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ABSTRACT For the development of autonomous robotic systems, Dynamic Movement Primitives (DMP)
and Artificial Potential Fields (APF) are two well known techniques. DMPs are a reference algorithm
in robotics for one shot learning as they enable learning complex movements and generating smooth
trajectories, while APF are outstanding in navigation and obstacle avoidance tasks. By integrating DMPs
and APF, the task automation capability can be significantly enhanced, as the precision of DMPs combined
with the reactive nature of APF promises, in theory, adaptability and efficiency for the learning algorithm.
Despite the numerous papers discussing and reviewing both techniques independently, there is a lack of
an objective comparison of the investigations combining both approaches. This paper aims to provide
such a comprehensive literature analysis, using a homogenized mathematical formulation. Moreover,
a categorization based on their application scope, the robots used and their characteristics is provided. Finally,
open challenges in the combination of DMP and APF are discussed, highlighting further works that are worth
conducting for improving the integration of both approaches.

INDEX TERMS Artificial potential fields, dynamic movement primitives, learning from demonstration,
obstacle avoidance, robot trajectory adaptation.

I. INTRODUCTION

Learning from Demonstration (LfD) is the research field
that encompasses all investigations with the common
objective of creating intelligent robotic systems capable
of learning reliably from human demonstrations. In that
field, Dynamic Movement Primitives (DMP) is a well
established approach [1]. DMPs are known to be capable of
learning and generalizing complex robot behaviors from a
single demonstration, in a versatile manner, despite having
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a relatively simple formulation. Indeed, the ‘“‘dynamical
attractor”” properties of DMPs are reminiscent of the
spring-like properties of muscles and reflexes that simplify
the programming and ensure the stability of biological
movements [2], [3]. DMPs were first introduced two decades
ago by Ijspeert et al. [4] and Schaal [5] in the context of
humanoid robotics and have been used to learn and reproduce
a wide range of manipulation tasks, from homelife tasks like
ironing [6] up to complex assembly processes [7]. They have
also been used for handling human-robot co-manipulation
tasks, encoding the synchronized and coordinated motions of
the two agents [8], [9]. Human assistance and rehabilitation
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is yet another application field where DMPs have been used
to generate trajectories for passive rehabilitation exercises for
knee injuries [10], for ankle rehabilitation [11] or to model the
assistance of an exoskeleton to healthy humans during lifting
tasks [12], among others.

Generally speaking, the great potential of DMPs can be
associated to several characteristics they provide:

o Generalization Capability: they can encapsulate diverse
complex movements and allow robots to reproduce
them.

o One Shot Learning: a single demonstration is enough to
learn a desired behavior.

« Smoothness: they create smooth trajectories which are
essential for good robot control.

« Adaptability: the initial and goal positions of the learned
task as well as the execution speed can be easily tuned.

Nevertheless, Dynamic Movement Primitives also suffer
from some well-known limitations, such as the complexity
of tuning well the different parameters required by the
model [13], or their limited capability to react to envi-
ronmental changes in their basic formulation. Indeed, the
DMP focuses on the reproduction of a demonstrated motion.
It therefore does not provide tools for handling required
deviations to avoid obstacles, which is a key capability for
reactive motion planning.

There are different ways for achieving obstacle avoid-
ance using DMPs, such as, machine learning, constrained
probabilistic movement primitives or potential field-based
approaches. Machine learning-based approaches generally
use reinforcement learning to optimize the planned trajec-
tories. Reward functions are set to handle obstacles [14],
[15], to optimize the DMP parameters [16] or to avoid
joint limits [17]. However, such optimization requires an
additional learning phase, which eliminates the “one shot
learning” capability of the DMPs. Probabilistic movement
primitives (ProMPs), an extension of DMPs, focus on prob-
abilistic properties and adaptation to new situations through
constraints extracted from the environment [18], [19], [20].
Although efficient in obstacle avoidance tasks, constrained
probabilistic movement primitives need an adequate formal
expression of the constraints of the environment, information
that is not always available, and is often computationally
expensive to obtain. The potential field-based methods imply
adding a coupling term to the DMP formulation. These
potentials usually generate a repulsive force from the detected
obstacles [3], [21] [22]. DMPs with artificial potential
fields typically involve simpler computations compared to
constrained ProMPs or reinforcement learning methods. Arti-
ficial Potential Fields (APF), first introduced in 1989 [23],
are therefore a widely used tool in robotics applications such
as path planning [24], collision and singularity avoidance
in human-robot collaborative scenarios [25] or obstacle
avoidance [26]. They have demonstrated to be good for
obstacle avoidance while being relatively easy to implement
even in real-time applications.
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In light of the above, the combination of DMP and APF
has been considered for taking advantage of the learning
capability of the former, and the reactiveness of the latter [22].
This paper aims at providing an analysis of the works
combining both approaches to enable systems to avoid
obstacles. This paper presents several contributions that can
be summarized as:

o Literature review on DMP and APF combinations,
expressed in a common mathematical notation.

o Discussion of the limitations of the existing investiga-
tions and highlight of remaining open issues that could
lead to new research directions.

The document is structured as follows. First, the mathe-
matical representations of DMP and APF are introduced in
Section II. Section III gathers the main approaches combining
these two techniques, with a homogenized mathematical
representation. Section IV analyses the existing unresolved
issues within this research field. Finally, in Section V the
main conclusions are presented.

Il. MATHEMATICAL REPRESENTATIONS

In this section, the main concepts and characteristics of
Dynamic Movement Primitives and Artificial Potential Fields
are reviewed.

A. DYNAMIC MOVEMENT PRIMITIVES (DMPS)

DMPs can be described as a stable, second-order, nonlinear
dynamical system [4], [27]. They are composed of a
second-order linear dynamical system of type mass-spring
damper, in which a point is attracted towards its goal.
They also have a non-linear forcing term f(x) that attracts
the system towards the demonstration trajectory to be
reproduced. Therefore, the forcing term is the element that
has to be learned from a demonstration performed by the
human.

Let us consider a uni-dimensional trajectory (y), with yg as
the initial value, and g as final target value. The DMP is
defined as the combination of a transformation system and a
canonical system [28]. The transformation system represents
the trajectory using a simple linear damped-spring system
perturbed by a non-linear component as in equations (1-2):

12 =0 (B(g — ) — 2) — a:(B(g —yo)x) +f(x) (1)
Ty =12 2)

where, o, and B, are the gains that define the evolution of the
second-order system (the system is critically damped when
o, = 4B;) and z is the velocity of the system. The scalar ©
is a temporal scaling factor used to tune the velocity of the
execution.

The canonical system defines and drives the temporal
evolution of the system, and it is expressed as:

TX = —QyX 3)

where x is the phase variable, which combined with the
constant o, allows a re-parametrization of time. Finally, the
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forcing term f(x) is literally pushing the system towards
the reference trajectory, while it progressively evolves from
the initial to the goal position. It is usually defined as a
combination of N non-linear Radial Basis Functions (RBF)
(equations 4-7):

N
A AUz
f) = =L, 4)
2= Vi)
with weights w;, and being the basis function W;(x):
Wilx) = e’ )
where the centers ¢; are defined as:
ci= e~ N (6)
and widths h; defined as:
1
hi =0,1,....N @)

= —7, i
(Cit1 — Ci)z’

hy = hy—1

Note that the DMP representation presented here follows
[28], and permits avoiding the instability observed in the
original formulation [4], [27] when initial and goal positions
are very similar. Several works use such strategy [21],
[22], [29]. This model is scalable to multiple dimensions,
to represent robot joint configurations [30] or end-effector
Cartesian pose [28]. In such cases, each degree of freedom
(DoF) is represented independently with equations (1, 2) but
with a common phase (equation (3)) of the canonical system
to have them synchronized.

As in every other learning from demonstration approach,
two phases compose a learning system based on DMP: the
learning phase and the execution phase (also called rollout).
In the learning phase, the desired forcing term is calculated
using equation (1), and afterwards, with equation (4) and
Locally Weighted Regression (LWR), the weights w; are
calculated. In the execution phase, after setting a new goal
position g, the forcing term is computed using equation (4)
with the weights calculated in the previous phase. Once the
forcing term is calculated, equation (1) is applied to obtain a
new trajectory with the same dynamics as the original one.
For this process, a single human demonstration is enough,
making DMP a one-shot learning technique.

DMPs offer several options to adapt the learned trajectory
to changes in the environment:

o Spatial Scaling: small changes of the starting or goal
positions can be handled during the execution phase.
Updated values just have to be injected into the
transformation system (equation 1) during rollout, and
the trajectory is automatically scaled accordingly.

o Temporal Scaling: the variable 7 in the above formulas
can be tuned to obtain an execution that is faster (t > 1)
or slower (7 < 1) than the original one.

« Phase Stopping: during the execution phase, DMPs have
the ability to modulate the movement until a specific
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condition is met by holding the system’s phase. This
phase stopping can be used, for instance, to pause or
slow down the rollout, until measured interaction forces
get closer to the ones observed during the learning
stage [7].

o Dynamic Adjustments: the trajectory generated in the
execution phase can be modified by adding coupling
terms to the transformation system (equation (1)). This
can be used, for example, for reacting to and avoiding
obstacles in the scene [22], [28].

This last option is particularly interesting to provide DMPs
with reactivity during the execution, without requiring an
extra learning. The coupling terms are frequently expressed
as forces. The combination of DMPs and forces are described
in Section III.

B. ARTIFICIAL POTENTIAL FIELDS (APF)
In general, Artificial Potential Field approaches involve
leveraging attractive and repulsive forces to guide the robot
safely trough the environment, pulling the robot towards goal
positions while pushing it away from obstacles in the scene.
There are three types of artificial potential fields generating
forces to the robot [31]: attractive, repulsive and hybrid
potentials. An attractive potential creates an attractive force
towards the goal. A repulsive potential tends to keep the
system away from specific locations (typically obstacles).
Finally, a hybrid potential is the superposition of the attractive
potential with the repulsive potential.
Khatib [23] proposed the following static repulsive poten-
tial field that has been used over the years:
O i
p(y) o
0 otherwise

if p(y) < po

Uy) = ®

where py is the radius of influence of the obstacle, p(y) is the
distance between the current position and the obstacle and 7
is a constant gain. The variable y (R?) encodes the robot’s
end-effector position in space. The force ¢ is deduced from
the potential U with the following equation:

U (y,
oy, V) = —% )
y

Such a potential field has several limitations. When working
alone, it can get trapped in local minima and therefore be not
capable of making the robot reach the goal. It can also suffer
uncontrollable oscillations in the presence of obstacles and
narrow passages [32]. In recent years alternative representa-
tion, including superquadratic static potentials [21], dynamic
potentials [22] or steering-angle-based potentials [33] have
been proposed in the literature to overcome the different
limitations.

APFs have emerged as a well-established approach for
providing reactivity to control schemes [21], [22], [23], [33].
They have been incorporated into various robotic paradigms
such as subsumption architectures and motor schema for
robot navigation [34], behavior trees (encapsulated as
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FIGURE 1. Structure of the section Ill, introducing Artificial Potential
Fields into DMP formulation.

nodes representing specific behaviors or decision-making
processes) [35], reinforcement learning (used to define the
reward structure) [36], soft computing techniques (combined
with fuzzy logic rules) [37], [38], [39], or in learning from
demonstration scenarios (to handle obstacles in scene without
a need to gather more demonstrations or retrain the model)
[22], [28]. In this review, we focus on this last option, with
the objective of allowing Dynamic Movement Primitives to
react to environmental changes. The next section describes
how potential fields can be incorporated into DMPs, and
categorizes articles proposing such approach.

IIl. INCORPORATING APFS INTO DMPS

The combination of APFs with DMPs takes place during
the execution phase; the learning stage is not impacted. The
transformation system is extended with a repulsive force ¢
deduced from the potential U. The transformation system is
now:

T2 = a(B(g — ) — 2) — az(Bo(8 — yo)x) +f(x) + ¢ (10)

Depending on the implementation, the repulsive term
depends only on the robot’s position y, or also contemplates
the system’s velocity v. The usage of ¢(y, v) or ¢(y) in the
following sections will indicate whether the potential depends
on the velocity (dynamic potential) or not (static potential),
respectively. This section gives a comprehensive overview of
the research done combining both approaches.

The combination of APF and DMP was introduced
by Park et al. [22] in 2008 (dynamic potentials) and
Hoffman et al. in 2009 [28] (steering angle-based potentials).
They pioneered the two primary research streams on this field
which have been adopted and extended by other researchers
over time. The following subsections present these two
methodologies, with an effort to harmonize the formulation
for ease of comparison. In addition, a third subsection will
present additional works that do not rely on these two
initial approaches. This classification leads to the creation of
the taxonomy shown in Figure 1, which also describes the
structure of this section. The main characteristics of the works
reviewed are summarized in Table 1.
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FIGURE 2. lllustration of the angle representation between a point
obstacle and robot.

A. DMP COMBINED WITH DYNAMIC POTENTIALS

1) ORIGINAL FORMULATION

Park et al. [22] proposed using a potential field based on
both system position and velocity. That potential field is
represented as:

pl
A(—cosy) o if

T
— T

UGy, v) = 2 o (11)
0 0 5

where A and 8 are constant gains. y is the angle between the
current velocity v and the shortest line between the robot and
the obstacle p(y) (see Figure 2).

In this modeling, the consideration of the velocity enables
improving the smoothness of the reaction in comparison with
the standard potential (eq. 8) that only relies on the system
position.

This potential was tested both in simulation and real
environment by placing a spherical obstacle in the middle
of a pick-and-place trajectory. The trajectories obtained are
smooth even nearby the obstacle. Nevertheless, local minima
could still appear [22]. Such a potential has also been
used in combination with DMP in [40] to control a 5 DoF
robotic arm while avoiding a ball in the scene. Several
extensions of this formulation have been proposed in the
literature: adding an isopotential function to obtain smoother
trajectories near obstacles, with both static [21], [41] and
dynamic obstacles [42], and adding an extra optimization
layer to improve overall results [16], [42], [43]. These
approaches are detailed below.

2) STATIC OBSTACLES
The use of an isopotential function in the potential definition
aims at smoothing the reaction to static volumetric obsta-

cles [21], [41]. The isopotential function C is incorporated
in the potential U as follows:
vl
X(—cosy)ﬂ v gf T < <m
Uy, v) = R (V)
if 0= =7

where the exponent 7 is an additional gain. This isopotential
was first proposed for elliptic obstacles in [21]:

d

cy=>. (y’ - y’) —1 (13)
J

j=1
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with )7] being the centers of the ellipsoid, /; the axis of the
ellipsoid, d the dimension number, and #n; the exponential
parameters of the isopotential. By replacing p(y) in the
original formulation (equation 11) with C(y), the new
formulation is able to handle volumetric obstacles instead of
only point-like obstacles.

In [21], a static superquadratic potential function was also
proposed to compare the obstacle avoidance capabilities of
static and dynamic superquadratic potentials. It does not
depend on the system velocity and takes the form:

ae W) "
Uy W) (14)
being «, n gain parameters.

Both approaches were validated with synthetic data using
different types of obstacles (ellipsoid, circular and non-
convex obstacles). For both the static and dynamic potentials,
the generated trajectories were smooth movements around
obstacles. Compared to the trajectories created with the
original formulation [22], the isopotential-based method
was able to generate trajectories closer to the human
demonstrations. These potential fields were also tested on
three real robots: a Panda and a DaVinci for placing rings
into pegs, and a Youbot robot for corridor navigation. The real
experimentation demonstrated deviations significantly higher
than in simulation when using dynamic potentials, and very
dependent on the obstacle’s position.

Another application shows how these potentials can create
safe and human-like trajectory planning for self-driving
cars [41]. For the obstacle avoidance term, the potential field
presented in equation (12) is used, being C(y) in this case
the isopotential function of an elliptic obstacle in 2D, which
represents a particular case of equation (13):

2 2
Cy) = (Y1 01) 4 (yz 02) L (15)
L1y by

where (y1, y2) are the position of the car, (01, 03) the position
of the obstacle vehicle and (/1y, l2y) are the lengths of the axis
of the ellipse, i.e., the size of the car to avoid.

In order to prevent the car from veering off the road,
a dynamic coupling term is added, which is represented as:

v

90(3’, V) (p(Y) - ‘/Vcar)'7 (16)
where v is the velocity of the vehicle, p(y) is the distance to
the road border, W, represents the width of the car and n
is a gain parameter. This repulsive force is always normal
to the road boundaries. It increases both with the increase of
the relative velocity towards the wall and the decrease of the
distance to it.

As validation tests, three scenarios were proposed, where
the trajectories were generated for a vehicle circulating in a
road with other cars, without colliding or going off the road.
In all the experiments the obtained trajectory was successful.
As there was not a concrete positional goal, the system did
not suffer from oscillatory behaviors, and convergence issues
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did not appear. In fact, the obstacles were always positioned
far from the goal so that the system could converge.

3) DYNAMIC OBSTACLES
The consideration of dynamic obstacles requires particular
care to avoid possible excessive avoidance behaviors due to
abrupt object motions. An approach to alleviate this consists
of incorporating an additional layer of model predictive
control using Kalman filters, as in [42]. The Kalman filters
are used to predict the future positions of the obstacles, and
the model predictive control layer adjusts the repulsive forces
accordingly.

In order to incorporate the velocity of the obstacle,
equation (12) is modified to:

lv—o]
M—cosp)P o i =

Uly,v) = 2

0 0<

I A

7)

=8

where o is the velocity of the obstacle, and y is the angle
between the relative velocity ||[v — 6| and the direction
between the end-effector’s position and the obstacle. C(y)
is the isopotential of equation (13) for a sphere and 7 a
positive constant. The authors first evaluated their proposal
in simulation and then with a Kinova MOVO robotic arm,
using a moving sphere as an obstacle. In both cases, a fast
convergence to the demonstration was obtained.

4) SYSTEM OPTIMIZATION

In addition, several works have proposed involving different
techniques to optimize the system’s behavior instead of
modifying the original potential formulation. In [42], cited
in the previous subsection, the incorporation the model
predictive control layer enables optimizing the repulsive force
generated by the potential. Similarly, the original potential
has also been combined with policy improvement through
black-box optimization with an adaptive covariance matrix
(PIBB-CMA) method to ensure that the robot arm passes the
points generated by the path planner [43]. Moreover, in order
to enhance the formulation’s adaptability and efficiency
in generating the desired movements, Li et al. [16] used
reinforcement learning to tune the DMP parameters and the
gain XA in equation (11). It was tested on a real robot for a
simple point obstacle avoidance.

B. DMP COMBINED WITH STEERING ANGLE-BASED
POTENTIALS

In the previous collections of approaches, the new coupling
term for the DMP was derived from a dynamic potential
to take into account system’s velocity. Another category of
DMP-APF combination relies on coupling terms derived
from steering angle-based potentials.

1) ORIGINAL FORMULATION
The definition of the steering angle-based potentials approach
can be attributed to Hoffmann et al. in 2009, who introduced

VOLUME 12, 2024
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FIGURE 3. lllustration of the angle representation of equation (19).

a novel perturbation inspired by biological dynamical sys-
tems [28]:

o(y, v) = aRvoe P? (18)

where o and B are constant gains of the potential, R is the
rotation matrix between 7 and the axis r = (0 — y) x v being
o the position of the obstacle and v the robot’s velocity. The
steering angle ¥ is defined as (see also figure 3):
T .
D = arcos(w) (19)
llo =yl vl

This term is inspired by the steering angle introduced by
Fajen and Warren [33] which proposed a similar equation to
describe the way humans avoid obstacles.

A remarkable advantage of the steering angle approach,
compared to the ones presented in previous section, is that
it guarantees the convergence to the goal, as it is proven in
[28]. Nevertheless, as equation (18) does not depend on the
distance to the obstacles, the same relevance is given to close
and far obstacles which may lead to oscillatory behaviors in
the execution phase [44].

Several applications of this potential can be found in the
literature, from pouring tasks [29], [45], writing [46], pushing
and sliding [47], to mobile navigation [48]. Chi et al. [49]
used the same perturbation term to handle cup placement
on a table using a robotic arm mounted on a wheelchair for
a service-robot application. Besides, this potential has been
referenced in Pastor et al. [S0] as a reference potential inside
areview of how DMPs can contribute to learning motor skills
while adapting to the environment and in [27] as an example
of how to modulate the dynamical system of the DMPs.

In addition, several works have proposed extensions of
the basic model. On one hand, there are approaches that
introduce the distance to the obstacle inside the coupling
term equation to avoid giving the same relevance to far and
close objects [51]. Some of these approaches add an extra
optimization layer to the previous distance dependency to
enhance the results [52], [53] while others use a human as an
online teacher for such approaches [54]. On the other hand,
there are the approaches that purely optimize the process via
parameter tuning [55] or via fuzzy logic [38].

2) DISTANCE FACTOR

The original coupling term can be modified to hold informa-
tion about the distance to the obstacle, in order to adapt the
potential’s response to far or close obstacles. Zhai et al. [51]
presented an extension of the coupling term proposed in [28]
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for static objects adding the distance to the object as expressed
in the following equation:

0y, V) = R —uldi=p19)
’ |d]

_ RvaA9|Ay|e(”/|d‘+p|A9D (20)

where |d| is the real time distance between the end-effector
and the obstacle and u, ', B and p are positive constants.

The first term of eq. (20) introduces with |d| a dependency
to the obstacle distance, which was not present in eq. (18).
Nevertheless, it still generates a high deviation away from
the demonstrated trajectory. The second component of the
equation (20) is thus introduced to mitigate this behavior
by balancing the repulsive force generated by the first term.
In this second term, A@ is the angle between the current
velocity direction and the desired velocity direction. Ay
represents the distance between the current trajectory and the
desired trajectory. Thus, the second term of equation (20) is
proportional to Ay, and to |d|. This coupling term avoided in
their experiments the jitters and oscillations that would appear
otherwise in the generated trajectory.

This potential can also be used to avoid dynamic obstacles
using a similar formulation. Instead of using the robot’s
velocity v, the relative velocity between the robot and the
obstacle is used (Vrelative = V — 0) in equation (20) [51]. This
approach was shown to generate curves very similar to the
one obtained without obstacles, to guarantee the minimum
loss of free space. In their work, the authors compared their
outcomes and the ones with the proposal in [21] in terms
of distance to the desired curve. The acceleration of the
obtained curves was also calculated, to visually compare the
smoothness in a laboratory environment with a real Baxter
robot and obstacles in different positions. They demonstrated
that the obtained trajectories do not collide with the obstacles
and are smooth.

3) DISTANCE FACTOR WITH EXTRA LEARNING

The outcomes of distance factor based approaches can be
improved by integrating additional learning layers to the
system [52], [53]. For instance, to address the management
of larger obstacles, in [52], the repulsion was defined as a
weighted combination of three components:

oy, V) = ¢1Rv®| + 0o Rvd, 4+ a3Rv D3 2n

where @1, @, and ®3 encode the steering angle potential
generated respectively by the obstacle’s center, the closest
surface point, and a uniform repulsion to the obstacle. They
were defined as follows:

b = Yo PV okd

oy, = Yo Ppgkdp

D3 =¢ (22)
where d is the distance from the robot end-effector to the

obstacle center, d), is the distance from the end-effector to the
nearest point in the surface and k a constant gain. 3 was
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added to avoid null forces when heading directly towards the
obstacle, i.e. when ¢ = 0. When this situation happens, the
system is considered to be in a so-called dead zone. In order
to optimize the system’s behavior, the authors also propose
to learn the weights of equation (21) by deducing the target
coupling term ¢(y, v) from human demonstration performing
the obstacle avoidance task. The proposed approach was
validated in simulation and with a real KUKA arm [52]. The
extra learning required a significant number of trials to be
recorded (more than a thousand in their application).

Pairet et al. [S3] proposed a different solution to handle
the so-called dead zones for point obstacles, composed by a
combination of a repulsive and attractive coupling terms:

§0(y, V) = Z C}l;ep + Cz;ttr (23)
i
The repulsive term is a reformulation of equation (18):

92

Crep = Rvasign(9)e 12 e+®) 24)

52

where sign function returns the sign of ¥, asign(9)e v?

shapes the absolute change of steering angle as a zero-mean

Gaussian-bell function to be more reactive when the system

becomes aligned with the obstacle and emred? regulates the

coupling term effect when the distance to the obstacle d

increases or decreases. ¥ is the standard deviation of the
distribution.

The additional attractive coupling term is proposed to bring

the mobile system towards a preferred direction. It is defined

as:

Coir = R'vade! <& (25)

where R’ is a 77 /2 rotation matrix around the vector (v x vq),
being vq the desired velocity, and « and « the same constants
as in Cyep.

In this case, the extra learning layer is added to learn
the parameters of the coupling term o,y and k as a
multiple target regression problem from demonstrations of
the avoidance task. The proposed framework is evaluated in
simulation and with a real Franka Emika robot [53] where the
test bed consists of obstacles interrupting a straight trajectory
towards the goal.

4) SYSTEM OPTIMIZATION

In the pursuit of optimizing system performance, researchers
have explored diverse methodologies, each offering unique
solutions to different problems. In a conventional optimiza-
tion scenario, Duan et al. [55] use reinforcement learning
techniques to learn the hyperparamenters of the potential
fields to determine the strength of the APE. In this case,
the potential proposed in [28] is combined with constrained
dynamic movement primitives to avoid robot’s joints limits
and evaluates in a iCub real robot. The task in hand is to
transport a sponge from one point to another mimicking the
trajectory that a human demonstrator had made, but with an
obstacle in the middle.
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Fuzzy logic is a valuable tool for system optimization too,
offering a framework to model and reason with imprecise or
uncertain information. With the objective of better handling
the adaptation to changing goals and asymmetric obstacle
management, Sharma et al. incorporate fuzzy logic to the
potential representation [38]. The proposed approach handles
both static and moving objects, and it was validated using a
nonholonomic mobile robot.

Furthermore, acknowledging the exceptional optimization
capacities inherent in humans, an alternative strategy incor-
porates human-inclusive optimization. Based on this assump-
tion, in [54] the learned trajectory is adjusted according
to the modifications suggested by the human. This change
is performed introducing in the transformation system the
following coupling term:

oy, v) = as(lm — y|)e P’ di (26)

where y is the end-effector position, m is the human’s hand
position, di is the pointing gesture direction (or the direction
of the perturbation), « and 8 are constant gains. ¥ is defined
as in equation (19). The term (s) is linked to the position in
Cartesian space when the potential starts pushing:

1

1 4 e"(y=Ym) @7

s(y) =
being 1 an scaling factor and yy, the distance where the
potential field starts pushing. This approach was tested on
a real robot for a wiping task, where the human coach
instructed the robot using gestures to adapt its trajectory with
satisfactory results [54].

C. ALTERNATIVE APPROACHES

In this section, works that use APF combined with DMP
that do not belong to the two previous categories (DMP
combined with dynamic potentials III.A, and combined with
steering angle-based potentials III.B) are presented. The
applications of these alternative approaches can be divided
in the ones centered in avoiding joint limits [17], point
obstacles [56], [57], volumetric obstacles [44] or walls [58].
Finally, as in previous sections, there is also a system
optimization proposal [59].

1) AVOID JOINT LIMITS

The combination of DMP and APF is not limited to the
avoidance of obstacles and it can also be used for avoiding
joint limits as in [17]. Here, an additional force is designed to
push the trajectory away from the angular limits. They model
the force to avoid robot’s joint limits as:

0:10] <6

9[ 9[

—10|w|tan( ): 6, < 10| A |tan(
90(0) — max 9[ max

—10|wsign(0)| : |tan( ) =10 A 0] < Opax

)| < 10

'max
—|®max|0 : 10] > Omax

(28)
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being 6,4, the angular limits of the robot, 6; the threshold
angle at which the potential field start working and w the
weighting factors of the potential. The formulation ensures
that within a small amount of time-steps, the trajectory
that exceeds the set bounds comes back quickly to the
desired range to minimize the loss of free space. In this
way, the learning also is extended to include the mechanical
constraints of the robot.

2) POINT OBSTACLES

Regarding point obstacle avoidance, an original distance
based coupling term is presented in Tan et al. [57]. The
equation of the forcing term is presented as:

_ b
S d—r)?

where B is constant, d is the distance between the obstacle
and the end-effector and r is the radius of the obstacle.
The originality of this approach is that the goal g of the
transformation system is replaced by a temporal goal gepp =
&+ 8impedance> DEING gimpedance = e when the current state in
the execution phase of the DMP is under the influence of the
obstacle (« is a constant gain). When a position generated by
the DMP enters into the area of action of the obstacle, the goal
state g is moved to a virtual state g, to calculate the position
in the next time-step. When the robot goes out of the influence
of the object, the original goal g is used again. Their method
is capable of handling better than other techniques high speed
control. This implementation was only tested in simulation,
generating different trajectories with artificial point obstacles
in the middle of the trajectory.

In real life scenarios, not only the contacts between
end-effector and obstacles should be avoided, but the whole
system must be collision free. In [56], the presented system
was composed by a quadrucopter that carries a robotic arm,
so not only the aerial robot should avoid the obstacle but also
the robot arm, meaning that the link collisions should also be
avoided. In this research work, the original artificial potential
field proposed by Khatib [23] was combined with DMPs. The
learning phase consisted of learning a DMP for the trajectory
without obstacles of each link of the robot arm, plus another
one for the quadrucopter. In the execution phase, only tested
in simulation, they obtained satisfactory results.

% (29)

3) VOLUMETRIC OBSTACLES

Transitioning now to the domain of volumetric obstacles,
the general superquadratic static potential function of
equation (14) was used in different research works [44], [60].
In [44] equation (14) was proposed for the first time and
compared to the steering angle approach of [28]. Although
the superquadratic potential approach offers computational
efficiency over the steering angle method, the latter ensures
convergence to the goal, a guarantee not provided by
superquadratic potentials. The proposed potential was tested
in a laboratory environment where the robot should avoid
known obstacles (cylindrical pegs) in scene, obtaining
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FIGURE 4. Graphical representation of the wall obstacle and constrained
area in [58].

satisfactory results [44]. The same superquadratic potential
was used in [60] for obstacle avoidance in pick and place tasks
in simulated environments using a URS robot.

4) WALL OBSTACLES

Moving forward, the recent research now centers on wall-type
obstacles, with a focus on how they can be handled with new
coupling terms, as in [58]. The proposed coupling term in [58]
is expressed mathematically as:

o) =
1 1 1 1

k(—— = —)———el——

O-y) doa -y O-y) doa
y—=yi <dod

1 I 11 1,
k(— — — )— 56 —— — — )
dog  OGu—=Y) Ou—¥*" doa Qu—Y)
Yu—y <doa
AOotherwise

1 1,

(30)

Figure 4 shows a graphical representation of their physical
paradigm linked with equation (30). y is the position of
the system, do 4 the width of the constrain area from the
allowed limits where the potential should get activated, y;
the lower allowed limit, y, the upper allowed limit and k a
gain constant. Therefore, there is safe area to move on, which
is to a given distance from the allowed limits (dp 4), and a
constrained area where the coupling term gets activated. The
approach was tested it in four different situations of a drawing
task, where a real robot was able to adapt its movements and
avoid satisfactorily going outside the safe margins.

5) SYSTEM OPTIMIZATION

Unlike in the previously presented approaches where a
potential field is mathematically described to generate a
coupling term, the coupling terms can also be gathered
from human demonstrations. In [59], a neural network is
trained using human demonstrations to create a coupling
term model instead of mathematically calculating it. For
this, demonstrations without obstacles are used to learn
the forcing term as in the classic DMP approach. The
demonstrations with obstacles are then used to calculate
the coupling term value, by computing the difference between
the original forcing term and the forcing term in the presence
of obstacles. Once the coupling terms are calculated for
all the demonstrations with obstacles, a neural network is
trained. In real applications, the output of the network is
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TABLE 1. Classification of the bibliography according their characteristics, application and robot used. A category represents dynamic potentials,
B steering angle based potentials and C alternative approaches. Y stands for yes and N stands for no.

Category Ref ~ Year Obstacle  Potential Distance Oscillation  Convergence ~ Smooth Application Robot
Type Type Dependent ~ Mitigation  Guaranteed Trajectory
A [22] 2008 Point Dynamic Y N N Y Pick & place Sarcos Follower
A [40] 2011 Point Dynamic Y N N Y Avoid static ob-  SDOFs robot
stacle
A [21] 2021 Volume Static Y Improved N Y Pick & place Youbot, Davinci,
Dynamic Panda
A [16] 2021 Point Dynamic Y N N Y Avoid static ob-  7-DOF robot
stacle
A [41] 2023 Point & Dynamic Y Improved - Y Autonomous None
Wall driving avoiding
cars
A [42] 2023 Volume Dynamic Y N N Y Dynamic obstacle  Kinova MOVO.
avoidance
A [43] 2023  Volume Dynamic Y N N Pick, scan and Unnamed
place
B [28] 2009 Point Dynamic N N Y Y Pick & place Sarcos Follower
B [29] 2009 Point Dynamic N N Y Y Pouring task Sarcos Leader
and Follower
B [50] 2013 Point Dynamic N N Y Y - -
B [52] 2014 Volume Dynamic Y N Y Y Avoid static ob-  Simulated Kuka
stacle LWR
B [54] 2016 Point Dynamic Y N Y Y Coaching the  Kuka LWR4
robot
B [48] 2017 Point Dynamic N N Y Y Obstacle in path Mobile robot
B [45] 2019 Point Dynamic N N Y Y Pouring task Kuka LWR4
B [49] 2019 Point Dynamic N N Y Y Place cupontable  JACO robot
with a robot on a
wheelchair
B [38] 2019 Point Dynamic N N Y Y Pick & place Mobile robot
B [53] 2019 Point Dynamic Y N Y Y Avoid static ob-  Franka Emika
stacle robot
B [55] 2020 Point Dynamic N N Y Y Pick & place iCub robot
B [46] 2021 Point Dynamic N N Y Y Writing task URI10 robot
B [51] 2022 Point Dynamic Y Improved Y Y Avoid static &  Baxter robot
dynamic obstacle
B [47] 2024 Point Dynamic N N Y Y Pusher-Slider Joystick
with obstacle
C [57] 2011 Point Static Y N Y Y Avoid obstacle in  Simulation
simulated scene
[17] 2017 - Static N - - Y Limit robot’s ABB IRB120
joint motion simulator
C [56] 2017 Point Static Y - - Y Link collision  Quadrotor with
and obstacle  robotic arm
avoidance
C [59] 2017 Volume - - - Y Y Obstacle Barrett robot
avoidance
C [44] 2019 Volume Static Y Improved N Y Obstacle in path Panda robot
C [60] 2020 Volume Static Y Improved N Y Pick& place Simulated URS
C [58] 2024 Wall Static Y - Y Y Drawing task Arm prototype

stabilized using filtering rules to to ensure an adequate
robot behavior. In contrast to traditional coupling term
calculation methods that need manual hyperparameter tuning,
this approach alleviates the need for manual intervention.
However, this approach requires relying more heavily on
gathering human demonstrations to ensure effective training
(they used 21 recordings with no obstacle and 600 with
obstacles in different configurations).

D. APPLICATIONS COMBINING DMP AND APF

Table 1 serves as a comprehensive compilation of all
the research works cited in section III. Organized by
category, it offers a structured overview of the diverse
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studies discussed. Each entry in the table outlines the
different characteristics of the research, facilitating the
comparison between methods. Inside each category, works
are chronologically ordered and categorized based on their
potential type, characteristics, application and robot.
The table provides the following information:
o Category: states the group the presented potential
belongs to: A, dynamic potentials, B steering angle and
C alternative approaches.
o Year: year of publication.
o Obstacle Type: point for unique point obstacles or
volume for volumetric obstacles, walls for continuous
wall shape obstacles.
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o Potential Type: dynamic potential makes reference
to potentials that depend on the velocity, and static
potentials are those which only relay on position.

o Distance Dependent: specifies when the formulation
directly depends on the distance to the obstacle with yes
(Y) or no (N).

o Oscillation Mitigation: states whether the oscillatory
behavior is explicitly avoided. This can be yes (Y),
no (N) or Improved if they compare themselves to other
methods and improve the other’s results.

o Convergence Guaranteed: makes reference to whether
the goal reaching is guaranteed (Y) or not (N).

o Smooth Trajectory: will only be yes (Y) if the trajectories
generated with the DMP & APF are smooth in the
performed experiments.

o Application: the chosen task to validate the strategy.

e Robot: in case a real robot has been used, which one has
it been.

In cases where the use case does not allow directly addressing
any column, a ’-’ symbol is displayed.

1) DISCUSSION

Following the table’s presentation, this discussion explores
its classification from different viewpoints, aiming to offer a
nuanced understanding of its implications and complexities,
providing insights into its multifaceted nature.

According to the data presented in the table, three
distinct categories have emerged: those founded on dynamic
potentials [22], those rooted in steering angle [28], and
alternative approaches that deviate from these established
categories. Upon closer examination of the distribution of
papers across these categories, it becomes apparent that the
category based on steering angle [28] possesses the highest
frequency of occurrence, indicating its prevalence within the
field. However, an analysis of temporal trends reveals that the
three categories have been utilized with relative uniformity
across the last five years. One of the main reasons of the
predominance of steering angle-based approaches is that
the convergence to the goal is guaranteed when generating
obstacle avoidance trajectories.

Regarding the obstacles discussed in the literature analysis,
three distinct types are commonly addressed: point obsta-
cles, volumetric obstacles, and walls. Point obstacles are
frequently employed to simplify computational processes in
the proposed research, offering a concise scenario focused
on the exerted forces more than in the design of the
object descriptors. Volumetric obstacle avoidance, on the
other hand, often involves using superquadratic equations
to describe objects or utilizing points on the surface of
obstacles instead of modeling the entire obstacle volume.
Generally these type of obstacles are handled in category
A. Despite the prevalence of point and volumetric obstacles,
there is comparatively less investigation into methods aimed
at maintaining robots or vehicles within a desired motion
zone. This disparity underscores a potential area for further
exploration and innovation within the field.
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Focusing on the application or use case, very similar
scenarios are presented across all categories. This makes it
challenging to determine which approach is most suitable for
particular tasks or contexts.

Concerning the aspect of smoothness of the generated
curve, none of the presented category can be said to
outperform the others, as there is a lack of an objective
analysis to compare the various methods proposed in the
literature. Typically, all presented methods generate stylish
smooth trajectory without offering a quantifiable benchmark
for comparison between methods. But only a very few
compare themselves with other state of the art techniques and
this comparison is just done with graphical representations.
In the analyzed literature there is no objective quantification
of the smoothness of the generated curves.

A similar situation arises when analyzing the computa-
tional cost of each approach. While optimization approaches
may offer superior effectiveness compared to manual param-
eter tuning for example, they require more computational
cost and more human resources to gather all the additional
demonstrations of the task in hand. However, in highly
constrained environments where changes are minimal, the
efforts invested in recording extra demonstrations and
training models to optimize the coupling terms could be
deemed worthwhile. In any case, any modification or
improvement made to the original potentials should not
only demonstrate the enhanced performance in terms of
effectiveness in the obstacle avoidance task but also should
evaluate computational trade-offs.

IV. OPEN CHALLENGES FOR COMBINING DMPS AND APF
Combining both DMP and APF can enhance the power

of both methodologies, bringing together the generalization
capability of the DMP with the reactivity to obstacles of
the APF. But as in any motion primitive representation,
there are also inherent limitations and unresolved problems.
Based on the literature review analysis, this section highlights
persisting open challenges, suggesting possible ways for
future advancements in the field.

A. CONVERGENCE TO THE GOAL

As of today, there is not an optimal way to guarantee goal
convergence while avoiding local minima and oscillatory
behaviors. On the one hand, the works based on the first
dynamic potential are not able to guarantee convergence.
On the other hand, the original steering-angle formulation
ensures convergence but as the steering angle does not depend
on the distance to the obstacle, the same importance is given
to close or far obstacles, which leads to oscillatory behaviors.
Adding a dependency to the obstacle distance in the steering
angle formulation is an interesting proposed solution but
cannot be considered as a generalized solution due to the
limited complexity of use-cases in which it has been used.
It would be interesting to test them in a more complex
scenario with more than one obstacle in the scene, and some
of them close to each other to ensure the viability of the
method in real world applications.
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B. OBSTACLE TYPE

Regarding the obstacle type, most of the works focus on either
point-like or volumetric obstacles, static or in movement.
Only a few research works have dealt with continuous
obstacles. These works do not have convergence problems
since they do not have a goal close to any obstacle, so it
would be interesting to push the algorithms and test them in
such scenarios. Besides, the scope of the described works for
wall-type obstacles is limited to two dimensional scenarios.
It will be interesting, and challenging, to transfer their
proposals to a robotic 3D scenario.

C. ORIENTATION DMPS

Another remarkable challenge is the necessity of incorpo-
rating orientation into the DMP implementation to be able
to automate realistic tasks where certain orientations are
ensured. Imagine a use case where the task to automate is
to pour some liquid samples or enter a cavity to disassemble
two pieces. Here, a correct management of the orientation
constraints and obstacle- or wall-avoidance is essential for
a successful execution. All the presented implementations
focus on the positional versions of DMP even though
orientation is critical to handle many real life applications.

D. SMOOTHNESS

Up to now, there is no quantification regarding the smooth-
ness of the generated trajectories. All these works present
how the generated curves are valid due to their apparent
reduction in oscillations, how they avoid the obstacles or
in the best case scenario how close they are to the original
curve without obstacles. But there is a lack of an objective
analysis of the smoothness of the resulting motion. Therefore,
it would be interesting in future publications, to add an
objective evaluation and quantification of the smoothness
of the generated curves and the comparison of the results
generated with different methods.

E. SYSTEM OPTIMIZATION

An efficient hyperparameter selection in the combination
of DMP and APF or obtaining the most suitable coupling
term is considered another challenge. Generally, the tuning
of DMP and APF parameters relies on experts, who
draw on their intuitive insights and practical experience
instead of a deterministic methodology. As mentioned in
this overview, some approaches propose using optimization
techniques to select the optimal parameters for a given
task. Other approaches, directly learn the desired coupling
terms from human demonstrations using different machine
learning techniques. However, although this might enhance
the results for a particular task, this extra learning requirement
compromises the intrinsic one-shot learning capability of
the DMP and APF combination, which is essential in
some scenarios (e.g. in human teaching robots in hazardous
or distant environments). Here, the capability to teach a
robot in a single demonstration can minimize the mental
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burden of the human teacher as it allows rapid training and
testing without the need of hours of multiple demonstration
recordings or several waiting hours to obtain the optimum
parameters to test. Moreover, these optimized parameters and
coupling terms might be excellent for static obstacles but any
change in the configuration of the environment may make
them not suitable anymore. Therefore, developing parameter
optimization techniques that require few demonstrations to
optimize the hyperparameters, would significantly reduce
human’s involvement while improving overall system’s
efficiency.

F. COMPUTATIONAL COST

Generally, there is also a lack in all the works concerning
the quantification of how the addition of a potential slows
down the execution phase of the DMP. The incorporation
of APF supposes a computational burden for the DMP
that could limit their viability in real-life, particularly with
the steering angle, where equal importance is given to
obstacles regardless their position respect to the robot.
Besides, machine learning-based approaches require extra
time for demonstration recording and model training. For a
fair comparison between methods, not only the smoothness
of the generated trajectory and the capability of obstacle
avoidance should be compared, but also the time taken by the
algorithm to obtain the trajectory. Besides, proving that the
proposed combination achieves high-speed response during
the execution phase will lead to consider the proposed method
to be usable in real time, which is a valuable contribution for
task automation research.

G. SCENARIO COMPLEXITY

Finally, ensuring the generalization of learned movements
while incorporating obstacle avoidance remains a challenge
outside the laboratory. A remarkable point is that all the
research of table 1 lacks real-life experimentation. Indeed, all
relied on laboratory experimentation, with varying complex-
ity depending on the work. Even in the case of [21] where
more complex scenarios were designed and three robots
tested, there is not a real task that aims to be automatized
supporting the experiments. Indeed, this investigation shows
how conclusions drawn on simulated data do not always
generalize to real use cases. It would be interesting to have the
methods tested to attempt to automate real-world processes
as an ultimate challenge to really ensure that the proposed
combination is robust in different real life scenarios.

V. CONCLUSION

This work provides an analysis of different approaches
combining DMP and APF, with the objective of extending the
motion learning capability of the DMP, with the possibility to
react to undesired situation through the APF.

Two main families of approaches have been identified, the
ones based on the first dynamic potential and the ones based
on the steering angle. The original dynamic potential and
its derivatives are capable of successfully avoiding obstacles
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with smoother movements, compared to static potentials,
but they do not guarantee convergence to the goal nor do
they avoid oscillatory behaviors. The approaches based on
the steering angle family, on the contrary, are capable of
guaranteeing the convergence to the goal but still suffer from
oscillations when the formulation does not depend on the
distance to the obstacles. There is only a single investigation
that aimed to address both challenges, but the simplicity of
the proposed use case does not ensure its applicability in real
life.

Regarding the identification of futures lines of work, there
is a lack of more realistic scenarios where the algorithms can
be tested. The DMP-APF combination is ultimately intended
to work in real environments, when a completely automated
task may not be optimum due to environmental changes.
Full 3D implementations, including control of end-effector
orientation and the potential for collisions along the entire
robotic arm significantly increase the complexity, yet here is
where they have to prove their value.

In robotics, it is important to take into account two more
aspects: the computational cost necessary to generate the
trajectory and the smoothness of the generated trajectory.
Regarding the computational cost, the incorporation of the
APF does not affect the learning phase but does influence
the execution phase when the trajectory to avoid obstacles is
generated. This phase should not last more than minutes to
ensure that the whole demonstration, learning and execution
phase do not burden the human. Finally, the generated
curves should be smooth in order to avoid robot’s undesired
variations in joint velocities. For a fair comparison between
algorithms, not only their capacity (the task accomplishment
ratio) should be evaluated, but also the quality in terms of
smoothness of the generated curves.

In summary, the innovative ideas behind DMPs and
APF have provided a fruitful framework for implementing
efficient learning from demonstration that has attracted
significant attention in recent years. While there is still much
work to be done, as outlined in this targeted overview, the
combination of DMPs and APF is a promising solution to
the challenge of simplifying the programming of robotic
trajectories in the real world.
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