYERS
The leaf nodes and the central node have the capability to
communicate using a modified Wi-Fi protocol called ESP-
NOW,which is designed for short-range communication [45].
The ESP-NOW functionality operates within Layer two of

FIGURE 4. Data packet format used between the central node and the
monitoring server.

the Open Systems Interconnection (OSI) model, eliminating
the need for preliminary handshaking in data transfer. This
protocol employs Media Access Control (MAC) address for
the two communicating nodes, enabling the transmission of
data frames of up to 250 bytes. Compared to TCP/IP, ESP-
NOW exhibits a faster setup process, consumes lower power,
and incurs less payload overhead. This is primarily attributed
to its operation at the data-link layer, which eliminates the
necessity for data transmission through higher layers such as
TCP/IP [46]. It should be noted that our proposed system
employs point-to-point direct communication between the
sensor layer and the fog layer, without requiring higher
layers services such as routing, complex TCP flow, and
congestion control.3 Our system utilizes a sampling rate
equals 125 samples/sec., with each sample is stored in a float
format data type where each sample occupies 4 bytes. As a
result, only two packets are required to be transmitted from
each one of the leaf nodes to the central node within a one-
second interval. The utilization of this approach leads to a
decrease in overall power consumption when compared to the
alternative of sending samples individually. This reduction
is attributed to the elimination of the need to repeat packet
overhead, as explained in [13].

2) COMMUNICATION PROTOCOL BETWEEN FOG AND
CLOUD LAYERS
To establish communication between the fog layer and the
cloud layer, a cellular based internet utilizing TCP/IP. The
cellular communication module on the central node (fog
layer) acts as a gateway for the internet by communicating
with the internet service provider. The central node is
responsible for forwarding the frames of the collected data
to the monitoring server (when the damage is detected).
By utilizing the Quectel EC25 cellular internet connection
(4G) module with a maximum data payload of length
of 1460 bytes per packet, the central node is capable of
transmitting all the data collected by the leaf nodes within a
one-second using only four packets. This is done by utilizing
the packet-format of the update message illustrated in Fig. 4.4

D. CLOUD BASED MONITORING SERVER
The role of the cloud-based monitoring server is to receive
the raw acceleration data (in the case of damage) from the

3Re-transmission capabilities are present in both the TCP/IP and ESP-
NOW protocols, ensuring that the delivered data packets reach their intended
locations. User Datagram Protocol (UDP) is not appropriate for this
application since it does not ensure lost packet re-transmission.

4It is also possible to continuously transmit all the leaf nodes data to the
remote server without processing at the fog layer. However, this is not the
default operation.
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FIGURE 5. The architecture of the cloud-based monitoring server.

central nodes (in the fog layer), store them and apply damage
detection and identification algorithm on the received data.
The design of the server is shown in Fig. 5. Themain system’s
building blocks are:

• Front end services This component is responsible for
providing the user with access and control of the server
as well as visualization of the damage detection and
identification algorithm charts. The main features of this
module are as follows:

– User registration, confirmation, and login: allows
the users to create an account and access the site’s
features.

– Monitoring and visualizing data: provides the
user with real-time information and a graphical
representation of the data.

– Site Dashboard: allows the user to control the
server, add/delete central nodes, manually invoke
the damage detection and identification algorithms.

– Accessing historical data: enables the user to view
past events and data.

• Back end services

– The algorithm invoker: This module invokes the
excludable files created using MATLAB software.
These executable files runs the proposed damage
detection/identification algorithms. The main rea-
son for this module is to facilitate the communi-
cation and data processing between the MATLAB
written executable algorithm and .Net framework in
which the server is built.

– TCP listener: This is a module that permanently
listens to packets which contains sensory info from
leaves, after that the data are parsed and stored in
the Systems’ database.

– The Database module: The database stores the raw,
timestamped, acceleration data received from the
central nodes in addition to the algorithms outputs.
The database contains the following tables:

∗ Accounts: hold users’ data such as username,
password, and other related information.

∗ Central node ID: identifies the presence of all
central nodes and sends an alert if data is not
received from a specific node.

∗ Values: store the array of sensed acceleration
variables’ values and the corresponding time
stamps when the values were collected.

∗ Structure modal parameters: contain the modal
parameters of the structure, such as mode shapes,
natural frequency, and damping ratio.

∗ Status of the structure: saves the structureś status,
indicating whether it is damaged or not, and also
records the location of the damage.

Microsoft .NET technologies were utilized to deploy a
monitoring server and website for the purpose of managing
user activities and visualizing data. The back-end technolo-
gies include a database management system, specifically
MS SQL Server 2019. Upon logging in, users can access
monitoring functions and historical data navigation. The
system offers two modes of operation: manual mode for
running damage detection and identification algorithms
offline on stored data, and live mode for receiving input
from central nodes through the TCP listener module. The
application is designed to provide users with a comprehensive
view of the system, enabling them to monitor and analyze
data, review past events, and make informed decisions based
on historical data.

The establishment of a connection-oriented communi-
cation between the central node and the server TCP/IP
listener is achieved through the utilization of a predefined
port and message format, as illustrated in Fig. 4. This
enables the server to effectively filter incoming packets and
extract acceleration signals from each central node, which are
subsequently stored in a database. Upon receipt of all data,
various algorithms are executed by the algorithm invoker,
commencing with the calculation of the PSD. The modal
parameters are then estimated. Finally, damage detection
and identification algorithms presented in Section II-C are
employed by the server. The monitoring server also facilitates
visualization of different mode shapes and their curvatures as
well as changes in flexibility.

IV. ALGORITHMS IMPLEMENTATION AND SYSTEM
OPERATION
In this section, we present the actual implementation of
the different algorithms implemented in the leaf nodes and
central node as well as the other implementation aspects
including power saving procedure. Fig. 6 depicts the flow
chart of data processing steps carried out on the leaf nodes,
central node and the monitoring server.

A. LEAF NODE
The leaf node is tasked with the acquisition of acceleration
signals, their filtration, and transmission to the central node.
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FIGURE 6. Data processing flowchart over the leaf node, central node and the monitoring server.

Furthermore, the leaf node must function in a low power
mode to conserve its battery life. Below, we list the various
techniques employed by the leaf node.

1) Leaf node low power operation:
Our proposed system utilizes GPS modules to synchro-
nize the sampling process across various leaf nodes.
In addition to providing location information, these
GPS modules also offer precise timing information
through an automated PPS signal from the GPS satellite
system. The GPS’s PPS signal synchronizes leaf nodes,
ensuring simultaneous start of their sampling process by
aligning the start of each second.5 Triggered by the PPS
signal, the acceleration sensor (ADXL355) begins its
sampling step. Once the data is collected, an interrupt
signal is sent to the microcontroller, which reads the
data from the SPI buffer. This synchronization method
guarantees that all leaf nodes successfully attain the
necessary synchronization, and the repeatability of this
PPS triggering signal every one second ensures that
any sampling errors are confined to the one-second
interval between successive PPS signals. The timing
of the sampling process on the leaf node microcon-
troller operates independently of other tasks, preventing
any adverse effects on the sampling synchronization.

5The PPS feature of the u-blox 6 GPS Modules offers an accuracy
of 2.35 ns [47].

To minimize the error duo to the drift between different
clocks used by different ADXL355 sensors and improve
sampling synchronization within the one-second inter-
val, an accurate external Quartz-based Phase Locked
Loop (PLL) oscillator clock with a very low drift value
is used to by the ADXL355 sensor. The utilization of this
external clock mitigates the drift between the sampling
of different accelerometers, restricting it to a maximum
of 50µsec.
It is crucial to prolong the lead nodes’ battery lifespan
by improving its power usage. This can be achieved by
having the processor node (ESP32 MCU) enter into a
sleep mode to minimize power consumption during idle
periods when there are processes to perform. In addition,
the leaf node groups multiple samples before sending
them to the central node, ensuring that it reaches the
Wi-Fi’s packet Maximum Transmission Unit (MTU)
size. This strategy reduces the total number of packets
transmitted by each leaf node to only two packets per
second. A time line of one second is shown in Fig. 7
which illustrates the operation of the ESP32 (leaf node
microcontroller). According to the figure, the MCU
switches between normal and sleep modes based on
the required tasks to execute. The ADXL355 sensor
generates a data-ready signal that prompts an interrupt
in the leaf node processor, causing it to exit sleep mode.
Upon receiving the data, the processor stores it in a
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FIGURE 7. A timeline spanning one second illustrating the various operational modes of the leaf node (ESP32).

buffer whose size corresponds to that of the ESP-NOW
packet payload, receiving each sample consumes time
Taq = 18.135 µsec then filter the signal using Kalman
filter which takes time TKF = 4 µsec after that the
processor stores the sample in the SD-card which
consumes time TSD = 25 µ sec before entering sleep
mode again for TS = 7.975 m sec until a new sample
is available. This process is iterated until the buffer
reaches its full capacity, at which point the leaf node
remains in normal mode to send the buffered signal to
the central node, taking approximately TTD = 0.645 m
sec. Once the data transmission is finished, the processor
enters sleep mode until the accelerometer sends the
next interrupt signal. Utilizing this technique enables the
leaf node to conserve its battery power and prolong its
lifespan.

B. CENTRAL NODE
As outlined in Section II, the identification of structural
modal parameters is the first step in the damage detection
process. This involves estimating the power spectral density,
computing the singular values, selecting dominant peaks as
natural frequencies, and estimating mode shapes associated
with these frequencies. To minimize data transmission to the
remote server, our system performs these steps on the central
node. Below, we describe various algorithm implementations
on the central node processor.

1) Estimation of a PSD:
The PSD can be estimated by using the Welch
periodogram method that is based on converting each
frame (segment) of data from a discrete time-domain
into a discrete frequency-domain representation. This
is typically achieved by applying a discrete Fourier
transform to the time-domain signal by calculating the
NF -point complex DFT of the given discrete-time signal

y(n) using (8) where r is the number of frame.

F (r)
k

n×1
=

√
1t
NF

NF−1∑
j=0

y(r)j
n×1

e−2π ijk/NF (8)

Direct implementation of the DFT equation requires a
large and complex multiplications, so using precalcu-
lated twiddle factors that are stored in a lookup table
gives significant computational efficiency improve-
ments. FFT algorithm yields the same results as the
DFT with fewer required computations. This reduction
becomes more important and advantageous with higher
order FFTs. STMicroelectronics provides an optimized
CMSIS-DSP library for Cortex-M processor.

TABLE 1. Execution times for different DFT functions.

Table 1 shows a comparison of the implementation of
DFT, DFTW (DFT with precalculated twiddle factors),
FFT (function implemented in pure c) and CMSIS FFT
based on ARM processor (1024 samples length).
Using the DFT algorithm is computationally expen-
sive while using twiddle factors can greatly reduce
the computational effort by reducing the number of
trigonometric calculations required. The FFT algorithm
is indeed more efficient than the DFT due to its use of
symmetries and the radix-2 structure which allows to
perform less calculations and operations. The CMSIS
DSP library function is specifically designed for Cortex-
M processors, and it is more efficient than other FFT
implementations because it is optimized for the specific
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FIGURE 8. Timing of SVD algorithms on Cortex-M4 with respect to total
matrix size mxn.

architecture of the STM32F4 microcontroller. This
function is more optimized in terms of memory usage
and speed than a general-purpose FFT library that is not
specific to the STM32F4.
FFT is calculated for each frame using the CMSIS DSP
library function then the PSD is calculated as:

PSD(r)
k

n×n
= F (r)

k
n×1

F (r)∗
k
1×n

(9)

whereF (r)∗
k is the conjugate of the FFTF (r)

k and r is the
frame number.
After estimating the PSD for all frames, the averaged
PSD can be estimated as follows:

PSDk
n×n

=
1
M

M∑
r=1

PSD(r)
k (10)

where M is the total number of frames.
2) Singular value decomposition calculation:

Our work focused on One-sided Jacobi rotation for
calculating singular values and singular vectors from the
PSD matrix. The one-sided Jacobi algorithm operates
on a matrix by successively applying a set of rotations
to its rows and columns until the off-diagonal elements
become small. This process is repeated until the desired
level of accuracy is reached.
In addition to optimizations made by the compiler, opti-
mizing the critical mathematical routines is important
for keeping the use of program memory and required
RAM memory low to speed up calculations as much as
possible while fitting in the limited specs of the system
resources. The following steps are implemented:

3) Peak Picking algorithm:
a) Data ordering: Bi-dimensional matrices can be

stored in either row-major or column-major order,
and optimization can be achieved by selecting the
optimum data arrangement in memory. The most
popular method of storing data is sequentially by
row. This method can significantly speed up access to

FIGURE 9. Peaks detection for SSPP algorithm performance.

sequential data on CPUs with cache memory since the
cache is populated with sequential data from RAM.
Even though a microcontroller has no cache memory,
accessing data sequentially still has an advantage
as a result of load/store assembly instructions with
auto-increment functionality, which enables reading
or writing of data from memory and simultaneously
incrementing the address register within a single
execution cycle.
The one-sided Jacobi rotation algorithm accesses
the input matrix exclusively by column. The effect
of row-major or column-major data storing can be
assessed by examining the timing of the algorithm for
different sets of matrices. Fig. 8 shows the different
timings of the one-sided Jacobi implementation based
on the two methods

b) Best procedure of operations: Because of the limita-
tion in power and precision of the FPU, it is important
to choose the appropriate procedure for operations
that can be implemented in different ways. Loss of
precision occurs in some operations (32-bit domain)
as a result of limitation in the FPU.
One of the recurring operations in the given algorithm
is calculating 1/

√
1 + x2 where in cases of x ≪ 1

loss of many significant bits occurs in the original
value of x.
A more optimal solution is to apply logarithm to the
value we intend to compute, perform intermediate
computationswithin the logarithmic domain, and then
apply exponentiation to obtain the final result.
By using the optimized special function in C math
library that is called ‘‘log1pf’’ where this function
used to calculate log(1+ x) with high accuracy when
x is near to zero. We can use this function to calculate
log

(
1/

√
1 + x2

)
= −0.5 log

(
1 + x2

)
. Utilizing

exponentiation and logarithm functions within a
32-bit domain is shown to be a faster and more
efficient alternative to calculating the square root
function.
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FIGURE 10. Time line for implementing real-time processing on the central node.

The scale-space peak picking (SSPP) approach [31]
aims to identify the peaks in a 1D data vector (v) of size
N x 1 through an iterative. This algorithm was tested
on the central node by using a SUNSPOT dataset (288
samples) to detect the peaks as shown in Fig. 9.When the
SSPP algorithm is implemented based on CMSIS DSP
library functions, it takes only 36.27 m sec to execute,
which is faster than the time required to execute when
implementing in pure C without using the CMSIS DSP
library (318.92 m sec).

4) Central node operation:
The central node starts by receiving samples from
Leaf nodes (receiving one sample and storing it in
the SDRAM takes time tSD = 13.46 µ sec.) where
writing one sample to the SDRAM takes a 0.0878 µ

sec and reading from it consumes a 0.17 µ sec. Once a
certain number of frame samples (2048 samples/frame
in our system) have been collected, a software inter-
rupt is generated to process this data. The process-
ing typically includes the following steps as shown
in Fig 10:

• Frame windowing: After receiving a specific frame
and during receiving the current frame multiply the
previous frame of data with a window (Hamming
window in the proposed system). This step con-
sumes time tW = 4.4063 m sec and it is performed
to reduce the spectral leakage that occurs when
performing an FFT on a finite length signal.

• FFT Calculation for each frame: After windowing
the previous frame calculating its FFT is performed
using the CMSIS DSP library which takes a time
tFFT = 3.7395 m sec.

• PSD Estimation: The PSD can be estimated for the
previous frame and this consumes time tPSD =

16.4617 m sec.
• Averaging PSD: After estimating the PSD for the
previous frame the central node starts averaging the

FIGURE 11. The experimental setup of a five-story building model
mounted over a shaking table with lead node attached to each floor.

PSD for the previous frame with the pre-previous
one which takes a time tAV = 1.0611 µ sec.

• Repeat: The above steps can be repeated until
reaching the last frame at which the total averaged
PSD is estimated.

After estimating the power spectral density, the
One-Sided Jacobi algorithm is used to calculate the
singular values and singular vectors that consume time
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tSVD = 438.1742 m sec. The SSPP algorithm is
used to select the dominant peaks in singular values
that represent the natural frequencies and estimate the
mode shape from the singular vector which takes time
tMP = 227.9928 m sec.
After estimating the natural frequencies and mode
shapes, the damage detection algorithms are applied to
identify the status of the structure and this consumes
time tDDA = 28.1752 µ sec.When a damage is detected,
the central node uses a 4G/LTE module to transmit the
data to the monitoring center.

V. EXPERIMENTAL SETUP
In this section we describe the experimental setup used to
evaluate the the feasibility and the performance of the system
and the implemented algorithms required for monitoring the
structural status.

The test structure used in this experiment is a five-story
building model, constructed using Mola structural ele-
ments [48], is used for this experiment as depicted in Fig. 11.
Each floor of this structure has a leaf node containing
an accelerometer sensor that is attached to its center. The
Quanser shake table 1-40 [49] is used to simulate seismic
events with different intensities, including sine waves, chirps,
and actual earthquakes records. The following steps detail the
procedures for the experiment operation:

• The initial step includes configuring the essential param-
eters such as the desired sample count, the sampling
frequency, and assigning a unique identifier (ID) to
each leaf node, and then the data acquisition process is
initiated in its initial state.

• The shake table is employed to externally stimulate the
structure and induce an excitation.

• The leaf nodes synchronize the collection of accelerom-
eter data using external clock with low drift and the
precise GPS PPS signal.

• The leaf node applies a real-time processing to filter the
signal, and then transmit them to the central node.

• At the fog layer, the central node starts real-time
processing to the received data.

• The central node starts applying different techniques for
modal parameter extraction for the structure’s healthy
(default) state.

• To introduce damage to the structure, two diag-
onal braces are removed from the second and
fourth floors and then the above steps are repeated
again after introducing an artificial damage to the
structure.

• In the case of damage detection, the central node open
a connection with the monitoring server and relays to it
the collected.

• Upon receiving the data, the server stores it in
a database and proceeds to apply modal parame-
ter extraction, damage detection, and identification
algorithms.

VI. PERFORMANCE EVALUATION
The objective of this Section is to assess the effectiveness of a
hybrid system that incorporates damage detection techniques
at both the central node (fog layer) and monitoring server
(cloud layer). The proposed system operates by collecting
acceleration signals from specific points in the structure
using synchronized accelerometer sensors at leaf nodes,
which then send the data to the central node via short-range
wireless communication. The central node processes the
signals locally and transmits only the data indicating potential
damage to a remote server using long-range cellular internet
connectivity. This local processing at the central node enables
the system to filter and analyze data on-site, reducing the
frequency and volume of data transfers to the cloud for
further analysis. By selectively sending only relevant data
to the cloud, the system reduces data transmission and
storage costs associated with cloud servers, thus enhancing
the cost-effectiveness of data transmission and storage.
Specifically, we aim at comparing the performance of the
central node of the hybrid system with that of a cloud-based
system where the server solely executes all algorithms,
and the central node only aggregates and transmits data to
the server without participating in damage detection and
identification stages.

A. IOT CENTRAL NODES PERFORMANCE
In this experiment, comparison was made between the
performance of the central node when operating in the hybrid
mode and when operating in the cloud based mode in terms of
the consumed energy and memory usage. Fig. 12 (a) shows
the central node consumed energy in case of hybrid system
and cloud based system. It is clear that the consumed energy
resulted from applying damage detection algorithms on the
central node is lower than that resulted from continuous data
transmission using 4G/LTE to the remote server for cloud-
based approach.

Fig. 12 (b) illustrates the utilization of different memories
(Flash program memory and RAM) of the central node in
both a hybrid and cloud-based system. The terms ‘‘text’’
and ‘‘data’’ sections pertain to the Flash memory size (code
footprint). In the case of the cloud-based system, the Flash
memory size is calculated as 58.512KB + 0.81KB, resulting
in a total of 59.322KB. On the other hand, the hybrid
system has a Flash memory size of 115.145KB + 9.176KB,
which sums up to 124.321KB. Additionally, the RAM
size comprises the ‘‘data’’ and ‘‘bss’’ (block start by
symbol that is used for uninitialized variables) sections.
In the hybrid system, the central node utilizes a RAM
size of 0.81KB + 29.403KB, totaling 30.213KB. In contrast,
In the hybrid system, the central node uses a RAM size
of 9.176KB + 136.129KB, which amounts to 145.305KB.
Overall, the STM32F429microcontroller possesses 2Mbytes
of Flash memory and 256 Kbytes of RAM. It is evident that
the hybrid system requires more RAM to operate its central
node algorithms, and its code occupies a larger footprint than
that of the cloud-based counterpart.
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FIGURE 12. The comparison between hybrid and cloud approaches in the case of (a) consumed energy and (b) memory
section usage.

FIGURE 13. The PSD of the test model estimated using the proposed central node under (a) undamaged state (b) damaged
state.

B. THE PERFORMANCE OF THE DAMAGE
DETECTION/IDENTIFICATION ALGORITHMS
For this experiment, a model of a test building consisting
of five floors, as depicted in Fig. 11, was used. The
structural stiffness and flexibility were monitored both in
its damaged and undamaged states. To simulate damage,
two of the diagonal braces on the second and fourth floors
were intentionally removed, resulting in a modification of the
structure’s stiffness.

The distinction between the undamaged and damaged
states can be observed in Fig. 13 (a) and (b), which
illustrates the PSD of the undamaged and damaged structures,
respectively. The PSD estimation was initially performed on
the central node as described in Section IV-B where the
natural frequencies were determined by identifying the peaks
in the PSD using the SSPP algorithm. Table 2 presents the
natural frequencies obtained from the central node, which
exhibit slight differences compared to those estimated on
the monitoring server shown in Table 3. This variation
can be attributed to the lower computational capabilities of

TABLE 2. The values of the the first three natural frequencies for the
building model extracted using the central node (in Hz).

TABLE 3. The values of the first three natural frequencies for the building
model extracted using the monitoring server (in Hz).

the central node in comparison to the monitoring server.
However, it is important to note that this variation does not
affect the results of damage detection algorithms that rely on
changes in natural frequencies.
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FIGURE 14. A comparison between the test structure in the healthy and damaged states in the case of (a) the third mode
shape and (b) the MAC correlation values (using the first three modes).

FIGURE 15. Damage localization based on the first three bending modes using (a) Curvature damage index (b) Change in
flexibility.

Our initial step is to evaluate the variation in the natural
frequency of the structure, which acts as a signal for
the existence of any damage. By examining the values
of the first three modes natural frequencies as listed in
Table 3, we can detect any alterations in the structural
properties as this parameter is extremely responsive to such
changes. a significant shift is observed in the damaged
state. Specifically, there is a deviation of 6.02% and 11.51%
in the second and third natural frequencies, respectively,
in comparison to the healthy state. As the shift exceeds the
predefined threshold of 5% mentioned in Section II-C, the
presence of damage is detected.While this method effectively
detects the presence of damage in the structure, it does not
provide information regarding the specific location of the
damage.

Alternatively, we can use the change inmode shapemethod
to calculate the similarity between the mode shapes of the
healthy and damaged states. Fig. 14 (a) depicts the third

mode shape for both the healthy and damaged states of the
building model. The noticeable deviation between the two
curves is evident, highlighting the impact of the damage on
the structural behavior. Fig. 14 (b) shows the correlation
between the first three mode shapes of the test structure
in the healthy and damaged states. The Modal Assurance
Criterion (MAC) is utilized to calculate this correlation. The
correlation values among each mode within the first three
modes and its counterpart for the healthy and damaged states
are represented by the diagonal elements in the correlation
matrix. We note that the third diagonal value is 77.02% that
is lower than the MAC rejection level (80%). Accordingly,
MAC based algorithm is able to identify the damage. In some
cases the MAC-based algorithm may not successfully detect
the presence of damage. This is justified by the fact that
the MAC method may require modes of higher order
beyond the third mode to effectively identify damage in the
structure.
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The third and fourth techniques (mode shape curvature
and Flexibility methods) are sensitive to lower modes and
applied on the monitoring server to localize the damage.
Fig. 15 (a) illustrates the variation in curvature of the mode
shape versus the position of the sensor node. Evidently, the
most significant variation occurs at the second and fourth
nodes, emphasising the existence of damage near to the
second and fourth storeys. Also, Fig. 15 (b) shows the
variation in Flexibility versus the location of sensor node. The
flexibilitymethod could locate the damage close to the second
and fifth stories.

C. LIMITATIONS AND FUTURE WORK
Our structure health monitoring system is designed to be
scalable, accommodating structures of varying sizes and
complexities through modular sensor networks and flexible
data processing algorithms, ensuring effectiveness regardless
of structure size. However, our test was performed on a lab-
size scale. Some practical challenges may affect the system’s
performance. Two examples of these are the ESP-NOW
protocol can achieve a range of up to 220 meters, However,
this range can vary significantly based on environmental
factors. Also, as we use ESP as a hub of short-range
communication, it limits the number of leaf nodes it can
communicate with concurrently. ESP-NOW has a limit on
the number of peers it can manage. For example, the ESP32
typically supports up to 20 peers by default [46]. The
other one is the limitation associated with battery powered
devices. The leaf node is powered by a battery that with
its full capacity can operate the node for approximately
15 hours [13]. Given that it can be charged by an attached
solar cell, the mentioned period is enough for the battery to
be fully charged. However, this may depend on other factors
including weather condition and battery status. One of the
future research directions is to investigate other short-range
communications of longer transmission range and low power
consumption, eg. LoRaWan communication protocol.

VII. CONCLUSION
This paper presents the design, implementation, and opera-
tion of a hybrid IoT-based SHM system where the damage
detection stage takes place in the fog layer and the damage
identification stage, if required, takes place in the cloud-based
monitoring server. The system consists of leaf nodes which,
synchronously based on GPS timing signal, collect the
acceleration signals form MEMS accelerometers directly
attached to the target structure. These signals are transmitted
to an on-site central node using short range communication
protocol. the central node processor applies damage detection
algorithms on the collected data. If a damage is detected, the
central node relays the acceleration signals to a cloud based
server using cellular internet. We provided details about the
design of the different nodes, the algorithm implementations
and the server architecture. Different practical experiments
were conducted to assess the effectiveness of the proposed
system. The results shows that the energy consumption

due to the intensive calculations required for the damage
detection algorithm implementation on the microcontroller is
less than that required when the central node continuously
transmits the data to the remote server without participating
in the damage detection process. Also, this approach is
cost-effective as the cellular internet, which is a metered
connection, is only used in the case of the presence of a
damage. The result shows that, despite the computational
power limitation of the microcontroller, it was able to detect
the damage with performance that is comparable to these take
place in powerful workstation.
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